BLOCKING EVALUATION OF EE-OBS NETWORKS UNDER HETEROGENEOUS ON-OFF TRAFFIC

Reinaldo Vallejos (1), Marco Aravena (1,2), Alejandra Beghelli (1,3)

(1) Telematics Group, Electronic Eng. Dept., Universidad Técnica Federico Santa María, Chile
(2) Computer Science Department, Universidad de Valparaíso, Chile
(3) Optical Networks Group, Electronic & Electrical Eng. Dpt., University College London, UK

Acknowledgements. USM Projects 23.08.09, 23.08.43, DIPUV Project 46/2005 and Fondecyt Project 1080391.
Dynamic vs. static WDM optical networks (in terms of wavelength requirements \(^{(1,2)}\))

Simulation, a very **time-consuming** mechanism!

A **fast method** for **accurate** blocking evaluation of EE-OBS networks

(2) A. Beghelli, A. Leiva, R. Vallejos, M. Aravena, **Static vs. Dynamic WDM Optical Networks under single-cable failure conditions**, ONDM 2009, Poster Session
Network Model
(any end-to-end dynamic network, e.g. EE-OBS)
Traffic Model

Data from 0 to 1

ON ON ON

Data from 0 to 2

ON ON ON

... ...

Data from 0 to 10

ON ON ON

- Traffic demand between each node pair is assumed to be governed by an ON-OFF process
- Mean ON/OFF period of connection c (t_{ON}^c/t_{OFF}^c)
- Traffic load of connection c

$$\rho_c = \frac{t_{ON}^c}{t_{ON}^c + t_{OFF}^c}$$

Heterogeneous traffic matrix

$$\begin{bmatrix}
0 & 1 & \cdots & N \\
0 & \rho_1 & \cdots & \rho_{N-1} \\
\rho_N & 0 & \cdots & \rho_{2(N-1)} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_x & \rho_y & \cdots & 0
\end{bmatrix}$$
Proposed method

\[B_{\text{net}} = \frac{\text{blocked}}{\text{total}} = \frac{\sum_{\forall c \in C} \lambda_c B_c}{\lambda} \]
Mean arrival rate of bursts of connection c

$$\lambda_c = \frac{1}{t_{ON}^c + t_{OFF}^c}$$

Proposed method

$$B_{net} = \frac{\text{blocked}}{\text{total}} = \frac{\sum \lambda_c B_c}{\lambda}$$
Proposed method

Mean arrival rate of bursts of connection c

$$\lambda_c = \frac{1}{t_{ON}^c + t_{OFF}^c}$$

Network total burst arrival rate

$$\lambda = \sum_{\forall c \in C} \lambda_c$$

Network total blocked burst arrival rate

$$B_{net} = \frac{\text{blocked}}{\text{total}} = \frac{\sum \lambda_c B_c}{\lambda}$$
Proposed method

Mean arrival rate of bursts of connection c

$$\lambda_c = \frac{1}{t_c^{ON} + t_c^{OFF}}$$

Network total burst arrival rate

$$\lambda = \sum_{\forall c \in C} \lambda_c$$

Blocking probability of connection c

$$B_c = 1 - \prod_{\forall l \in r_c} (1 - B_l)$$

Network total blocked

$$B_{net} = \frac{\text{blocked}}{\text{total}} = \frac{\sum_{\forall c \in C} \lambda_c B_c}{\lambda}$$
Proposed method

Mean arrival rate of bursts of connection c

$$\lambda_c = \frac{1}{t_{ON}^c + t_{OFF}^c}$$

Network total burst arrival rate

$$\lambda = \sum_{\forall c \in C} \lambda_c$$

$O(T_l \cdot 2^{T_l})$

Blocking probability of connection c

$$B_c = 1 - \prod_{\forall l \in r_c} (1 - B_l)$$

Network total blocked rate

$$B_{net} = \frac{\text{blocked}}{\text{total}} = \frac{\sum \lambda_c B_c}{\lambda}$$

For ARPANet, it took 4 hours to evaluate B_l for all links!

s_k: i-th component is state of connection i in link l; (ON=1; OFF=0)
Improved method

\[
B_l = \frac{\text{blocked}}{\text{total}} = \frac{\sum \lambda(\vec{s}_k) P(\vec{s}_k)}{\sum_{\|\vec{s}_k\| \leq W_l} \lambda(\vec{s}_k) P(\vec{s}_k)}
\]

\(\vec{s}_k\): \(i\)-th component is state of connection \(i\) in link \(l\); \((\text{ON}=1; \text{OFF}=0)\)

Set of recurrence relations

\[
B_l = \frac{\text{blocked}}{\text{total}} = \frac{\beta(T_l, W_l)}{\sum_{j=1}^{W_l} \beta(T_l, j)}
\]

\[
\beta(u, j) = \begin{cases}
0, & u \leq j = 0 \\
(1 - \rho_u)[\beta(u-1, j) + \alpha(u-1, j) \cdot \lambda_u], & u > j = 0 \\
(1 - \rho_u)[\beta(u-1, j) + \alpha(u-1, j) \lambda_u] + \beta(u-1, j-1) \cdot \rho_u, & u \geq j > 0
\end{cases}
\]

\(O(T_l \cdot 2^{T_l})\)

4 hours in ARPANet

\(O(T_l^2)\)

< 1 sec!
Numerical Results

- **Eurocore**
 - 11 nodes
 - 25 bi-directional links

- **NSFNet**
 - 14 nodes
 - 21 bi-directional links

- **EON**
 - 20 nodes
 - 39 bi-directional links

- **UKNet**
 - 21 nodes
 - 39 bi-directional links

- **ARPANet**
 - 20 nodes
 - 31 bi-directional links

- **Eurolarge**
 - 43 nodes
 - 178 bi-directional links
Numerical Results

• Event-driven simulator, developed in C++

• 10^6 bursts

• Exponential and Pareto ($\alpha=1.5$) distributions for ON/OFF periods

• Mean ON period: 5 ms, 10ms and 25 ms for UKNet, European and US networks

• Heterogeneous traffic matrix: $\rho_c \sim U[\rho-0.2; \rho+0.2]$

• Shortest path balanced routing
Numerical Results

(Exponential)
Numerical Results

(Pareto)

- **Eurocore**
 - Mathematical $W=15$
 - Simulation $W=15$
 - Mathematical $W=13$
 - Simulation $W=13$
 - Mathematical $W=8$
 - Simulation $W=8$

- **NSFNet**
 - Mathematical $W=20$
 - Simulation $W=20$
 - Mathematical $W=18$
 - Simulation $W=18$
 - Mathematical $W=16$
 - Simulation $W=16$

- **EON**
 - Mathematical $W=37$
 - Simulation $W=37$
 - Mathematical $W=40$

- **UKNet**
 - Mathematical $W=12$
 - Simulation $W=12$
 - Mathematical $W=14$
 - Simulation $W=14$
 - Mathematical $W=16$
 - Simulation $W=16$

- **ARPANet**
 - Mathematical $W=3$
 - Simulation $W=3$
 - Mathematical $W=2$
 - Simulation $W=2$
 - Mathematical $W=1$
 - Simulation $W=1$

- **Eurolarge**
 - Mathematical $W=12$
 - Simulation $W=12$
 - Mathematical $W=14$
 - Simulation $W=14$
 - Mathematical $W=16$
 - Simulation $W=16$
Conclusions

• A fast and accurate method for blocking evaluation of end-to-end dynamic networks (e.g. EE-OBS)

• Low computational complexity obtained by using recurrence relations

• Next step: extending the method for alternated routing
Previous Work

- Simulation
- Poisson traffic
- Single link/node
- Homogeneous traffic

 Mathematical method\(^{(1)}\)
- ON-OFF traffic\(^{(1)}\)
- Network-wide\(^{(1)}\)
- Heterogeneous traffic

\(1\) R. Vallejos, A. Zapata-Beghelli, M. Aravena, Fast Blocking Evaluation of EE-OBS Networks, Photonic Network Communications, April 2007