This is an author produced version of:

Self-aware scheduling for mixed-criticality component-based systems

Article:

10.1109/RTAS.2019.00030

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Abstract—A basic mixed-criticality requirement in real-time systems is temporal isolation, which ensures that applications receive a guaranteed (CPU) service and impose a bounded interference on other applications. Providing operating system support for temporal isolation is often inefficient, in terms of utilisation and achieved latencies, or complex and hard to implement or model correctly. Correct models are, however, a prerequisite when response times are bounded by formal analyses. We provide a novel approach to this challenge by applying self-aware computing methodologies that involve runtime monitoring to detect (and correct) model deviations of a budget-based scheduler.

I. INTRODUCTION

In Mixed-Criticality Systems (MCS), a processing platform hosts applications of different importance for the “mission” of a cyber-physical system. A high-critical application is typically developed with high quality standards in order to assure its correct operation. As this assurance does not hold for all system parts, such systems must employ the basic principle of isolating higher criticalities from any influence of lower-critical application. More precisely, criticality should be perceived as an attribute of a requirement, i.e. a system-level constraint, rather than an attribute of an application [1]. When it comes to (real-)time requirements, temporal isolation must thus be achieved. As recently stated by Lyons et al., “MCS require OS support for a form of temporal isolation, where (lower criticality) high-priority threads can preempt (highly critical) threads, but cannot monopolise the processor” [2]. Although static-priority scheduling provides temporal isolation from lower-priority threads, criticalities cannot be used as scheduling priorities in general. Similarly, fixed time slices are an inefficient solution for temporal isolation w.r.t. utilisation and latencies.

Unlike static mixed-criticality scheduling techniques [3] that are restricted to two criticalities and only provide guarantees for the highest criticality, we consider MCS from a more practical perspective. In these regards, scheduling policies such as sporadic-server scheduling have been proposed but turned out to be rather complex and hard to implement correctly [4], [5]. For real-time systems, there are two key properties: first, the correct (timely) operation of the application itself (guaranteed service) and, second, the bounded (temporal) interference from other applications. The latter in particular is a prerequisite for bounding response times, e.g. by performing a model-based Worst-Case Response Time (WCRT) analysis, which is the major requirement in real-time systems. However, models only capture abstract concepts and assumptions that may not exactly reflect the actual implementation of the applications and the Operating System (OS). Particularly for low-criticality applications, abstractions and approximations are getting more prominent. Corner cases in regards to temporal isolation may furthermore only occur under certain load, with certain applications or with a particular system composition. Therefore, temporal isolation cannot be guaranteed (and sustained during the system’s life cycle) by WCRT analysis or by (operating-)system design alone. Instead, we propose a combined approach for providing temporal isolation, which is essential for MCS. By bringing the models into the runtime domain we enable the system to adapt to detected model changes, which is a basic principle of self-aware computing systems as we will explain in Section III.

Contributions: We suggest a budget-based scheduling with an event-based replenishment policy for basic temporal isolation. We augment this by run-time tracing and monitoring mechanisms to detect model deviations in the scheduling w.r.t. required budgets and scheduling overheads that result from inaccurate time accounting. By combining both techniques, we achieve self-aware scheduling. We implemented our techniques in a microkernel-based system. Section II states the models that we take as a basis before we present our contributions in Section III. In Section IV we summarise related work in the corresponding research fields. The evaluation of our approach and its implementation is given in Section V before we conclude with our final thoughts in Section VI.

II. SYSTEM MODEL

We base our implementation on the open-source Genode OS Framework [6]. This framework follows the microkernel approach and employs a strict decomposition of the system on application level, resulting in a service-oriented architecture in which separate components implement and provide services for other components. While decomposition can already deal with liveliness issues [7] that arise in mixed-critical systems, dependencies on the execution time or response time of other components remain [8] due to imperfect temporal isolation. Exposing these dependencies requires a timing model of the entire workload. In order to resolve these dependencies, Möstl et al. [8] suggest run-time enforcement mechanisms.
In this work, we distinguish between an application-centric timing model and a kernel-centric timing model. The former describes the interactions and dependencies between the activities of communicating components, and serves as a basis for exposing (timing) dependencies between components as well as for determining scheduling priorities. The latter models how the kernel schedules the different schedulable entities.

When integrating mixed-critical systems, both models are essential. The application timing model provides all the information required for determining worst-case end-to-end latencies for particular processing chains and hence enables verification of application timing constraints. In contrast, the kernel timing model focuses on scheduling decisions and overheads, thereby abstracting the actual implementation and serves as a basis for configuring enforcement mechanisms.

This section summarises the models we apply on both levels and provides details and assumptions about the existing OS kernel implementation.

A. System composition

We consider component-based systems that follow the microkernel approach. A component in such a system is spatially isolated, i.e. it has its own address space. Components can communicate with each other using client/server – i.e. Remote-Procedure Call (RPC) – or sender/receiver semantics. The communication policy follows the principle of least privilege such that access rights can be passed on a fine-grained level. Management of policy is typically performed by a separate component that delegates resources and access. In the scope of this work, we assume that components are single threaded.

B. Application timing model

In consequence of our system composition, the application timing model consists of communicating threads. From a functional perspective, thread communication is commonly modelled by sequence diagrams that show the activities of threads and their interactions. In a timing model, tasks reflect these activities and their precedence relations, which lead to task chains [9]. A task is activated by a stimulus, executes for a certain time and may emit a stimulus when it completes. For synchronous precedence (e.g. RPC), a task must wait for the completion of its successor before a new job can be executed. A task therefore resembles a sequence of code within a thread whereas precedence relations reflect communication between threads.

The OS performs scheduling on a per-threads basis, i.e. a thread not only delivers the code to be executed but also the scheduling parameter (e.g. priority or time slice). Hence, there is a dualism of threads as model entities as they not only reflect a temporal (scheduling) but also a spatial (shared resource) property: A thread performing a RPC blocks the address space of the callee such that all other callers (synchronous predecessors) of the callee must wait for its completion before their RPC can be handled. The shared resource aspect of threads may lead to priority inversion, which is typically addressed by inheritance protocols [10], [11].

Note, that shaping (i.e. enforcement of execution times) on basis of the application timing model, would be rather complex and heavyweight as the kernel/scheduler is not aware of these model abstractions. It does not appear practical to match the application timing model with the scheduler’s native abstractions at run time. Furthermore, Schlatow and Ernst [12] showed that the run-time efficiency of a response-time analysis for complex task chains is not suitable for in-field application and hence not suitable for self-aware scheduling. In consequence, a simpler analysis approach is required that goes hand-in-hand with the implementation.

C. Kernel (timing) model

The section below summarises implementation details and assumptions about the kernel before we specify our kernel-timing model. The kernel implements RPCs and signals as inter-component communication mechanisms. These mechanisms directly resemble the client/server and sender/receiver communication schemes mentioned above. The kernel implements Symmetric Multiprocessing (SMP) with one kernel stack and one scheduler per core. Concurrent access to kernel objects is managed by a kernel lock which ensures that only one core at a time can reside in kernel. The kernel schedules the threads on each core based on the active scheduling contexts [2], [13]. A scheduling context has an execution budget and references the thread that currently executes in this context. This way, execution budgets can be passed between threads on RPCs, which effectively implements donation and helping that are commonly used in microkernels [10] to mitigate priority inversion. As we do not want to go into the details of these mechanisms in the scope of this paper, we rather focus on the implications that these have on the application timing model.

1) Tasks with synchronous precedence (RPC) are executed within the same scheduling context (donation).

2) In case of helping, blocked tasks donate their scheduling context (e.g. priority, time slice) such that the waiting time is limited (no nested blocking).

Note that the definition and replenishment of the actual execution budgets is part of the scheduling policy. Similarly, the selection of scheduling contexts is also part of the scheduling policy (e.g. priority based, round robin).

1) Time accounting: The kernel is implemented tickless, i.e. the scheduler uses a core-private timer in one-shot mode to perform time accounting and process timeouts based on the calculated OS time. Figure 1 and Figure 2 depict how the scheduler performs time accounting using the one-shot timer. More specifically, a switch from an old job to a new job is depicted, which involves the invocation of the kernel and scheduler. Such a switch can be caused by interrupts, CPU exceptions, syscalls or timer expirations. Note that the scheduler may select the same job again (old job = new job).
At time t_{A0} the scheduler reads the timer value to advance the OS time, processes timeouts and calculates the budget consumed by the current job. At time t_{S0}, the scheduling decision was made and the timer is set to the next timeout (i.e. budget expiration) and started. Some time later, old job is executing until t_{K0} where the kernel is entered again. Similarly, at t_{A1} the OS time is advanced by $t_{A1} - t_{S0}$ and the timer is set for new job at t_{S1}.

![Figure 1. Time accounting in case of interrupt, CPU exception or syscall.](image)

As long as the timer is running (decreasing), the passed time can be accounted as consumed execution budget of the current job no matter if the time was spent in kernel or user-level. More specifically, we define $t_{S0} - t_{S1}$ as the time at which old job/new job is scheduled. Ideally, we want the time between $t_{S1} - t_{S0}$ to be accounted to the execution of old job.

However, as illustrated by Figure 1, the timer is halted between t_{A1} and t_{S1}. In consequence, the budget of old job is subtracted by $t_{A1} - t_{S0}$, which effectively increases the budget of old job by $t_{S1} - t_{A1}$ for every preemption. We denote this as preemption overhead.

Moreover, in case the timer runs to zero at any point between t_{K0} and t_{A1} as illustrated in Figure 2, the time between t_{K0} and t_{S1} remains unaccounted in the worst case. This increases the budget of old job by $t_{S1} - t_{K0}$. As this may only happen if old job consumed all its execution budget, we denote this as budget expiration overhead.

Additionally, due to the kernel lock, in multi-core systems, kernel entry will be delayed if another core resides in kernel-mode. As long as the timer keeps running, this is accounted as consumed budget. If the timer expired, this kernel lock overhead must be considered as additional unaccounted budget.

We are aware that a careful kernel implementation would make use of an incrementing counter that never stops in order to eliminate the preemption overhead. However, such a timer is not available on all architectures or may rather be used for other purposes. Hence, in the scope of this work, we focused on dealing with such imperfect implementations by means of self-awareness.

2) Budget scheduling model: As was mentioned in the beginning of this section, we now define a kernel timing model. This model shall capture the scheduling behaviour w.r.t. inaccuracies and overheads of the execution budgets that are assigned to the scheduling contexts. More specifically, we are interested in a) the guaranteed service (in terms of CPU time) that a scheduling context will receive for a given execution budget, and b) the maximum interference that other scheduling contexts may experience. Note, that we do not distinguish between time spent in kernel- or user-level.

Definition 1: The guaranteed service for a scheduling context s is calculated by the granted budget and a non-negative additive error Q per preemption:

$$\text{service}(s) = \text{granted budget} + \#\text{preemptions} \cdot Q$$

Definition 2: The maximum interference from a scheduling context s is calculated by its granted budget, a non-negative additive error P per preemption and a non-negative additive error E:

$$\text{interference}(s) = \text{granted budget} + \#\text{preemptions} \cdot P + E$$

The errors Q and P are determined by lower resp. upper bounds for the preemption overhead. The error E combines upper bounds on the budget expiration and kernel lock overhead. These can be either derived analytically (by Worst-Case Execution Time (WCET) analysis) or determined by measurements as we do in Section V. As these measurements typically do not serve as sound upper bounds, we suggest a monitoring approach to detect model deviations in Section III-C2. Note, that we only consider additive errors and exclude multiplicative errors, i.e. errors that depend on the budget value. Our rationale is that multiplicative errors will be small enough in the typical time range (from hundreds of microseconds to a few seconds) so that they can be approximated by additive errors.

III. Self-aware scheduling

Before elaborating on our approach to self-aware scheduling, it is important to first have a look at how self-awareness is defined in the literature. Lewis et al. [14] define self-awareness in computing systems based “on the idea of a conceptual component called a self-aware node”, which does not need to correspond to a physical (hardware, software) component:

“To be self-aware a node must:

- Possess sufficient knowledge of its environment to determine how it is perceived by other parts of the system (public self-awareness).
- Possess information about its internal state (private self-awareness).”

Lewis et al. also define self-expression as:

- “A node exhibits self-expression if it is able to assert its behaviour upon either itself or other nodes.
- This behaviour is based upon the node’s state, context, goals, values, objectives and constraints.”
In these terms, self-expression denotes the (re)actions that a system performs based on the knowledge of its own state and its environment (self-awareness).

Note, that these definitions rather focus on functional aspects (behaviour) of computing systems whereas we take a platform-centric view on these terms in the scope of this paper. More specifically, we suppose that the scheduling resembles the self-aware node and that its environment is perceived in form of the application timing model.

While deferrable server scheduling is simple to implement, ideal sporadic server scheduling cannot be implemented as it requires tracking an infinite number of (time-triggered) replenishments. Hence, in practice, the number of replenishments must be limited. At the same time, time resolution must be taken into account. A more practical definition of this concept is given by the POSIX sporadic server, which, however, is still complex and as shown by defects discovered and corrected later [4].

A general drawback of this concept is the replenishment fragmentation that results from it as every preemption will lead to a time-triggered replenishment of the consumed budget, thus causing a timeout (i.e. another preemption) after R_t. Of course, this can be counteracted at the cost of approximations (limiting the number of replenishments or the time resolution). Nevertheless, the more complex such an implementation is and the more corner cases it contains, the more effort must be spent for verification tasks such as real-time analysis and verification/certification of the implementation.

From the application perspective, the configuration of a sporadic server consists of setting an utilisation (single value) that allows the thread to be served fast enough and limits its interference on other threads. However, this does not quite match the application timing model introduced in Section II-B that we use to model application workload more accurately. This is due to the fact that a task/job resembles a certain sequence of code within a thread. Depending on input data and inter-thread communication, different job sequences (traces) can be observed, e.g. traces with a hyper-periodic sequence of execution times. There exists a large body of research looking at more exact digraph task models [16], [17] than the periodic task model. In the scope of this work, we use the execution time model (ET model) [18] that generalises such traces and that is comparatively low in complexity when it comes to implementation.

Definition 3: The execution time model of a task τ_i consists of two functions (ET^+, \bar{ET}^+) such that $\forall n \in \mathbb{N}: ET^+(n)$ (resp. $\bar{ET}^+(n)$) is the best-case (resp. worst-case) cumulative execution time of n consecutive instances. [18]

In other words, the $ET^+(n)$ function bounds the execution time that can at most be seen from any sequence of n consecutive jobs of task τ_i. For instance, the WCET of τ_i is given by $ET^+(1)$ whereas two consecutive jobs of τ_i will not execute longer than $ET^+(2)$. An example of such a curve is given in Figure 4. Due to its sub-additive nature, i.e. $ET^+(a + b) \leq ET^+(a) + ET^+(b)$, the length of such a curve can be limited to a constant L at the cost of precision.

Wandeler et al. [19] use a similar formulation of ET^+, which they call upper workload curves. According to them, the ET model can be transformed into a workload arrival function (cf. [20]) as given by Definition 4.

Definition 4: Let $\eta^+_{\tau_i}(\Delta t)$ denote an upper bound on the number of events arriving within the time interval Δt. Then, the workload arrival function $\alpha_t(\Delta t) = ET^+_i(\eta^+_{\tau_i}(\Delta t))$ is an upper bound on the workload requested by τ_i during any time interval Δt.
From this definition, we infer that – given the arrival function is guaranteed – enforcing execution times according to $ET^+(n)$ is sufficient to limit the workload of a task τ_i within a given time interval. The key benefit of using an event-based rather than a time-based definition of execution budgets is the simpler replenishment policy resulting from this (no replenishment fragmentation). Moreover, we argue that there is basically no additional overhead from enforcing arrival functions \cite{21}. First, the timer (which activates periodic tasks) is in control of the OS anyway, hence there is no need to apply additional enforcement. Second, other tasks are activated by interrupts (from peripherals), which must always be shaped if temporal independence is required \cite{22}. Hence, by implementing a replenishment policy based on the ET model, we can a) keep the implementation complexity low and b) shape application workload more accurately than sporadic server scheduling. In particular, this shaping mechanism becomes practical with self-awareness, i.e. if a self-model is available on which it can be argued that it is sufficient to apply ET shaping because time sources can be trusted and interrupts are shaped.

2) Implementation: The default scheduler in Genode’s custom kernel \cite{23} implements deferrable server scheduling with a common replenishment period for all threads (super period) \cite{6}. Threads can be assigned a relative share of this super period (CPU quota). This quota can be delegated following the hierarchical system composition of Genode. At the beginning of each super period, the scheduler resets the absolute execution budget for each context which is calculated from the length of the super period (one second by default) and the CPU quota. Threads that have some budget are scheduled based on their static priority. If a thread consumed all its budget, it must wait until the end of the super period or for background scheduling. Background scheduling is performed once no ready thread has budget left and follows the round-robin scheme.

In order to implement ET-model shaping, we store the permitted $ET^+(n)$ curve and calculate the budget that can be admitted for a scheduling context upon every activation. As we cannot store an infinite length curve, we must limit its length to a constant L (cf. Figure 4). We inject the $ET^+(n)$ curve of a thread into the kernel using the TRACE interface \cite{6} of Genode.

In Genode, a thread is activated when it receives a signal. On signal reception, we calculate the budget and grant it to the scheduling context (replenishment). For calculating the budget, a history of consumed budgets must be evaluated. Let $c(n)$ denote the budget that was consumed by the n-th activation before the current one. Neukirchner et al. \cite{20} have already proven – for the case of workload arrival functions – that “for a continued [event] trace we only need to check new events for satisfaction”. We therefore calculate the granted budget for new activation as follows:

\[
granted = \min_{1 \leq n < L} \{ET^+(n + 1) - \sum_{1 \leq i \leq n} c(i)\} \tag{1}
\]

Eq. (1) calculates the budget that remains when subtracting the consumed budget over the past n activations from the budget that is permissible in a window of $n + 1$ activations. The minimum over all possible window lengths is the granted budget.

As we only need to check the past L consumptions, we store the history in a ring buffer of $L + 1$ elements. For every scheduler invocation, the currently consumed budget is added to the current position in the ring buffer; on signal reception, the buffer position is advanced.

3) Configuration: For the correct operation and adherence to timing constraints of our ET-shaped system, we employ the following configuration scheme. First, scheduling contexts must be configured so that they provide guaranteed service to all tasks. In other words, based on the application timing model, we want to extract an $ET^+(n)$ function for every scheduling context that guarantees enough budget for the tasks to complete their work once activated. This eliminates corner cases in the real-time analysis as we do not need to consider cases in which tasks exceeded their budget and must thus wait for background scheduling.

By design, the guaranteed service for a scheduling context is at least as high as the granted budget (cf. Definition 1). The budget required by a scheduling context can be analytically extracted from the task chains that are running within this context, including the expected number of preemptions so that the time spent in the kernel can be estimated and added to the budget. Formulating the corresponding $ET^+(n)$ curve, however, is not in the scope of this paper. Instead, we focus on extracting the curve from execution traces as Section III-C describes in detail. The extracted $ET^+(n)$ curve is then passed to the scheduler and enforced by our shaping mechanism.

In order to perform a WCRT analysis of the system, we must not only consider the granted budget but also the overheads as mentioned in Definition 2. Hence, let $ET^+_s(n)$ denote the upper bound on the interference from n consecutive activations of scheduling context s. As shown by Quinton et al. \cite{18}, a WCRT analysis can be performed based on such an ET model. In conjunction with our tracing mechanism (Section III-B) and budget monitoring (Section III-C), we can continuously observe the adherence of a scheduling context to its ET model. More precisely, on the one hand, we can detect whether a scheduling context requested more budget than granted (and
adapt if possible and a WCRT analysis admits). On the other hand and more importantly, we can observe the preemption and expiration overheads in order to validate whether the modelled $ET^+(n)$ still provides a sound upper bound. This enables adjusting the overheads, recalculating the $ET^+(n)$ curves and repeating the WCRT analysis in order to adapt to the changed (self-)model in terms of self-expression.

B. Tracing mechanism

For equipping the system with self-awareness w.r.t. scheduling, we require a software-based tracing mechanisms. The Genode OS Framework already provides an interface for application tracing [6], which allows implementing hook functions as position-independent code (trace policy) that can be injected into application components at runtime. The trace policy writes data into a trace ring buffer (as shared memory) that is provided along with the policy by a monitoring component. The latter must read the trace buffer periodically in order to process the trace events. We extended this functionality to the Genode custom kernel and added single hook function process the trace events. We extended this functionality to the Genode custom kernel and added single hook function.

The latter must read the trace buffer periodically in order to process the trace events. We extended this functionality to the Genode custom kernel and added single hook function.

C. Budget monitoring

By periodically processing the scheduling traces, our budget monitoring serves two purposes: First, it extracts the $ET^+(n)$ and detects whenever a scheduling context violates this curve. Second, it monitors (and corrects) the overheads that must be assumed in a WCRT analysis.

1) Extraction of ET models: Due to background scheduling, a scheduling context may execute longer than its granted budget. We can therefore extract the required budget from traces of an over- or under-budgeted scheduling context. Note, that in the latter case, we over approximate the required budget as background scheduling increases the number of preemptions and expirations.

Based on the scheduling contexts, we first calculate the execution traces of all scheduling contexts.

Definition 5: An execution trace is a function $\sigma : \mathbb{N}^+ \rightarrow \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where $\sigma_s(n) = (r, c, p)$ denotes the requested execution time r, the consumed budget c, and the number of preemption p of the n-th activation of scheduling context s.

Definition 6: A window ω_r over an execution trace is a function $(\sigma, L, n) \rightarrow r$ where r is the sum of requested execution time from $\sigma(n)$ to $\sigma(n + L - 1)$. Similarly, ω_c is a function for the sum of consumed budgets, ω_p for the sum of preemptions, and ω_v for the number of expirations (i.e. the number of cases for which $r > c$).

The $ET^+(n)$ is extracted from an execution trace by shifting a window of length 1 to L along the trace to find the maximum requested execution time (i.e. guaranteed service) for each length:

\[ET^+(i) = r_{\text{max}}(i) = \max_n \{\omega_r(\sigma, i, n)\} \]

Using the same principle, we can calculate the maximum number of preemptions $p_{\text{max}}(i)$ and expirations $e_{\text{max}}(i)$ for every window length i in order to calculate the corresponding budget overrun function:

\[\bar{ET}^+(i) = ET^+(i) + p_{\text{max}}(i) \cdot P + e_{\text{max}}(i) \cdot E \]

In [Definition 3] upper bounds on the preemption overhead P and expiration overhead E must be estimated by offline methods (e.g. WCET analysis) or by overhead monitoring as described next.

2) Overhead monitoring: The goal of overhead monitoring is to find a P and E that serves as an upper bound on the preemption overhead and expiration overhead (including kernel lock overhead) respectively for every scheduling context. We denote these upper bounds by \bar{P} and \bar{E}. Over a long term, P and E will be adapted from past observations to maintain safe upper bounds on the respective overheads. The challenge in this regards is to reason about whether a detected budget overrun is the result of an optimistic \bar{P} or \bar{E}. Budget overruns are detected by comparing the consumed budget to the granted budget:

Definition 7: A budget overrun function is a window $\omega_o(\bar{ET}^+, \sigma, i, n) = \omega_o(\sigma, i, n) - ET^+(i)$. A $\omega_o(\bar{ET}^+, \sigma, i, n) > 0$ is referred to as a detected budget overrun.

Let $\Omega_{p,e}$ denote the set of detected overrun values (samples) with p preemptions and e expirations. According to our model (Section II-C2), a detected budget overrun is caused by preemption and expiration overheads and therefore bounded by \bar{P} and \bar{E}:

\[\forall o \in \Omega_{p,e} : \quad o \leq P \cdot P + E \cdot E \]

From the samples with $e = 0$, we can build a linear equation system that can be solved for P to find the maximum among these samples, denoted \bar{P}. The remaining samples with $o - p \cdot P > 0$, however, build a linear equation system with two variables and > 2 equations for which there is no exact solution. We must therefore find a linear regression function that serves as an upper bound for all samples in order to estimate \bar{P} and \bar{E}. More precisely, we want to minimise the regression error for each number of preemptions and expirations. As we are interested in an upper bound, samples with the same number of preemptions and expirations can be combined into a weighted sample $\Omega_{p,e} = (\max \Omega_{p,e}, |\Omega_{p,e}|)$. The line of thought for this is that sub-maximal samples have
no information other than increasing sample size and hence being an indicator for the likelihood that the real maximum was observed. The \textit{regression error} is thus calculated by:

$$\epsilon = \sum_P \sum_{(o,w) \in \Omega_{p,w}} \left\{ \begin{array}{ll}
\infty & \text{if } o > p \cdot P + e \cdot E \\
(p \cdot P Y + e \cdot E - o) \cdot w & \text{else}
\end{array} \right. \quad (5)$$

We can formulate a Linear Program (LP) to solve this optimisation problem offline. However, as an LP may need exponential time it is not suitable for (online) monitoring. Instead, we implement an approximate solution for finding a \textit{least squares} method that best fits the given sample: First, we apply the least squares method to find a \(P\) and \(E\) that minimise the quadratic regression error. The quadratic error is a function \(a \cdot E^2 + b \cdot P^2 + c \cdot PE + d \cdot P + e \cdot E + f\) that can be efficiently solved by calculus.

![Figure 5](image)

\textbf{Figure 5} depicts a scatter plot of samples for a fixed \(e = 1\) from an experiment similar to those presented in Section V. The size of the markers correlates to the weight of the sample. The figure also shows the regression function that results from the least squares method (dashed line), which is not yet an upper bound for the samples but basically settles the slope \(P\) of the regression function. Second, we can calculate \(E\) from the samples such that the resulting regression function serves as an upper bound (solid line).

IV. RELATED WORK

The concept of self-awareness in computing systems was first proposed for autonomic computing in 2003 [24]. Today, there exists a large body of research in the field of self-awareness in computing systems [25, 26]. Self-aware computing systems employ architectural concepts that allow the system to observe (self-awareness) and adapt (self-expression) itself (cf. [14]). These concepts have been most recently surveyed and classified by Giese et al. [27], [28], who describe self-aware computing as a “paradigm shift from a reactive to a proactive operation that integrates the ability to learn, reason, and act at runtime [based on models]” [27].

Task graphs are a common vehicle for modelling application timing in order to perform response-time analyses. Precedence relations between tasks are reflected in task graphs of different expressiveness [16]. Yet, although these models may have a notion of limited preemptability [17], they rarely incorporate the non-reentrant nature of single-threaded address spaces that leads to blocking. Modelling precedence and blocking relations in real-time applications to perform response-time analyses has been addressed by MAST [29], which bases on MARTE UML. [30]. In MAST, \textit{scheduling servers} model the schedulable entity whereas \textit{operations} model activities that may lock/unlock a \textit{shared resource} and that are mapped to scheduling servers. \textit{Transactions} are made of operations with their precedence relations, which are thus executed on different scheduling servers (i.e. priorities) so that bounding their latency requires specialised techniques [31]. Most recently, Schlatow and Ernst augmented the task-graph model with scheduling contexts and execution contexts in order to reflect the thread dualism.

W.r.t. modelling (real-time) workload, Wandeler et al. [19] have formulated workload curves that are semantically similar to the ET model [18]. The latter, in contrast, explicitly targets varying execution times and the extraction from traces. By transforming these curves into Workload Arrival Functions (WAFs), a Compositional Performance Analysis [32] or Real-Time Calculus [33] can be used to check schedulability and calculate worst-case response times. In contrast to \textit{demand bound functions} [34], WAFs do not include a notion of deadlines or schedulability. Neukirchner et al. [20] applied monitoring of WAFs by rejecting incoming events if their assumed WCET, in conjunction with the trace of previous executions, will violate the WAF. Violations trigger an exception that can be handled at application level, which enable implementation of static mixed-criticality scheduling [3].

Another line of work that provides temporal isolation is sporadic server scheduling (and similar techniques). First mentioned by Sprunt et al. [15], it received attention as efficient and correct implementations are challenging [4], [5], [35]. Hence, approximate implementations exist that simplify these issues by assuming the same replenishment period \(R_t\) for all threads [36], [37]. QNX [37] manages replenishments by dividing the replenishment period into 1 ms slots that store the consumed budget. Accounting is performed on any OS tick or syscall. Lyons et al. [2] implemented sporadic server scheduling for the sL4 microkernel to achieve temporal isolation and to implement scheduling-context capabilities, which are temporal capabilities [38]. They use a tickless implementation based on the algorithm by Stanovich et al. [4]. The implementation can manage 8-10 replenishments at least whereas the actual replenishment threshold can be increased by user-level policies as well as the budget and replenishment period using their concept of scheduling-context capabilities. They introduce timeout exceptions as a mechanism to handle budget expirations at user level. Although being a quite sophisticated solution, sporadic server scheduling approximates real-time workload as periodic tasks, which prevents WCRT analysis of using more exact task models.

Regarding overhead accounting, Stanovich et al. [5] take the opposite approach to accounting of preemption overheads.
as they deduct an estimate of the preemption cost from the budget at run time, i.e. $Q ≤ 0$ in Definition 1.

W.r.t. tracing, it is worth mentioning that many kernels provide built-in mechanisms for lightweight instrumentation and for extracting traces, such as the Ftrace for Linux or the QNX System Analysis Toolkit [39]. Ftrace is, e.g., used by rtrace [40] for extracting supply bound functions from different scheduling implementations in Linux.

V. Evaluation

We implemented and tested our mechanisms from Section III on an ARM Cortex A9 dual-core SoC. Before proceeding to our experimental evaluation, we first give a brief account of some noteworthy implementation details.

Internally, the kernel uses timer ticks to measure time so that a budget, which is provided in microseconds, must be converted into timer ticks. The SoC is running at 666.6666 MHz based on an oscillator clock of 33.3333 MHz. For time accounting (OS time), the kernel uses the Cortex-A9 CPU private timer with a clock divisor of 100, which results in 3.33333 MHz or 200 CPU cycles per timer tick.

The kernel converts microseconds into timer ticks by integer multiplication with 3333 and division by 1000. Due to this integer calculation, in contrast to a multiplication with 3333.333, we have a systematic time drift of 0.0001, i.e. 100 µs per second. We correct this by adding this fraction to the budget whenever the budget will be configured.

For reference, we measured the particular overheads mentioned in Section II-C by manual instrumentation using the cycle counter from the Performance Monitor Unit (PMU). Table I shows the results taken from several measurements with different workloads; one microsecond has 666.666 cycles. Note, that we measured the expiration overhead without the kernel lock, i.e. after the kernel lock was acquired. Conceptually, the only additional runtime overhead from our replenishment policy comes from calculating Eq. (1) on signal reception.

Memory overhead originates from storing a $ET^+(n)$ curve per thread, the history of consumed budgets and the current budget, which constitutes $L \cdot 8 + L \cdot 8 + 1$ Bytes as we use 64 Bit integers for each value. We used $L = 10$ in our implementation.

We configured our test setup for a maximum rate of 8000 trace events per second, which equates a preemption every 125 µs on average. As a trace event takes up 28 Bytes in the trace buffer, we require at most 224 KiBytes per second.

With the following evaluation we want to demonstrate the overhead monitoring can deal with different workloads and also a high rate of trace events. We also show that $ET^+(n)$ curves can be extracted at run-time such that the budget configuration can be refined (after schedulability analysis). For these purposes, we defined three conceptually different workloads.

A) A single task chain with a $ET^+(n)$ curve of length nine. The chain shows synchronous and asynchronous precedence but there is no interference apart from self-interference.

B) Ten independently triggered components with a single-valued $ET^+(n)$, which impose a high CPU load. This scenario focuses on interference.

C) Multiple task chains similar to experiment A. The chains perform RPCs to a single server component. This scenario combines the two previous experiments and introduces the blocking aspect.

For each workload, we evaluated the observed \overline{P} and \overline{E} values from our approximation method and compare these with the optimum that we calculated offline using an LP formulation and with the reference values from Table I.

A. Single chain

The workload in this experiment consists of a client that is periodically activated and calls a server in two out of three activations as depicted in Figure 6. Every third activation, the client sends a signal to a receiver instead of calling the server. Due to scheduling-context donation, the server executes on the budget of the client.

![Figure 6. Gantt chart for the task chain used in experiment A.](http://elinux.org/Ftrace)

The client and server are implemented such that the required budget varies between 80 ms and 1500 ms and repeats every 10th activation. We configured the corresponding $ET^+(n)$ such that the budget is exceeded by up to 200 µs in approx. 50% of the times. We also chose a large activation period of 10 s, which is half the sample period of the monitor, in order to get a notion of how the overhead estimation develops with a growing sample size.

Figure 7 shows the resulting \overline{P} and \overline{E} for different sample sizes, i.e. the summed weights of all recorded weighted samples $\Omega_{p,e}$. As the sample size grows slowly in this experiment, it correlates with the iteration number of the monitor. Note, that there were up to 13 distinct weighted samples (i.e. combinations of preemption number and expiration number). The

Table I

<table>
<thead>
<tr>
<th>name</th>
<th>formula</th>
<th>cycles</th>
<th>µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>min. preemption overhead</td>
<td>$\text{min}i(t{S_i} - t_{A_i})$</td>
<td>260</td>
<td>0.4</td>
</tr>
<tr>
<td>max. preemption overhead</td>
<td>$\text{max}i(t{S_i} - t_{A_i})$</td>
<td>3580</td>
<td>5.4</td>
</tr>
<tr>
<td>max. expiration overhead</td>
<td>$\text{max}i(t{S_i} - t_{E_i-1})$</td>
<td>8052</td>
<td>12.1</td>
</tr>
<tr>
<td>max. kernel lock overhead</td>
<td>eq. (1) with $L=10$</td>
<td>23239</td>
<td>34.9</td>
</tr>
<tr>
<td>calculation overhead</td>
<td></td>
<td>536</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 7 shows the resulting \overline{P} and \overline{E} for different sample sizes, i.e. the summed weights of all recorded weighted samples $\Omega_{p,e}$. As the sample size grows slowly in this experiment, it correlates with the iteration number of the monitor. Note, that there were up to 13 distinct weighted samples (i.e. combinations of preemption number and expiration number). The
approximate results (markers) from the modified least squares method are compared to the optimum results (solid lines) that we calculated offline. The figure also shows the measured preemption overhead (dashed line) from Table I. Note, that the maximum E based on these measurements is $47\mu s$ (expiration overhead including kernel lock overhead) and exceeds the limits of the figure. Although this experiment is rather simple, it demonstrates the general applicability of $ET^+(n)$ shaping and monitoring, and emphasises how the estimated overheads develop with a growing number of samples.

B. Independent tasks

This experiment comprises 10 independent tasks with periods from 3 ms to 10 ms and execution times from 200 μs to 900 μs for the first eight tasks. In order to provoke preemptions, the two remaining tasks were assigned periods of 100 ms and 200 ms and execution times of 10 ms and 20 ms. The tasks have a rate-monotonic priority assignment (smallest period on highest priority) and impose a load of approx. 85% on the CPU core. However, due to the signalling implementation of the OS, activations are dropped in overload situations, i.e. if the receiver is not ready for receiving a signal. Each task is configured with $ET^+(n)$ of length one; most of the tasks exceed their budget most of the times. However, as a task that used its budget cannot preempt other tasks (with budget) any more, we let the higher-priority tasks adhere to their budget in order to stimulate preemptions. In contrast to the previous experiment, this workload produces many events such that every few seconds the traced execution times are completely overwritten. Furthermore, it is tailored for testing our monitoring approach w.r.t. whether it can deal with a high trace-event rate.

Figure 8 shows the resulting P and E for this use case over time. Due to the high execution rate, the sample size saturates very quickly such that the x-axis shows the iteration number (i.e. the execution of the monitor) instead. Because of the single-valued $ET^+(n)$, our monitoring also shifts a window of length one over the traces. Thus, the maximum observed expiration number is always one, such that the samples only differed in the number of preemptions of which there were 21 distinct numbers on average (standard deviation 1.5). As the samples do not indicate a correlation between the preemption number and the overrun, the resulting P is zero most of the times (negative values are forbidden in the model). This holds for both, our approximation method as well as the LP-based optimisation. In consequence, most of the overhead is attributed to E, which still remains below the measured overheads from Table I.

C. Multiple chains

This experiment basically combines experiments A and B. We split the chain of experiment A into three chains of similar structure and execution times between 5 ms and 80 ms. The resulting workload comprises three clients, three receivers and a single server that is called by all clients. The clients are periodically triggered every 100 ms and have a $ET^+(n)$ of length three. We set the execution times such that the system is transiently overloaded to stimulate preemptions and blocking at the server. The longest execution time of the server is 11 ms, which occurs if the lowest-priority client calls the server. In theory, we should be able to observe that the high-priority client requires up to 11 ms more budget if it acts as a helper for the lowest-priority client.

Figure 9. Configured and extracted $ET^+(n)$ curves of the highest-priority client in experiment C.

In order to demonstrate the self-aware adaptation of budgets, we started with an $ET^+(n)$ that neglects blocking effects...
at the server, which underestimates the required budget. By applying budget monitoring to extract the actual $ET^+(n)$, we can iteratively adapt the configured budget (if schedulability analysis approves) and react to the observed model deviation. Figure 9 illustrates these adaptations on basis of the observed $ET^+(n)$ curve of the highest-priority client. After three adaptations, we found the curve that bounds the required execution time of the highest-priority client. It requires multiple iterations because once the highest-priority budget expired, the medium-priority client also acts as a helper. The result is consistent with our expectation as it can be calculated by adding the longest blocking time (11 ms) to the second longest execution of the highest-priority client. Due to the synchronised hyper-periodic behaviour of the clients, the blocking cannot coincide for the longest execution. Note, that – if the application timing model is known – we could also start with an overestimated $ET^+(n)$ by adding the longest blocking times and extracting the same $ET^+(n)$ as above after the first adaptation.

![Figure 10. Overhead monitoring results from experiment C.](image)

Figure 10 depicts the resulting overheads for this experiment for the first 100 monitor iterations after the last budget adaptation. As in the previous experiments, the estimated overheads are below our measurements from Table I. There was an average of 21 distinct samples (standard deviation 1.6). The regression still shows significant variations of the estimated expiration overhead. However, as even the results from our offline LP optimisation shows variations, it becomes evident that averaging or maximisation is required over a longer time frame. For illustration, we added the moving average of E to Figure 10 (dotted line). These variations can be explained by the kernel lock overhead that occurs rarely and varies in length. The estimation is therefore sensitive to whether an occurrence (sample) with a large kernel lock time resides in the trace or not. Such an occurrence will eventually be replaced by newer samples.

VI. CONCLUSION

Latency guarantees in real-time systems are based on models on which formal analyses are performed. As models always abstract from a reality, there exists a large body of research for refining and improving these models in order to capture reality more accurately and to improve latency bounds. E.g. analyses should consider implementation overheads and corner cases that originate from particularities in real implementations. However, it is commonly known that there is no guarantee that a model is coherent with the implementation even though it is an important interface for applying formal methods. A practical implication of this incoherence is that it highly impedes the application and acceptance of (i.e. the trust in) formal methods. We consider self-aware computing as a practical mitigation to model-implementation incoherence. In this paper, we suggested applying this concept to CPU scheduling. For this purpose, we derived a kernel timing model from an existing budget scheduling implementation. In order to adapt the scheduling to better suit real-time workloads, we implemented a novel event-based replenishment policy based on $ET^+(n)$ curves. In contrast to existing policies, our approach is conceptually lightweight as it eliminates replenishment fragmentation. As as side effect, this reduces the number of context switches as a correct budget configuration ensures that a job can complete without running out of budget. On top of this, we implemented a budget monitoring and overhead monitoring mechanism based on software-based tracing of the scheduler. Overhead monitoring checks and guarantees the adherence of the implementation to our kernel timing model, which is essential for limiting interference. Budget monitoring, on the other hand, enables the extraction of $ET^+(n)$ functions.

As we showed in our last experiment, the latter can be applied to characterise applications with an unknown or uncertain timing model. In order to correctly execute those applications (but still limit their interference on other applications), the $ET^+(n)$ must be sufficiently large but also tight. For this purpose, we envision the following use case that is enabled by our approach: A mixed-critical real-time system can receive an application update with an unknown timing model. This can be executed (e.g. using sandboxing techniques) with an overestimated budget on a low priority such that other applications are not interfered. This serves as a first basis for extracting the $ET^+(n)$ using budget monitoring. As this budget is more tight, we can move the application to a higher priority to achieve the required latency. Over time, the $ET^+(n)$ curves in the system can be further refined to free up more processing resources for future changes/updates.

Our evaluation showed that the tracing of scheduling behaviour and monitoring of scheduling overheads is feasible even for high trace-event rate and complex workload. Nevertheless, the regression method requires some improvement (e.g. averaging) to get more stable results that can be used for learning from observed behaviour in the long term. We are confident that our models and mechanisms are applicable to other (similar) kernels as well. Since our monitoring (on kernel timing model) includes notions of budgets and overheads only, the concept of self-awareness should also be applied to the application timing model, in order to gain knowledge about from what component a misbehaviour originates.
ACKNOWLEDGEMENT

This work was funded as part of the DFG Research Unit Controling Concurrent Change, funding number FOR 1800.

REFERENCES

