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• system analysis
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• summary and comparison

• conclusion
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Formal Model Applications

• formal models for performance analysis optimization are in 
use for very different types of embedded system
– distributed networks

– MpSoC
source: Daimler
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Applications of Formal Methods for Performance

• architecture design in early design phases 

• design verification

• control and optimize design „robustness“ throughout the 
design process
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Current Practice in Early Design Space Exploration

• early design phases
– determine architecture and communication
– executable code not yet (completely) available
– preliminary estimations on task structure and communication 

volume derived 
• from application models
• reused SW and HW components 
• and standard component data sheets

• several simple spreadsheet models in practical use
– e.g. textbook formula for computer networks (Hennessy/ 

Patterson)
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Current Practice - A more Elaborate Simple Model
• reduction of dynamic effects to average or integral values

• allows application of weighted graph algorithms � fast

• frequently used in architecture optimization for distributed 
networks

• does not reflect dynamic effects of transient loads, jitter, 
deadlines, buffer memory  

T1

T2

proc1

proc2copro1

100MB/s
100MB/s

100MB/s

210MB/s200MB/s

T310MB/s10MB/s

mem1

bus1



� R. Ernst, TU Braunschweig, 2008 7

Current Practice in Design Verification 

• extensive simulation
– „programmers view“ simulation models based on the ISA 

� function test
– TLM models to cover HW platform component interaction

� platform function + approximate timing 
– RTL models 

� platform function + clock cycle accuracy 
�model hierachy to cover function as well as timing 

• limitations
• high modeling and computation cost for accurate models
• simulation is always incomplete „case study“
• concurrency requires accurate timing modeling to cover all 

effects
• does not reflect design „flexibility“ to changes, updates, …

simulation 
cost
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Timing Model Hierarchy
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• system timing model
– performance of components 

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *
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Timing Model Hierarchy - Task
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• system timing model
– performance of components 

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *
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Formal Modeling Fundamentals – Task Execution

• task core execution time is the time needed to execute a 
given task when running alone on a processor

• task core execution time does not include
– operating system overhead
– the influcence of other tasks
– waiting and synchronization times for global resources
– shared cache and memory access times 

(L1 cache often included)

• task core execution time is determined in different ways
– estimated in early design phases
– measured with a cycle accurate simulator (e.g. CoWare, Vast)
– measured with instrumented code on a prototype (e.g. dspace)
– formally analyzed using program path analysis 

in particular for high safety requirements (e.g. absint)
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Formal Modeling Fundamentals – Communication

• core communication time is the transmission time for a 
given message to be communicated over a link when no 
other communication is active 

• core communication time does not include
– arbitration (scheduling)
– buffering
– gateway, multi-hop or MIN timing overhead 

• core communication time is determined in different ways
– simulation or prototyping
– formal model of communication protocol (e.g. Symtavision)
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Timing Model Hierarchy  - Activation
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• system timing model
– performance of components 

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *
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Formal Modeling Fundamentals – Activation

• total task load, also called utilization of task i, Ui, depends on 
activation function
total task load = load/task execution * task activation requency

= task core execution time * task activation frequency
– example: periodic task i with core execution time Ci and period Ti

Ui = Ci/Ti

• what defines the task activation function ?
– application model (Simulink, SPW, LabView, …)
– environment model (reactive systems) 
– service contracts (max no of requests per time, …)
� typically application rather than platform dependent

� platform can „modulate“ activation timing to avoid 
malfunction (e.g. traffic shaping, back pressure)

• two classes of activation – time activation, event activation
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Activation Functions

• two classes of activation 
• time activation – tasks are periodically activated by clock

• example: periodic sample in signal processing / control eng.
• event activation – tasks are activated when event arrives

• example: automata

S

C

B4

B2B1 B3event
source

sample
clock

event activated

time activated

event
model

event/communication 
model

activation functions - example
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Modeling Events as streams

• in formal performance models, events are modeled as 
streams rather than as sequences of individual events 

• examples
– a clock is given by its period rather than as a sequence of 

clock ticks
� clock can be modeled as an event stream

– a sampled sensor signal is modeled by the sample period and 
the sample jitter

• the event streams are defined as functions or as parameter 
tuples
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Popular Event Stream Models – PJD  

• standard event model used in real-time systems 
– event sequences are modeled by three parameters, period p, 

jitter j, and minimum time interval between 2 events
– important models that can easily be decribed 

• strictly periodic events (typically clock released)
• periodic events with jitter 
• sporadic events
• sporadically periodic events

– covers a large class of applications
– conservatively approximates more complex functions

te1 te2 te3tptp

tJ
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Popular Event Stream Models - Arrival Curves 

• arrival curves of the network calculus 
– captures the no. of event in a time interval �t
– �l (�t) is lower bound
– �u (�t) is upper bound

• can be used to describe the standard event models 

• reaches infinite values for �t � �
– must be approximated or extended by periodic function 

for �t � �

• is  when event sequences become very complex, e.g.
– as a result of operations on event sequences

Swiss Federal
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Arrival Curves - Example

t [ms] 

events

maximum / minimum
arriving events in any

interval of length 2.5 ms

2.5

events

� [ms]2.5

number of events in 
in t=[0 .. 2.5] ms

�

�

t

�

Event Stream

Arrival Curves
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Example 1: Periodic with Jitter

periodic periodic with jitter

Swiss Federal
Institute of Technology 22

Example 2: Periodic with Jitter and Minimum Distance d

Arrival curves:
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Total Load of a Task

• with activation model and core execution time or (core 
communication time), we can now derive the total load of a 
task

• the resource is not fully available to one task or 
communication, but is shared with others 

T1 T2

* *
C1 C2

U1 U2
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Timing Model Hierarchy  - Component Timing
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• system timing model
– performance of components 

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *
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Timing Effects of Scheduling/Arbitration

• tasks execute longer than their core execution time 
– time assigned to other tasks
– operating system overhead
– context switch, blocking, …

• response time of a task is maximum from time of activation 
to task termination

context switch
core execution

time

preemptionworst case response time

example: static priority preemptive 
scheduling
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Scheduling Analysis

• different analysis algorithms 
– generalization of busy window algorithm (Lehoczky, Tindell) to 

fit general event model (Richter, Jersak, Henia, Racu, Ernst, 
Schliecker, et al.)

• Tool SymTA/S 
– extension of Network Calculus to Real-time Calculus 

(Chakraborty, Wandeler, Künzli, Thiele, et al.) 
• Tool MPA
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Analysis uses “Busy Window” approach
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Busy Window Analysis 

• very versatile approach 
• has been extended to analyze even difficult scheduling strategies

– round-robin, non preemptive, collaborative processes (e.g. OSEK), …

• can handle unkown worst case (e.g. release offsets – time table) 
• can handle stream queues and register communication
• window size increases with load (limited by deadline)
• this window „unrolling“ processes can be considered as symbolic simulation

45

activations

w2 (4)
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Importance of Context Switch Consideration

• context switch increases load � non load preserving

40 46 60 81

context switch

response time increases from 45 to 81
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Time Table for Release Offset
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Real-time Calculus

Processor
Task

Input
Stream

Service
Model

Load
Model

Concrete
Instance
Abstract
Representation

Processing
Model

R(t) R’(t)

C(t)

���)

���)
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Service Model (Resources)

t [ms] 

availability

maximum/minimum
available service in any

interval of length 2.5 ms

available service 
in t=[0 .. 2.5] ms

2.5

�

�
service

� [ms]2.5

t

�

Resource Availability

Service Curves
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Greedy Processing Component (GPC)

remaining
resources

Examples:
� computation (event – task instance, resource –

computing resource [tasks/second])
� communication (event – data packet, resource –

bandwidth [packets/second])

FIFO bufferinput
event

stream

output
event

stream

available
resources
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Greedy Processing Component

GPC

• Component is triggered by 
incoming events. 

• A fully preemptable task is 
instantiated at every event 
arrival to process the incoming 
event.

• Active tasks are processed in 
a greedy fashion in FIFO 
order.

• Processing is restricted by the 
availability of resources. 

Behavioral Description

Swiss Federal
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Greedy Processing Component (GPC)

R(t)

C(t)

R’(t)

C’(t)
t

C(t)
R(t)

R’(t)

Conservation Laws

GPC
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Greedy Processing
For all times u 	 t we have R’(u) 	 R(u) (conservation law).
We also have R’(t) 	 R’(u)+C(t)–C(u) as the output can not be larger 
than the available resources. 
Combining both statements yields R’(t) 	 R(u) + C(t) – C(u).
Let us suppose that u* is the last time before t with an empty buffer. 
We have R(u*) = R’(u*) at u* and also R’(t) = R’(u*) + C(t) – C(u*) as
all available resources are used to produce output. Therefore, R’(t) = 
R(u*) + C(t) – C(u*). 
As a result, we obtain

tu*

B(t)
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Abstraction

time domain
cumulative functions

time-interval domain
variability curves

GPC GPC
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Some Definitions and Relations 

is called min-plus convolution

is called min-plus de-convolution

For max-plus convolution and de-convolution:

Relation between convolution and deconvolution

Swiss Federal
Institute of Technology 40

The Most Simple Relations

The output stream of a component satisfies:

The output upper arrival curve of a component 
satisfies:

The remaining lower service curve of a component 
satisfies:
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Two Sample Proofs
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MPA-RTC – Propagation

[� , �u]

[� , �u]

[� , �u’]

[� , �u’]

GPC
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MPA-RTC – Scheduling - Examples

Fixed Priority Preemptive
Scheduling

Time Division Multiple
Access (TDMA)
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Delay and Backlog

maximum delay D

maximum
backlog B

�l

�u
[�l, �u]

[�l, �u]

[�l’, �u’]

[�l’, �u’]GPC
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Timing Model Hierarchy – System Timing Model

IP

MP M P

M

T1 T2

P
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• system timing model
– performance of components 

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *
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System analysis using compositional approach

• independently scheduled subsystems are coupled by data
flow


 subsystems coupled by streams of data

 interpreted as activating events


 coupling corresponds to event propagation

comp 1

scheduling
comp 1

P2

P1

comp 2 

scheduling
comp 2

P4

P3

event stream
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Compositional analysis principle

environment model 

local analysis

derive output event model 

map to input event model 

until convergence or non-schedulability

find fix point 
where input and 
output models
converge

Symbolic
Simulation
or RTC
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System-level Analysis Results

• end-to-end latencies 

• buffer sizes

• system load 

• ….

example: complex end-to-end 
latency analysis w. SymTA/S

source:
Symtavision
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Compositional Analysis Properties

• compatible event stream models allow to couple any 
number of blocks for local analysis
� scalable

• fixpoint iteration automatically adapts to platform topology
� easy integration and extension
� RTC and SymTA/S analysis blocks have been shown to easily 

work together [KHT07]

• very short analysis time (few seconds) opens new 
opportunities in design space and robustness optimization
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Further Performance Models 1/2
• timed automata have been used to  explicitely model the 

task scheduling algorithm and OS interactions and then 
apply model checking to identify deadline violations

• can be more accurate in the indivi-
dual component model 
but is computationally 
far more expensive

• work e.g. Madsen 
or Johnson

• can potentially be 
linked
via common event stream
models
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Further Performance Models 2/2

• will be discussed in separate tasks of this tutorial
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Enhancements to the Basic Analysis

• load modeling for variyng execution times

• shared memory modeling on MpSoC

• robustness optimization
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Load Modeling for Varying Execution Times

• Simple Example – cyclo-static system

P = 20 ms

P = 10 ms
J =  40 ms
d =    5 ms

Static Priority Preemptive
Scheduling

Cyclo static 
execution times

5ms, 3ms, 4ms, 1ms 

20ms, 3ms, 4ms, 1ms, 1ms 

WCET = 5 ms

WCET = 20 ms
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Load for Interval �t: T_low

�t

Lo
ad

available service

worst case 
load

real load
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Real Load Used in Improved Analysis

• improved analysis available for  SymTA/S (see above) and 
MPA

• even more powerful: Scenario Analysis
– identify different sets of tasks or deviating core execution 

times of tasks for different application contexts � scenarios
– example: different use of smart phone, car: acceleration/idle, .. 
– interesting is transition between scenarios possibly leading to 

overloads, lost data, …
– see literature

WCRT=37
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Enhancements to the Basic Analysis

• load modeling for variyng execution times

• shared memory modeling on MpSoC

• robustness optimization
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MpSoC with “Secondary” Traffic

• use of shared memories or shared coprocessors
– shared on-chip data and programs
– larger off-chip memories

• data and program memory accesses on same network as 
task communication - more complex traffic

CPU1 CPU 3

Mem

Shared Memory

HW CPU2

Mem

P1 P2
MpSoC
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MpSoC process execution

classical
process 
model output data 

process model 
w/ memory 
access

shared memory 
accesses

interference
during
transactions

…

read data

memory
transaction

network
memory

network 
arbitration

memory arbitration
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Combined memory transaction modeling

• combined analysis of all process memory transactions 
– add all delays that can occur during all transactions of a 

process in the worst case
– more realistic bus and memory timing

combined
analysis
result

tperiod
max Nx worst case
interferences (N=2)

process

other bus activity
- interference
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Improved combination in transaction modeling

• superimpose on each core
� total execution time

(conservative)

core execution time

core communication time +
total netw. interference
core memory access time +
total mem. interference

• complex and highly dynamic interactions if memory 
transactions of multiple processors interfere
– simple combination not sufficient

+ + + +

� total worst case execution time

Solution:
• derive upper total 

interference
bound using
formal analysis

• couple single core analysis
with iterative nested scheme
� enhanced SymTA/S analysis
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Enhanced SymTA/S compositional analysis engine

enhanced analysis: 
nested analysis loop
to resolve mutual
interference

exploits busy window 
approach!

environment model 

local analysis
(WCET + WCRT)

output traffic description

until convergence or 
non-schedulability

input traffic description

Shared resource 
transaction analysis

so far: 
fixed point solution
over local analysis

+
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…
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Data

L1
Data Bank

(Stack,
Data)

Courtesy: Pierre Paulin
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Application: MPEG 4 contour detection

• contour detection algorithm from
École Polytechnique de Montreal 
(Gabriela Nicolesu)

• 2 – 4 processor architecture

• 2 threads per processor
– round-robin scheduling

• StepNP simulator available

• input data aquisition using
simulation
– simulation results of subtasks on 

single core
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System level analysis
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• very fast analysis of worst case
behavior considering
– bus/network congestion (if

any)
– memory congestion
– multithreading
– coprocessors ...

• 35% larger analyzed timing
than maximum simulation
result
– símulation uses simplified

crossbar communication
model

• planned for investigation of 
processor sharing, degree of 
parallelism / pipelining, …
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Enhancements to the Basic Analysis

• load modeling for variyng execution times

• shared memory modeling on MpSoC

• robustness optimization
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Robustness Optimization

• goal: improve slack in architecture, such that a single or a 
combination of load data can change later on without 
affecting end-to-end deadlines and other constraints

• approach
1. analyze remaining slack in architecture (1 or 

multidimensional)
• uses binary search or evolutionary algorithms

2. optimize system parameters to maximize slack
• uses evolutionary algorithm

• search parameters and controlled by designer
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Example System

• Distributed embedded system
• 4 priority scheduled computational 

resources
• connected via CAN bus
• 3 sub-applications

– Sens�Act
– Sin�Sout

– Cam�Vout
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Improving slack for T1 + C0 + C1 (1)

Org. Config. Optimized
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event
model

RTC

arrival
curve

w. periodic 
extension

symbolic
simulation

fix point 
iteration

for
composition

component
analysis

system analysis

PJD arrival
curve

approx

The Compositional Analysis „Landscape“

SymTA/S MPA
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Summary and Comparison 

• the core difference between MPA and SymTA/S is the 
component analysis engine and not so much the event 
model (any more)

• RTC focuses on a closed notation of event and service 
model with a closed and intuitive formalism as a result
– hierarchy is easier modeled in this formalism
– very good results are achieved for the covered design space

• SymTA/S uses a generalisation of the busy window 
approach by Lehoczky/Tindell that develops the task 
sequence over a busy window
– very versatile approach that covers complex features such as

release offsets, mutual dependencies (round robin), context 
switching with blocking (non-preemptive) and „secondary“
memory access models

– very good results shown for a wide range of industrial 
systems
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Conclusion

• several performance analysis and optimization approaches 
have been proposed for heterogeneous embedded 
multiprocessor systems which have brought the 
technology far beyond the stage of toy examples

• the cost of a predictable design has been reduced by 
higher modeling and analysis precision 

• applications range from early design stages when no 
executable code is available to verification of design 
integration

• the technology is applicable both to large scale distributed 
systems and for MpSoC 
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Integration Challenges: 5 buses, 55 ECUs, hundreds of 
messages, thousands of functions

Representative
vehicle example
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Typical Automotive Architecture Today

Bus protocols
� CAN
� FlexRay
� Lin
� MOST
� Proprietary

ECU (electronic control unit)
� Single-Core CPU (but moving to dual-

core)
� OSEK RTOS

Gateway

ECU1

Bus1 Bus3

Bus2

ECU2

ECU3

ECU4

ECU5

ECU6

ECU8ECU7

Local + end-to-end timing / performance are important
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Many functional problems are in fact timing
problems

� ECUs (temporarily) overloaded
� tasks not always schedulable
� deadlines are missed

� network (temporarily) overloaded
� messages arrive "too late“ or with “too large” jitter
� messages are lost (buffer overflow)

� end-to-end deadlines of car function are missed
� stability of distributed control is compromised

� Carefully monitor performance and timing
during design and integration
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Established Design Process

Requirements

System Design System Verification

Requirements  Verification

Network Design

ECU Design ECU Verification

Network Verification
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EM

Su
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Adding Performance Design and Verification

Requirements

System Design System Test

Requirements  Test
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Network Test

Network Performance
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ECU Performance
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Verification
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Selected Automotive
Use Cases
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Example 1: Safety-Critical ECU

Chassis domain: Active Front Steering
� Verifying Performance and Timing for all critical cases
� Safeguarding against liability claims
� Optimizing ECU performance and cost (use of cheaper CPU)

Source: BMW

Hans Sarnowski, responsible BMW Engineer: „You really get to know your system and can detect real-time errors in a fraction of time“

Requirements

System Design System Test

Requirements  Test

Network Design

ECU Design ECU Test

Network Test

Network Performance
Design

Network Performance
Design

ECU Performance
Verification

ECU Performance
Verification

Network Performance
Verification

Network Performance
Verification

System Performance
Design

System Performance
Design

System Performance
Verification

System Performance
Verification

ECU Performance
Design

ECU Performance
Design
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Integration: Tracing + SymTA/S

– Single function execution times

– Interrupt Frequency
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Focus: Tracing vs. SymTA/S Analysis

Risk avoided

� Measured 10ms task: Response time 6,9ms
� 4 CAN, 8 SPI interrupts, 7 preemptions by 1ms task

� SymTA/S Analysis of 10ms task: Worst-case response time 9ms
� 10 CAN, 8 SPI interrupts, 9 preemptions by 1ms task, blocking

10ms task

10ms task
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Example 2: High-Performance ECU
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Powertrain domain: Engine Control
� Verifying Performance and Timing for all engine speeds (RPM)
� Avoiding Deadline Overruns (would lead to ECU reset)
� Optimizing ECU performance and cost for different markets
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Example 3: Bus Configuration

Bus / Network : CAN-Protocol
� Balancing Periodic load
� Calculating limits for dynamic load
� Configuring existing networks to handle additional traffic

Source: EDAG

Absolute Response Times for Different Dynamic Load Situations
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Focus: Reliable CAN Bus Configuration

� Optimized COM-Task Offsets
� Optionally: Optimized signal to frame mapping, CAN IDs
� Result: Reliable and optimized bus extension
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Example 4: Network Extension

Bus / Network : Gated Network
� Verifying end-to-end Timing
� Gateway dimensioning
� Optimizing synchronization to reduce end-to-end latency
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Source � ECU1 � CAN � Gateway � FlexRay � ECU2 � Sink
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Focus: End-to-end Timing Analysis

e.g.: Source � ECU1 � CAN   � Gateway � FlexRay � ECU2 � Sink
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Example 5: System Extension

Automotive System: Many ECUs and Protocols
� Complete System-level analysis of alternative configurations
� Migration to FlexRay and AUTOSAR
� Timing contracts between Integrator and Supplier
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Timing Challenges in
FlexRay and AUTOSAR

Performance Analysis and Optimisation –
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FlexRay : A challenge for ECU integration

� FlexRay does not solve timing problems in general
� A good FlexRay design requires timing effects to be understood
� Sync / async ECU integration can make a huge difference

simple, static 
FlexRay schedule

complex, dynamic
system schedule
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LOST OK
double
transmission

OSEK (preemptive OS) synchronized with FlexRay

OK OK OK OK

delayed delayed delayed

� ideal situation: all OK

� typical situation: some ok, some double, some lost

� no loss but all delayed by one full FlexRay cycle

„ok window“, given by FlexRay 
schedule

Performance Analysis and Optimisation –
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full FlexRay cycle  (more when using mux)

OSEK ECU Asynchronous to FlexRay

� clock skew effects � large send & receive signal jitters

� bad synchronization � bad responsiveness

„ok window“, given by
FlexRay schedule

2 FlexRay cycles (more when using mux)

LOST

DOUBLE

DOUBLE
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Vision
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AUTOSAR SW-C vs. "Runnables" and Tasks

� SW architecture:
2 SW components,
6 runnables

� Implementation: 3 Tasks

� Schedule and timing dependencies

ECU 1
SW-C2

runnableY

runnableX

runnableZ
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Ongoing work

� INTEREST – FlexRay Methodology
http://www.interest-strep.eu/index.html

� TIMMO – AUTOSAR Methodology
https://www.timmo.org/

TIMMO is a project in the framework of the ITEA 2, EUREKA 
cluster programme �! 3674. The work of the German partners is 
funded by the German Ministry for Education and Research 
(BMBF) under the funding IDs 01IS07002(B-I,K). The 
responsibility for the content rests with the authors.

INTEREST is a project funded by the Sixth European Framework 
Programme (FP6) - including the Information Society 
Technologies (IST) priority. The responsibility for the content rests 
with the authors.
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Steering with Pleasure.
Agenda.

� Introduction

� System overview Active Front-Steering

� Application of timing tools for Active Front-
Steering design

� Evaluation of results
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Introduction.
Design goals.

� Conventional steering systems have no further potential as the 
diversification/variation of hand moments (Servotronic) is largely 
exhausted.

� Driving performance is increasing continuously. A rigid steering system 
can hardly provide both stability and handling.

� Stability control through breaking of individual wheels is experienced as 
more and more uncomfortable.

Superposition steering offers both the advantages of conventional steering 
systems and the functions of steer-by-wire-systems.

� Pure by-wire-systems are (still?) too complex, too costly and show a 
synthetic steering sensation. Their market acceptance is questionable.
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System Overview
Components of Active Front-Steering

Components of Active 
Front-Steering:

� Rack steering
� E-Motor

� Superposition gearbox
� Steering column 
� Control unit
� Sensor cluster
� Power steering pump,

oil tank
� Tubes, cooler
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Function Overview
Steering Functions

� The steering ratio depends on 
steering wheel angle and 
vehicle velocity

� Adjusting objective target-
settings according to the 
driving dynamics of the 
vehicle

� Coupling with Servotronic
(Steering transmission and 
the level of steering power 
are adjusted to each other)

Superposition steering offers both the advantages of conventional 
steering systems with the functions of steer-by-wire-systems. 

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference, 
10. March 2008, 
Munich
Page 32

Mechanics.
Mechanical Design.

Substructure of steering 
gear

Superposition gear

Electric motor
Steering
valve

Sum angle 
sensor

Motor
position
sensor

View from top
View from left

Lock

Driving direction 
(Installation position in 

the car)

Quelle: ZFLS GmbH
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Function Overview
Integration of Active Front-Steering - DSC.

Motion variables of the vehicle

Active-
Front-
Steering

Vehicle

Steering wheel angle

+

+

Superposition
gear

DSC

Sum steering angle

Braking
interventions

GMK
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Goal Conflict
Use of a considerably cheaper, simpler and 
slower processor hardware at a higher 
functionality

Measures:

� Constant control with measuring and visualization tools 
traceGURU (Gliwa GmbH)

� Use of Scheduling Analysis tool SymTA/S
(Symtavision)

� Setup of networked “hardware in the Loop” test rig with 
“worst-case” configuration
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Development Process
Tool Chain

� Analysis / definition of 
functional goals

� Design of a function- / 
controller-structure

Matlab/Simulink

� HIL and Worst-Case HIL

� Confirmation at test drive

HIL test rig

� Implementation on targetASCET-SD TIP, ERCOSEK

� Regular measuring of SW 

� Calculation of worst-case 
timing

� Optimization of SW 

traceGURU, SymTA/S,
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Development
Use of timing tools

Timing tools were used for the following actions:

� Processor selection

� Execution time measurements for Integration stages (releases)

� Design of timing layout

� Relaxation of run time situation

� Measurement of individual functions

� Optimization of run times 

� Detection of timing problems

� Verification of timing corner-cases
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Use of Timing Tools
Debugging of timing problems I

Use of traceGURU as debugging tool for specific timing problems

Example: A significant deviation from the given 10 ms period occurs occasionally 
for CAN messages

Cause: timers were reset 
during “application mode 
changes”, so that the 
required 10 ms pattern was 
violated

Solution: Adjusting the 
delays of periodic tasks 
which operate the CAN 
driver

Change of application 
mode

10ms = ok
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Use of Timing Tools
Debugging of timing problems II

Example: Infrequent error occurring at the calculation of the delay angle 

Cause: Coincidence of a series of time-critical interrupts and application 
mode change. This causes a longer disabling of interrupts at a particularly 
short(!) run time of the 10 ms task.

Solution : A modified 
timing layout and
deterministic switch of 
the application mode, 
this provides that the 
interrupts cannot 
coincide with the lock.

Previous
application mode

New
appli-
cation
mode

Interrupt lock

Time-critical interrupts
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Comparison of Tracing and Scheduling Analysis

� Measurement: Response time 6.9ms
4 CAN, 8 SPI interrupts, 7 preemptions by 1ms task

� Worst-Case Analysis with SymTA/S: Response time 9ms
10 CAN, 8 SPI Interrupts, 9 preemptions by 1ms task, blocking

safeguard
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Optimization:
Delayed task activation

Response time 5ms Task
Previous: 1.608 ms
New: 1.146 ms

Use of SymTA/S for delay optimization
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Use of timing tools
Processor selection

Goal:

Cost reduction at higher functionality
Situation: MPC Processor family is set, but which derivative to 
choose?
- a derivative providing internal flash (as used in the previous 
project) or
- a derivative without internal flash (slower but lower-priced).

After comprehensive delay analyses (traceGURU/delayGURU*,
SymTA/S) and an estimation of future functionality the lower-priced 
alternative without internal flash was selected. 

With hindsight the right decision was made: the processor load of 
the meanwhile completed series software just differs insignificantly 
from the prediction.
*delayGURU: targeted and run time scalable (can be automated if required) 
delay of the application
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Safety requirements
Understanding the system
Predictable, time-stable software behavior 

Similar to the software function design (“what is happening?”), 
the timing behavior is to be defined precisely (“when does it 
happen?”)

Conclusion: The graphic display showing the execution of 
tasks, processes, interrupts and arbitrary pieces of code 
provides completely new insights into the software. 

„You really get to know your system and this enables you to 
discover runtime errors in a fraction of time.”
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Summary

� Strengths of Tracing
� Visualization enables a fast understanding of the system 
� Debugging of special, clearly identifiable timing problems 
� Easily connectable to a real ECU and real buses
� Fast and efficient input of timing data

� Strengths of Scheduling Analysis
� Safeguarding against hard-to-find worst-cases
� Analysis of end-to-end timing
� Fast optimization of the system configuration 
� Architecture exploration already in early design stages

� The combination enables a fast and effective development.
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Outline

Context
– Stream processing applications
– Application characteristics
– Architecture characteristics
– Design requirements

Dataflow analysis techniques
– Latency-rate characterization of schedulers
– Cyclic dependencies between tasks
– Single rate dataflow analysis

Summary
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Application model

use-case

input data 
stream

task

use-case

SRT video job 

task

input data 
stream output stream

to display

FRT audio job

task

task output stream
to speakers

task

Jobs are composed of tasks

Simultaneously running jobs together form use-cases

Jobs often have real-time requirements
– Firm (FRT) if deadline misses are highly undesirable: steep quality 

degradation
– Soft (SRT) if occasional deadline misses are tolerable

4

In-car infotainment use-case

use-case

use-case

ADC

FRT digital radio job

PDC CFE

f1

VIT CBE SRC APP DAC

f2

FRT source decoding job

SRC APP DAC

f3

MP3BR

Observations:
– Reactive system because stream from transmitter cannot be slowed down
– Firm real-time jobs because deadline misses are highly undesirable but not

catastrophic
– Both streams are equally important
– Throughput constraints dominate latency constraints
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Architecture evolution

• Statically configured connections + communication with addresses
• Processors write in destination memory
• On-chip memories preferably small (<256kByte)

Tile Tile

DSP

mem Arb

NI

DSP

mem

NI

Arb

ARM

mem

NI

Arb

Tile

Æthereal NoC

FPGA demo [A. Hansson, University Booth, DATE 2008]

[A. Moonen et. al., GSPx2005]
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Car-radio IC of NXP

Digital In Out (DIO) Switch

Audio 
DAC 4x

Cordic FIR
Ext 

SPDIF-inPCM I/fSRC
Audio

ADC 4x

Host
IIS-in 2x
IIS-out 2x

IF –IN
1x

Ext 
IIS-in 3x

Host/ext
IIS-out 1x

Keyed 
AGC 1x

Radio 8*fs
In + out

Cordic

DSP
EPICS

MEM

ITCAHB if ITCAHB if ITCAHB if ITCAHB if

Controller
ARM

MEM

Inter Tile Communication (ITC)

Multi-layer AHB bus (3 layer)

VPB
Domain 0

VPB
Domain 1

VPB
Domain 2

MEM MEM MEM MEM MEMDMA SPI
CD

Block
Dec.

AHB2VPB AHB2VPB AHB2VPB

DSP
EPICS

MEM

DSP
EPICS

MEM

DSP
EPICS

MEM

ARM based subsystem

Tile 0 Tile 1 Tile 2 Tile 3

Accelerators Peripherals

[A. Moonen et. al., GSPx2005]
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Architecture evolution

NoC

• Statically configured connections + communication with addresses
• Large external memory is needed for digital radio channel decoders 

Use of WCET of the tasks is not cost effective!

DSP

mem Arb

NI NI

$

I/O

NI

External
SDRAM

NI

CA

ctrl

μP

[M. Bekooij et. al.: Bits & Chips 2007]
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Dataflow analysis

Dataflow analysis

task graph with 
WCET of the tasks

multiprocessor
instance

throughput and 
latency constraint

scheduler settings and
communication buffer capacities

Guarantee: no deadline misses for all possible input streams
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Estimated worst-case execution time (EWCET) 
of tasks

t(s)

WCETEWCET0

EWCET= measured upper-bound for the set of test streams 
• requires knowledge input data to obtain a tight conservative WCET
• caches and external SDRAM ⇒ large difference average and worst-case

Design requirement: 
• guarantee that there are no deadline misses for the set of test streams

• impractical to do better!

10

Dataflow analysis for firm real-time jobs

Dataflow analysis

task graph with 
EWCET of the tasks

multiprocessor
instance

throughput and 
latency constraint

scheduler settings and
communication buffer capacities

Guarantee: no deadline misses for the set of test streams
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Audio echo cancellation example

ARM7

DSP1

DSP2

speaker

• multiple jobs and streams
• real-time constraints: throughput + latency 
• PCM stream has external clock
• starting & stopping streams without clicks
• EWCET of MP3 task

BT

max latency 30 ms

mic.

BR MP3 SRC APP DAC

ADC

44.1kHz

8 kHz

SRC

AECOUT

8 kHz

SRC
PCM

12

Overload behavior

Execution time (ET) > EWCET ⇒ deadline misses

Deadline misses:

Under-run output buffer (OUTB) or overflow input buffer (INB)

Prevent internal buffer (IB) overflow because difficult to handle by tasks

Design requirements:

Overflow and under-run should not occur for the set of test-streams

Compensation for ET>EWCET should be supported

Worst-case temporal behavior other jobs should not be affected

Design and verify each job in isolation

Use only WCETs in case of analogue radio jobs

T1 T2

EWCET EWCET

ADC DAC

f1 f2

INB OUTB
IB
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Advanced task models are needed in the 
audio echo cancellation application

1 1
Single rate

80 80

<1,3> <0,2>

Multi rate

Cyclo static

[1,..,1024] 576
Variable rate

APP

AEC

SRC

MP3
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Recent extensions dataflow analysis

1. Express effects arbitration in dataflow model

2. Throughput analysis techniques with a low computational complexity

3. Interfacing with environment

4. Latency constraints

5. Data-dependent I/O
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Requirement dataflow analysis: latency-rate 
(LR) server characterization of arbiters

t[s]

service

θ

ρ

All starvation free arbiters can be characterized as an LR-server
• Latency θ
• Rate ρ

16

Static priority preemptive (SPP)

• High priority
• Low priority

Unknown minimum interval between events ⇒ not an LR- server
• not starvation free; high priority task 1 can prevent execution task 2

T1

T2

Processor with SPP

Events for T1

Events for T2
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Static priority preemptive with traffic regulator

• High priority
• Low priority

Known minimum time between events + known WCET ⇒ LR- server
• bounded latency θ and minimum rate ρ

TR
Events for T1

TR
Events for T2

T1

T2

Processor with SPP
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Starvation free arbitration examples

Given known WCET
– Round-robin, weighted round-robin
– With traffic shapers 

• Static priority preemptive (SPP)

• EDF

Does not require known WCET or minimum distance between events
– Time division multiplex (TDM)
– Constant bandwidth server (CBS)
– Polling server
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Characteristics traffic regulation

Events for T1

R
Events for T2

T1

T2

Processor with SPP

• High priority
• Low priority

Traffic regulation does not maximize progress and slack of tasks

► no events for T1 ⇒ no earlier starts of T2

► ETx<WCETx ⇒ no earlier starts of Tx

R

20

Characteristics service regulation

Feedback loop used to maximize progress & bound interference 
• no events for T1 ⇒ earlier starts of T2
• ETx<WCETx ⇒ earlier starts of Tx
• feedback loop is often implicit TDM, CBS

R
Events task 1

processor

R
Events task 2

T1

T2
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Backpressure

T1 buffer T2

1. Functional determinism ⇒ data may not be lost ⇒ buffer may not overflow
2. WCET of T2 is not known (only EWCET is known) ⇒ unknown consumption rate 

⇒ T1 checks for space
3. Check for space ⇒ backpressure & cyclic dependency

v1 v2
Dataflow
model

22

Cyclic dependencies

Cyclic dependencies must be taken into account:
– Functional cyclic dependencies (e.g. previous frame in video decoder)
– Maximum buffer capacities can be a constraint (e.g. buffers in interface of 

the communication network)
– Consumption or production rate of a task can be data-dependent

Trade-off buffer capacity and budget:
– Higher processor cycle budget for a task ⇒ smaller buffers

Tightness of the analysis:
– Checking space bounds jitter ⇒ smaller buffers

Requires analysis techniques with a low computational complexity
– Analysis of the complete job is done at once
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Variable consumption rate

BR MP3 SRC DAC

44.1 kHz

480 441

576
3 n=[1..100] 1

Digital to analog converter (DAC) determines throughput constraint

MP3 decoder task consumes variable amount of data

Block-reader (BR) task must “know” consumption speed MP3 task
– Implies cyclic dependency that affects the temporal behavior!

[M. Wiggers et.al.,DATE 2008]

24

Dataflow analysis
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Elements of a single-rate dataflow graph

v1 Nodes denote actors

Edges denote unbounded queues

Dots denote tokens

Firing rule = enabling condition

Response time (RT) = interval between enabling and finish

Characteristics of a dataflow actor

An actor:

can represent a quantum of work 

has a firing rule (e.g. a token on each input)

is enabled if the firing condition is satisfied

is stateless

consumes input tokens when actor starts

produces output tokens in zero time when actor finishes its execution

v1

actor enabled t(s)

RT

produce output tokens
actor

consume input tokens



Auto-concurrency (overlapping execution)

v1

next execution cannot start before previous has finished

tokens produced at
t=0, t=10

v1

multiple executions happen simultaneously

two tokens produced at
t=0

Assume two tokens arrive at t=0

WCRT=10

WCRT=10

Unbounded queue

v1v0

Edge represents a queue with unbounded capacity



Bounded FIFO model

v1v0

Number of tokens on the cycle equals the FIFO capacity

space

data

T1T0

cap=2

30

Monotonicity

Monotonic temporal behavior: 
– An earlier production of a token cannot result in a later start of an actor 

during self-timed execution

Consequence:
– Sufficient to show that a schedule exist that satisfies the throughput and 

latency constraints given worst-case response times
– Smaller response time result in earlier arrival tokens

• Scheduling anomalies do not occur during self-timed execution of a dataflow 
model

Requires sequential firing rules

v1v0

Earlier arrival token
results in earlier start
v1 and v0



Tasks versus dataflow actors

task finishes

Actor

produce the output 
tokens atomically

dataflow
model

Tasktask graph

task enabled

t(s)
0

RT

actor enabled

t(s)
0

RT

task starts

Response time

Response Time (RT)

Execution Time (ET)

ET

RT

enabled
started

finished

start finish
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t

TDM-period

slice

T1(i) T1(i+1)

Time Division Multiplex (TDM)

processor is busy-waiting (non-workconserving)

fixed slice at fixed position

34

Throughput analysis

Task-graph T1 T3

EWCET=1ms

T2

EWCET=1ms

EWCET=1ms

Assume:
• T1 and T2 share one processor, each task get a TDM-slice of 4 ms every 8 ms
• Infinite buffer capacity

What is the minimum throughput?
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Dataflow model after latency-rate characterization

T1Task-graph

Dataflow model
(including effects arbitration)

[M. Wiggers et.al., Scopes 2006]

v1’ v1’’

component
θ 1/ρ

EWCET
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Latency-rate characterization

• Latency θ=3ms
• Rate ρ=4/8=0.5 executions/ms

t[ms]

tokens

∼ρ=0.5

1 2 θ =3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

12 13 14 15 16
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Throughput analysis

Dataflow model

Maximum cycle mean (MCM) = 
maxc∈Cg (∑v on c EWCRT(v))/ tokens(c) = 2/1 = 2 ms/execution

TDM:  ρ=0.5 execution/ms, θ=3 ms

∞

3

v’3 v’’3v’1

2 0∞

v’2

3 2

∞

1

T1 T3

EWCET=1ms

T2

EWCET=1ms

EWCET=1mstask-graph

v”2

v’’1

38

Throughput analysis

Dataflow model

3

Maximum cycle mean (MCM) = 
maxc∈Cg (∑v on c EWCRT(v))/ tokens(c) = 2/1 = 2 ms/execution

v’3v’1 v’3

2 0 1

v’2 v”2

3 2

v’’1
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Buffer capacity computation

Dataflow model
3

Maximum cycle mean (MCM) = 
maxc∈Cg (∑v on c EWCRT(v))/ tokens(c) = 2/1 = 2 ms/execution

v’3

TDM:  ρ=0.5 execution/ms, θ=3 ms

v’3v’’1v’1

2 0
1

6

3

v’2

3 2

5
v”2

40

Summary

Introduced dataflow analysis techniques to compute buffer capacities 
and scheduler settings given throughput and latency constraints

Dataflow analysis techniques are applicable if starvation free arbiters 
are applied

– SPP is not starvation free

Service regulation: bound interference + reduce miss-probability
– Compared to traffic regulation
– Space must be available before task can start ⇒ cyclic dependencies

Sufficient to show at design-time that a schedule exist
– Due to monotonic temporal behavior of self-timed dataflow graphs

Multiprocessor architecture includes processors with caches
– Use of WCETs is not cost-effective, use EWCET instead
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Performance Analysis and Optimization

-- Combining State-based and Functional Models --
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Performance Analysis Problem

� Tasks have different activation rates and execution demands
� Each computation/communication element has a different 

scheduling/arbitration policy

PE

Communication Bus

PE PE

C
om

m
. C

on
tr

ol
le

r

Round Robin Fixed Priority EDF

In
pu

t E
ve

nt
s

Output Events
� Timing Properties?
� End-to-end delay?
� Buffer requirements?
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Performance Analysis Challenges

� Heterogeneous processing elements
� Different scheduling policies (e.g. EDF, Rate 

Monotonic, Round Robin, etc.)
� Wide variation in task execution times
� Different bus protocols (e.g. TDMA, FCFS etc.) 
� Irregular event arrival patterns
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Solution: Use Simulation

� SimpleScalar (www.simplescalar.com) Instruction 
Set Simulator and SystemC (www.systemc.org) for 
transaction-level modeling and simulation

� Disadvantages
� Excessive running times
� Insufficient corner case coverage 
� No formal guarantees
� Difficulty in integration
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Solution: Analytical Methods

� Standard event models [Richter et al. 2002, Yi. et al. 2004, etc.]

� Periodic, sporadic events
� Using classical scheduling theory from the real-time 

systems literature

� Real-time Calculus [Chakraborty, Kunzli and Thiele 2003]

� Models general event streams and resource availability
� Bursty arrival patterns, irregular resource availability

� Represents arrival/service patterns as functions
� Uses min/max-plus algebraic framework for analysis
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Solution: Analytical Methods (cont.)

� Event Count Automata 
[Chakraborty, Phan and Thiagarajan 2005]

� Represents event streams and resource availability as 
automata

� Accepts integer sequences, which represent all possible 
permissible arrival/service patterns

� Uses automata verification techniques (e.g. model 
checking) for analysis
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Different Possibilities: Comparison 

Methods Standard Event 
Models
(SEM)

Real-time 
Calculus
(RTC)

Event Count 
Automata

(ECA)

Design scope � � � � � �

Efficiency � � � � � � �

Accuracy � � � � � �

Design scope � � � � � �

Efficiency � � � � � � �

Criteria

A modeling technique that is:
� Expressive enough
� Efficiently analyzable ? Combinations of 

two or more models
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Integrating Multiple Performance Models

� Simulation + Real-time Calculus [Kunzli et al. DATE’06]

� SymTA/S + Real-time Calculus [Kunzli et al. CODES + 
ISSS’07]

� Synchronous Data Flow graphs + Standard Event 
Models [Schliecker et al. DATE’07]

� Provides the required amount of modeling power
� Without incurring excessive analysis complexity
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This Talk

� Composing a functional and state-based model
� Real-time Calculus (RTC): efficient
� Event Count Automata (ECA): expressive

� Technical Challenge: An interfacing technique for 
composing RTC and ECA
� RTC: functional, requires algebraic techniques for analysis
� ECA: state-based, requires more expensive state space 

exploration techniques
� Advantages

� Formal performance guarantees
� Expressive, but analysis is not expensive
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ECA-RTC Interfacing

Real-time
Calculus

(RTC)

Real-time
Calculus

(RTC)

Event Count Automata 
(ECA)
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System Modeling

� Both RTC and ECA rely on a count-based
abstraction for modeling workload and service
� How many events can arrive over any time window of 

length �?
� How many events may be processed with any time window 

of length �?
� RTC models such information as functions and uses 

algebraic techniques for analyzing them
� ECA models such information as automata and relies 

on state-space exploration techniques
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Execution
Requirements

Load on 
processor/bus

RTC-Based Modeling: Overview

Processor
Task

Input
Data/Events

Service
Model

Concrete
Instance
Abstract
Representation

Processing
Model

Processor/Bus
bandwidth

Scheduling/
arbitration

policy
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t [ms] 

eventsArrival Pattern

maximum/minimum
number of events in any
interval of length 2.5 ms

2.5

Arrival Curves [�l, �u]
events �u

� [ms]

�l

2.5

number of events in
t=[0 .. 2.5] ms

slide window
and record 

max and min

�l(�) · R(t+�) – R(t) · �u(�), � t, � � 0

Event Model – Modeling Execution Requirements

t

�
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� Max/Min number of events arriving over different time 
interval lengths

maximum/minimum
number of events in any 

interval of length 4

number of events in 
the time interval [0,4]

�l(�) · R(t+�) – R(�) · �u(�), � t, � � 0

Event Model – Modeling Execution Requirements
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Event Model - Examples

periodic periodic w/ jitter

periodic w/ burst complex

Service
Model

Event
Model

Processing
Model

16DATE 2008, Munich

Service Model – Modeling Resource Availability

t [ms] 

availabilityResource Availability

maximum/minimum
available service in any
interval of length 2.5 ms

available service 
in t=[0 .. 2.5] ms

2.5

service
�u

Service Curves [�l, �u]

� [ms]

�l

2.5

�l(�) · S(t+�) – S(t) · �u(�), � t,� � 0 t

�
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maximum/minimum
events processed in any

interval of length 2

# events processed in 
the time interval [0,2]

],[ ulC ���

�l(�) · S(t+�) – S(t) · �u(�), � t,� � 0

Service Model – Modeling Resource Availability
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Service Model - Examples
full resource bounded delay

TDMA resource periodic resource

Service
Model

Event
Model

Processing
Model
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Processing  Model

HW/SW Components

Model

�
�

�’

�’

Tasks mapped onto the
processor and the 
scheduling policy

processing
model

t

�

Service
Model

Event
Model

Processing
Model
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remaining supply

processed events

Processing Model
Service
Model

Event
Model

Processing
Model

input events

available resource supply
Abstract representations of:
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Processing Model
Service
Model

Event
Model

Processing
Model

� Computation of
� Timing properties of the processed events
� Bounds on the remaining resource
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task task

task comm.
task

comm.
task shaper

Compositional Analysis

CPU BUS DSP

How to model 
shared service?

RM TDMA

Scheduling!
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Modeling Schedulers

FP

Using Scheduling Networks
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Compositional Analysis

PE1

Modeling
dependency

PE2

Compositional Schedulability/Timing Analysis
� E.g. How much does the jitter increase?



25DATE 2008, Munich

Compositional Analysis – Complete Example

CPU BUS DSP

RM TDMA

task task

task comm.
task

comm.
task

shaper

TDMA
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Analysis: Delay and Backlog

delay dmax

backlog bmax

�l

�u
[�l, �u]

[�l, �u]

[�l’, �u’]

[�l’, �u’]

task

� Max/Min buffer fill level
� Max/Min delay
� Utilization
� ….
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� The service offered by PE3 depends on the state of
the buffer BHR
� Cannot be modeled easily in a functional setting

But, We Need to Model State!
Blocking-write at BHR

Processing two video streams in a PiP application
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But, We Need to Model State

� We would like to retain the count-based abstraction to specify 
arrival and service 

� But at the same time be able to model systems where the 
arrival and service depend on the state of the system

� Recently timed automata has been used as a generalization of 
traditional real-time event models

� But timed automata explicitly records/specifies timing 
information. Analysis/verification might be expensive …

� Exact arrival times of data items is not relevant. Rather the 
number of items that can arrive within a certain time interval is 
of relevance to us
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Event Count Automata (ECA)

� Event stream /resource = ECA

� ECA = FSM  + Count variables (CVs)
� Records the arrival patterns of a stream and 

decides to accept or reject the stream

� CV: records number of events observed on a 
stream over a time interval
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Event Count Automata (ECA)

A = (S, sin, X, Inv, �, �, F)

S = set of states
sin is the initial state
X = set of count variables
Inv = function that assigns to

each state an invariant 
constraint

� = rate function
� = transition relation
F = set of final states

State-based modeling of stream processing systems
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Event Count Automata (ECA)
Arrival pattern =
3 2 2 3 2 2 2 3 2 4

Corresponding run of the 
automaton =
(A, 0) � (A, 3) � (A, 5)
� (A, 7) � (A, 10) 
� (B, 0) � (B, 2) 
� (B, 4) � (B, 6) 
� (A, 6) � (A, 9) 
� (A, 11) � (C, 11) 
� (C, 15)
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ECA - Properties

� ECA describes arrival patterns of the form n1, n2, …, nk with ni
denoting the number of events arriving during the time [i-1, i)

� The dynamics of an ECA is captured by an associated 
behavioral automata, whose states are configurations of the 
form (s, V). s is a state of the ECA and V is a valuation of the 
variables

� The basic theory of ECAs follows from the fact that the 
associated behavioral automata can be quotiented into a finite 
state automata which accepts the same set of sequences. 
Arguments are similar to those used for constructing the 
regional automata for a timed automata
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ECA - Properties

� If L(A) is the language defined by an ECA A, then L(A) is
regular

� ECA-definable languages are closed under boolean operations
� It is possible to effectively determine if L(A) is empty
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s2

1 2

3
5

#events

�

�u

7
9

3 40
arrival curve �u

x0 � 5 � x1 � 7 �

x2 � 9; x2 � 0

x3 � 5 � x0 � 7 �

x1 � 9; x1 � 0

x1 � 5 � x2 � 7 �

x3 � 9; x3 � 0

ECAs Representing Arrival & Service 

[0, 3] [0, 3]

[0, 3] [0, 3]

x2 � 5 � x3 � 7 �

x0 � 9; x0 � 0

s0 s1

s3

ECA corresponding to �u
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System Modeling using ECAs

input video
stream

Bb

VLD + IQ IDCT + MC

output
device

VLD: Variable Length Decoding IDCT: Inverse Discrete Cosine Transform
IQ: Inverse Quantization MC: Motion Compensation

�u(�) �l
1(�) �l

2(�) c(�)

ECA� ECA�1 ECA�2 ECAc

MPEG-2 video decoder mapped onto two processors 
communicating via FIFO buffers
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Networks of ECAs
� Each ECA is augmented with

� I/O buffers
� Update function: implements scheduling policy

A network of ECAs

streams buffers

processor
availability
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Encoding ECAs as CPNs

ECA�
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Networks of ECAs
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Scheduling Multiple Streams

Complex schedulers can
now be easily specified
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RTC vs. ECA

Real-time Calculus Event Count Automata

� Functional

� Cannot model state 
information

� Efficient Analysis

� State-based

� Able to model state 
information naturally

� Complexity increases as 
the system grows
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Integrating Performance Models 

� RTC + ECA
� State-based components: ECA
� Non state-based components: RTC
� Using interfaces to connect RTC and ECA 

components
� Technical Challenge

� RTC � ECA interface
� ECA � RTC interface
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RTC+ECA
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RTC�ECA Interface

� Converts an arrival curve v into an ECA A
� An arrival pattern satisfies v if and only if it is 

accepted by A
� Finds a suitable set of count variables CV
� Necessary and sufficient conditions on CV under

which an arrival pattern satisfies v
� Appropriate resets of CV to capture all the time 

intervals constrained by v
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RTC to ECA

[0,4]

[0,4] [0,4]

x2�7 � x3�9
x3�0

x1�7 � x2�9
x2 � 0

x3�7 � x1�9
x1�0

� �upper(�)

1 4
2 7
3 9

x1, x2, x3 : count variables of the ECA

x1�4 �

x3�4 �

x2�4 �

A

BC
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RTC to ECA
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RTC to ECA
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RTC to ECA
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RTC to ECA
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RTC to ECA
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ECA�RTC Interface

� Given an ECA component, construct the 
output arrival and remaining service curves

� Idea
� Time interval : use different window sizes �
� For each �, compute �u(�) and �l(�)

� �u(�) and �l(�): max. and min. number of output events 
observed in any interval of length �

� Using automata verification to compute the bounds
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Experimental Evaluation

� Based on:
� Real-time Calculus Toolbox (for RTC)

� http://www.mpa.ethz.ch/Rtctoolbox
� Developed at ETH Zürich

� Symbolic Analysis Laboratory (for ECA)
� http://sal.csl.sri.com/
� Developed in collaborations of SRI, Stanford and 

Berkeley
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Exp 1: AND-task Activation

AND

Compute backlog

Combine 2 streams and process them
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Exp 1: Backlog Results

over-estimation
resulting from 

RTC-based model
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Exp 1: Analysis Time

RTC

improvement in 
analysis time

compared to only ECA
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Exp 2: Picture-in-picture (PiP) Application

Blocking-write at BHR

B, b: buffers, PE: Processing Element 

High res.
stream

Low res.
stream

56DATE 2008, Munich

High res.
stream

Low res.
stream

Modeling the PiP Application

RTC Components ECA Component
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Exp 2: Backlog Results

ECA model gives tighter results
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Exp 2: Analysis Times

… at the cost of significantly 
higher analysis times
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Experiments

� Experiment 1
� RTC is not accurate
� ECA is slow

� Experiment 2 
� RTC cannot model
� ECA is slow

� Both experiments 
� Our proposed method is more accurate than RTC and much 

more efficient than ECA
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Concluding Remarks

� MpSoCs are increasingly becoming complex and 
heterogeneous
� Single modeling/analysis paradigm might no longer be 

sufficient
� Using multiple specification formalisms has been studies 

before (SPI: A System Model for Heterogeneously Specified 
Embedded Systems, Ziegenbein et al., TVLSI 2002)

� However, the use of multiple performance models is 
relatively new and is open for research
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