

F2

Formal Methods in System and MpSoC Performance
Analysis and Optimisation

DATE 08 TUTORIAL NOTES

1

Formal methods in system and MpSoC
performance analysis and optimization

Part 1 - introduction to formal
platform performance analysis

Rolf Ernst, TU Braunschweig

� R. Ernst, TU Braunschweig, 2008 2

Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles

• modeling activation and event streams

• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion

� R. Ernst, TU Braunschweig, 2008 3

Formal Model Applications

• formal models for performance analysis optimization are in
use for very different types of embedded system
– distributed networks

– MpSoC
source: Daimler

55 ECUs & 7 Buses of 4 types with Gateways

Tile Tile
DSP

mem Arb

NI

DSP

mem

NI

Arb

ARM

mem

NI

Arb

Tile

Æthereal NoC

Tile Tile
DSP

mem Arb

NI

DSP

mem

NI

Arb

ARM

mem

NI

Arb

Tile

Æthereal NoC

source: Bekooj – this tutorial

� R. Ernst, TU Braunschweig, 2008 4

Applications of Formal Methods for Performance

• architecture design in early design phases

• design verification

• control and optimize design „robustness“ throughout the
design process

� R. Ernst, TU Braunschweig, 2008 5

Current Practice in Early Design Space Exploration

• early design phases
– determine architecture and communication
– executable code not yet (completely) available
– preliminary estimations on task structure and communication

volume derived
• from application models
• reused SW and HW components
• and standard component data sheets

• several simple spreadsheet models in practical use
– e.g. textbook formula for computer networks (Hennessy/

Patterson)

� R. Ernst, TU Braunschweig, 2008 6

Current Practice - A more Elaborate Simple Model
• reduction of dynamic effects to average or integral values

• allows application of weighted graph algorithms � fast

• frequently used in architecture optimization for distributed
networks

• does not reflect dynamic effects of transient loads, jitter,
deadlines, buffer memory

T1

T2

proc1

proc2copro1

100MB/s
100MB/s

100MB/s

210MB/s200MB/s

T310MB/s10MB/s

mem1

bus1

� R. Ernst, TU Braunschweig, 2008 7

Current Practice in Design Verification

• extensive simulation
– „programmers view“ simulation models based on the ISA

� function test
– TLM models to cover HW platform component interaction

� platform function + approximate timing
– RTL models

� platform function + clock cycle accuracy
�model hierachy to cover function as well as timing

• limitations
• high modeling and computation cost for accurate models
• simulation is always incomplete „case study“
• concurrency requires accurate timing modeling to cover all

effects
• does not reflect design „flexibility“ to changes, updates, …

simulation
cost

� R. Ernst, TU Braunschweig, 2008 8

Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles

• modeling activation and event streams

• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion

� R. Ernst, TU Braunschweig, 2008 9

Timing Model Hierarchy

IP

MP M P

M

T1 T2

P
BSW
RTE

T1 T2

• system timing model
– performance of components

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *

� R. Ernst, TU Braunschweig, 2008 10

Timing Model Hierarchy - Task

IP

MP M P

M

T1 T2

P
BSW
RTE

T1 T2

• system timing model
– performance of components

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *

� R. Ernst, TU Braunschweig, 2008 11

Formal Modeling Fundamentals – Task Execution

• task core execution time is the time needed to execute a
given task when running alone on a processor

• task core execution time does not include
– operating system overhead
– the influcence of other tasks
– waiting and synchronization times for global resources
– shared cache and memory access times

(L1 cache often included)

• task core execution time is determined in different ways
– estimated in early design phases
– measured with a cycle accurate simulator (e.g. CoWare, Vast)
– measured with instrumented code on a prototype (e.g. dspace)
– formally analyzed using program path analysis

in particular for high safety requirements (e.g. absint)

� R. Ernst, TU Braunschweig, 2008 12

Formal Modeling Fundamentals – Communication

• core communication time is the transmission time for a
given message to be communicated over a link when no
other communication is active

• core communication time does not include
– arbitration (scheduling)
– buffering
– gateway, multi-hop or MIN timing overhead

• core communication time is determined in different ways
– simulation or prototyping
– formal model of communication protocol (e.g. Symtavision)

� R. Ernst, TU Braunschweig, 2008 13

Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles

• modeling activation and event streams

• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion

� R. Ernst, TU Braunschweig, 2008 14

Timing Model Hierarchy - Activation

IP

MP M P

M

T1 T2

P
BSW
RTE

T1 T2

• system timing model
– performance of components

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *

� R. Ernst, TU Braunschweig, 2008 15

Formal Modeling Fundamentals – Activation

• total task load, also called utilization of task i, Ui, depends on
activation function
total task load = load/task execution * task activation requency

= task core execution time * task activation frequency
– example: periodic task i with core execution time Ci and period Ti

Ui = Ci/Ti

• what defines the task activation function ?
– application model (Simulink, SPW, LabView, …)
– environment model (reactive systems)
– service contracts (max no of requests per time, …)
� typically application rather than platform dependent

� platform can „modulate“ activation timing to avoid
malfunction (e.g. traffic shaping, back pressure)

• two classes of activation – time activation, event activation

� R. Ernst, TU Braunschweig, 2008 16

Activation Functions

• two classes of activation
• time activation – tasks are periodically activated by clock

• example: periodic sample in signal processing / control eng.
• event activation – tasks are activated when event arrives

• example: automata

S

C

B4

B2B1 B3event
source

sample
clock

event activated

time activated

event
model

event/communication
model

activation functions - example

� R. Ernst, TU Braunschweig, 2008 17

Modeling Events as streams

• in formal performance models, events are modeled as
streams rather than as sequences of individual events

• examples
– a clock is given by its period rather than as a sequence of

clock ticks
� clock can be modeled as an event stream

– a sampled sensor signal is modeled by the sample period and
the sample jitter

• the event streams are defined as functions or as parameter
tuples

� R. Ernst, TU Braunschweig, 2008 18

Popular Event Stream Models – PJD

• standard event model used in real-time systems
– event sequences are modeled by three parameters, period p,

jitter j, and minimum time interval between 2 events
– important models that can easily be decribed

• strictly periodic events (typically clock released)
• periodic events with jitter
• sporadic events
• sporadically periodic events

– covers a large class of applications
– conservatively approximates more complex functions

te1 te2 te3tptp

tJ

� R. Ernst, TU Braunschweig, 2008 19

Popular Event Stream Models - Arrival Curves

• arrival curves of the network calculus
– captures the no. of event in a time interval �t
– �l (�t) is lower bound
– �u (�t) is upper bound

• can be used to describe the standard event models

• reaches infinite values for �t � �
– must be approximated or extended by periodic function

for �t � �

• is when event sequences become very complex, e.g.
– as a result of operations on event sequences

Swiss Federal
Institute of Technology 20

Arrival Curves - Example

t [ms]

events

maximum / minimum
arriving events in any

interval of length 2.5 ms

2.5

events

� [ms]2.5

number of events in
in t=[0 .. 2.5] ms

�

�

t

�

Event Stream

Arrival Curves

Swiss Federal
Institute of Technology 21

Example 1: Periodic with Jitter

periodic periodic with jitter

Swiss Federal
Institute of Technology 22

Example 2: Periodic with Jitter and Minimum Distance d

Arrival curves:

� R. Ernst, TU Braunschweig, 2008 23

Total Load of a Task

• with activation model and core execution time or (core
communication time), we can now derive the total load of a
task

• the resource is not fully available to one task or
communication, but is shared with others

T1 T2

* *
C1 C2

U1 U2

� R. Ernst, TU Braunschweig, 2008 24

Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles

• modeling activation and event streams

• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion

� R. Ernst, TU Braunschweig, 2008 25

Timing Model Hierarchy - Component Timing

IP

MP M P

M

T1 T2

P
BSW
RTE

T1 T2

• system timing model
– performance of components

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *

� R. Ernst, TU Braunschweig, 2008 26

Timing Effects of Scheduling/Arbitration

• tasks execute longer than their core execution time
– time assigned to other tasks
– operating system overhead
– context switch, blocking, …

• response time of a task is maximum from time of activation
to task termination

context switch
core execution

time

preemptionworst case response time

example: static priority preemptive
scheduling

� R. Ernst, TU Braunschweig, 2008 27

Scheduling Analysis

• different analysis algorithms
– generalization of busy window algorithm (Lehoczky, Tindell) to

fit general event model (Richter, Jersak, Henia, Racu, Ernst,
Schliecker, et al.)

• Tool SymTA/S
– extension of Network Calculus to Real-time Calculus

(Chakraborty, Wandeler, Künzli, Thiele, et al.)
• Tool MPA

� R. Ernst, TU Braunschweig, 2008 28

Analysis uses “Busy Window” approach

T1

C2T2 T2

T 2

pr
io

rit
y

C2

C1 C1T1

C2T2 C2T2

w2(3)
2 * T2 R2(3)

increase wi until
fix point found

where equations
hold!

t

� R. Ernst, TU Braunschweig, 2008 29

Busy Window Analysis

• very versatile approach
• has been extended to analyze even difficult scheduling strategies

– round-robin, non preemptive, collaborative processes (e.g. OSEK), …

• can handle unkown worst case (e.g. release offsets – time table)
• can handle stream queues and register communication
• window size increases with load (limited by deadline)
• this window „unrolling“ processes can be considered as symbolic simulation

45

activations

w2 (4)

� R. Ernst, TU Braunschweig, 2008 30

Importance of Context Switch Consideration

• context switch increases load � non load preserving

40 46 60 81

context switch

response time increases from 45 to 81

� R. Ernst, TU Braunschweig, 2008 31

Time Table for Release Offset

MO1

MO2

Gateway

bu
s

IF

Msg1

Msg2

Msgn

time table

buffer

ho
st

 IF

bu
s

IF
bu

s
IF

bu
s

IF

ho
st

 IF

C
A

N
 1

gateway

ECU1

CAN1 CAN2

CAN3

ECU2

ECU3

ECU4

ECU5

ECU6

ECU8
ECU7

gateway

ECU1

CAN1 CAN2

CAN3

ECU2

ECU3

ECU4

ECU5

ECU6

ECU8
ECU7

release offset
reduces peak load

Swiss Federal
Institute of Technology 32

Real-time Calculus

Processor
Task

Input
Stream

Service
Model

Load
Model

Concrete
Instance
Abstract
Representation

Processing
Model

R(t) R’(t)

C(t)

���)

���)

Swiss Federal
Institute of Technology 33

33

Service Model (Resources)

t [ms]

availability

maximum/minimum
available service in any

interval of length 2.5 ms

available service
in t=[0 .. 2.5] ms

2.5

�

�
service

� [ms]2.5

t

�

Resource Availability

Service Curves

Swiss Federal
Institute of Technology 34

Greedy Processing Component (GPC)

remaining
resources

Examples:
� computation (event – task instance, resource –

computing resource [tasks/second])
� communication (event – data packet, resource –

bandwidth [packets/second])

FIFO bufferinput
event

stream

output
event

stream

available
resources

Swiss Federal
Institute of Technology 35

Greedy Processing Component

GPC

• Component is triggered by
incoming events.

• A fully preemptable task is
instantiated at every event
arrival to process the incoming
event.

• Active tasks are processed in
a greedy fashion in FIFO
order.

• Processing is restricted by the
availability of resources.

Behavioral Description

Swiss Federal
Institute of Technology 36

Greedy Processing Component (GPC)

R(t)

C(t)

R’(t)

C’(t)
t

C(t)
R(t)

R’(t)

Conservation Laws

GPC

Swiss Federal
Institute of Technology 37

Greedy Processing
For all times u 	 t we have R’(u) 	 R(u) (conservation law).
We also have R’(t) 	 R’(u)+C(t)–C(u) as the output can not be larger
than the available resources.
Combining both statements yields R’(t) 	 R(u) + C(t) – C(u).
Let us suppose that u* is the last time before t with an empty buffer.
We have R(u*) = R’(u*) at u* and also R’(t) = R’(u*) + C(t) – C(u*) as
all available resources are used to produce output. Therefore, R’(t) =
R(u*) + C(t) – C(u*).
As a result, we obtain

tu*

B(t)

Swiss Federal
Institute of Technology 38

Abstraction

time domain
cumulative functions

time-interval domain
variability curves

GPC GPC

Swiss Federal
Institute of Technology 39

Some Definitions and Relations

is called min-plus convolution

is called min-plus de-convolution

For max-plus convolution and de-convolution:

Relation between convolution and deconvolution

Swiss Federal
Institute of Technology 40

The Most Simple Relations

The output stream of a component satisfies:

The output upper arrival curve of a component
satisfies:

The remaining lower service curve of a component
satisfies:

Swiss Federal
Institute of Technology 41

Two Sample Proofs

Swiss Federal
Institute of Technology 42

MPA-RTC – Propagation

[� , �u]

[� , �u]

[� , �u’]

[� , �u’]

GPC

Swiss Federal
Institute of Technology 43

MPA-RTC – Scheduling - Examples

Fixed Priority Preemptive
Scheduling

Time Division Multiple
Access (TDMA)

Swiss Federal
Institute of Technology 44

Delay and Backlog

maximum delay D

maximum
backlog B

�l

�u
[�l, �u]

[�l, �u]

[�l’, �u’]

[�l’, �u’]GPC

� R. Ernst, TU Braunschweig, 2008 45

Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles

• modeling activation and event streams

• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion

� R. Ernst, TU Braunschweig, 2008 46

Timing Model Hierarchy – System Timing Model

IP

MP M P

M

T1 T2

P
BSW
RTE

T1 T2

• system timing model
– performance of components

integrated in a network

• component timing model
– activation function
– component

scheduling/arbitration

• task timing model
– execution load and timing
– communication load and timing

activation * *

� R. Ernst, TU Braunschweig, 2008 47

System analysis using compositional approach

• independently scheduled subsystems are coupled by data
flow

 subsystems coupled by streams of data

 interpreted as activating events

 coupling corresponds to event propagation

comp 1

scheduling
comp 1

P2

P1

comp 2

scheduling
comp 2

P4

P3

event stream

� R. Ernst, TU Braunschweig, 2008 48

Compositional analysis principle

environment model

local analysis

derive output event model

map to input event model

until convergence or non-schedulability

find fix point
where input and
output models
converge

Symbolic
Simulation
or RTC

� R. Ernst, TU Braunschweig, 2008 49

System-level Analysis Results

• end-to-end latencies

• buffer sizes

• system load

• ….

example: complex end-to-end
latency analysis w. SymTA/S

source:
Symtavision

� R. Ernst, TU Braunschweig, 2008 50

Compositional Analysis Properties

• compatible event stream models allow to couple any
number of blocks for local analysis
� scalable

• fixpoint iteration automatically adapts to platform topology
� easy integration and extension
� RTC and SymTA/S analysis blocks have been shown to easily

work together [KHT07]

• very short analysis time (few seconds) opens new
opportunities in design space and robustness optimization

� R. Ernst, TU Braunschweig, 2008 51

Further Performance Models 1/2
• timed automata have been used to explicitely model the

task scheduling algorithm and OS interactions and then
apply model checking to identify deadline violations

• can be more accurate in the indivi-
dual component model
but is computationally
far more expensive

• work e.g. Madsen
or Johnson

• can potentially be
linked
via common event stream
models

� R. Ernst, TU Braunschweig, 2008 52

Further Performance Models 2/2

• will be discussed in separate tasks of this tutorial

� R. Ernst, TU Braunschweig, 2008 53

Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles

• modeling activation and event streams

• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion

� R. Ernst, TU Braunschweig, 2008 54

Enhancements to the Basic Analysis

• load modeling for variyng execution times

• shared memory modeling on MpSoC

• robustness optimization

� R. Ernst, TU Braunschweig, 2008 55

Load Modeling for Varying Execution Times

• Simple Example – cyclo-static system

P = 20 ms

P = 10 ms
J = 40 ms
d = 5 ms

Static Priority Preemptive
Scheduling

Cyclo static
execution times

5ms, 3ms, 4ms, 1ms

20ms, 3ms, 4ms, 1ms, 1ms

WCET = 5 ms

WCET = 20 ms

� R. Ernst, TU Braunschweig, 2008 56

Load for Interval �t: T_low

�t

Lo
ad

available service

worst case
load

real load

� R. Ernst, TU Braunschweig, 2008 57

Real Load Used in Improved Analysis

• improved analysis available for SymTA/S (see above) and
MPA

• even more powerful: Scenario Analysis
– identify different sets of tasks or deviating core execution

times of tasks for different application contexts � scenarios
– example: different use of smart phone, car: acceleration/idle, ..
– interesting is transition between scenarios possibly leading to

overloads, lost data, …
– see literature

WCRT=37

� R. Ernst, TU Braunschweig, 2008 58

Enhancements to the Basic Analysis

• load modeling for variyng execution times

• shared memory modeling on MpSoC

• robustness optimization

� R. Ernst, TU Braunschweig, 2008 59

MpSoC with “Secondary” Traffic

• use of shared memories or shared coprocessors
– shared on-chip data and programs
– larger off-chip memories

• data and program memory accesses on same network as
task communication - more complex traffic

CPU1 CPU 3

Mem

Shared Memory

HW CPU2

Mem

P1 P2
MpSoC

� R. Ernst, TU Braunschweig, 2008 60

MpSoC process execution

classical
process
model output data

process model
w/ memory
access

shared memory
accesses

interference
during
transactions

…

read data

memory
transaction

network
memory

network
arbitration

memory arbitration

� R. Ernst, TU Braunschweig, 2008 61

Combined memory transaction modeling

• combined analysis of all process memory transactions
– add all delays that can occur during all transactions of a

process in the worst case
– more realistic bus and memory timing

combined
analysis
result

tperiod
max Nx worst case
interferences (N=2)

process

other bus activity
- interference

� R. Ernst, TU Braunschweig, 2008 62

Improved combination in transaction modeling

• superimpose on each core
� total execution time

(conservative)

core execution time

core communication time +
total netw. interference
core memory access time +
total mem. interference

• complex and highly dynamic interactions if memory
transactions of multiple processors interfere
– simple combination not sufficient

+ + + +

� total worst case execution time

Solution:
• derive upper total

interference
bound using
formal analysis

• couple single core analysis
with iterative nested scheme
� enhanced SymTA/S analysis

� R. Ernst, TU Braunschweig, 2008 63

Enhanced SymTA/S compositional analysis engine

enhanced analysis:
nested analysis loop
to resolve mutual
interference

exploits busy window
approach!

environment model

local analysis
(WCET + WCRT)

output traffic description

until convergence or
non-schedulability

input traffic description

Shared resource
transaction analysis

so far:
fixed point solution
over local analysis

+

� R. Ernst, TU Braunschweig, 2008 64

LocalLocal STBusSTBus

DDR External
Memory

Video
In

Video
Out

SMP
DSOC
scheduler

Example architecture (STMicroelectronics)

…

Pipe1

PipeP

ARM 1

…..
T1 Tm

Data$

Program
Cache #1

Pipe1

PipeP

ARM 5

…..
T1 Tm

Data$

SystemSystem STBusSTBus

Program
Cache #N

< 200 MHz
(DDR rate)

CLIP
DIV

ABS

SIGN

CLIP
DIV

ABS

SIGN

L1 data
Cache #N

L1 data
Cache #1

L1
Data Bank

(Stack,
Data)

Interleaver

L1
Data Bank

(Stack,
Data)

L1
Data Bank

(Stack,
Data)

L2
Data Bank

(Data)

SAD

DCT/iDCT

Badd/Bdiff

Bq/Biq

Bsum

BieBzigzag
L1

Data

L1
Data Bank

(Stack,
Data)

Courtesy: Pierre Paulin

� R. Ernst, TU Braunschweig, 2008 65

Application: MPEG 4 contour detection

• contour detection algorithm from
École Polytechnique de Montreal
(Gabriela Nicolesu)

• 2 – 4 processor architecture

• 2 threads per processor
– round-robin scheduling

• StepNP simulator available

• input data aquisition using
simulation
– simulation results of subtasks on

single core

� R. Ernst, TU Braunschweig, 2008 66

System level analysis

0

5

10

15

20

25

30

35

40

Application

E
xe

cu
tio

n
Ti

m
e

(m
s)

concurrent execution

max.
simulated

timing

analysed
worst-case

• very fast analysis of worst case
behavior considering
– bus/network congestion (if

any)
– memory congestion
– multithreading
– coprocessors ...

• 35% larger analyzed timing
than maximum simulation
result
– símulation uses simplified

crossbar communication
model

• planned for investigation of
processor sharing, degree of
parallelism / pipelining, …

� R. Ernst, TU Braunschweig, 2008 67

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Gauv Gauh Compedge Reverse Droot

Simulation (1x8Thr)
Analysis Crossbar (1x8Thr)
Simulation (4x2Thr)
Analysis Crossbar
Analysis FCFS Bus
Analysis 2 FCFS Bus

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Gauv Gauh Compedge Reverse Droot

Simulation (1x8Thr)
Analysis Crossbar (1x8Thr)
Simulation (4x2Thr)
Analysis Crossbar
Analysis FCFS Bus
Analysis 2 FCFS Bus

cache conflicts

Detailed Analysis

� R. Ernst, TU Braunschweig, 2008 68

Enhancements to the Basic Analysis

• load modeling for variyng execution times

• shared memory modeling on MpSoC

• robustness optimization

� R. Ernst, TU Braunschweig, 2008 69

Robustness Optimization

• goal: improve slack in architecture, such that a single or a
combination of load data can change later on without
affecting end-to-end deadlines and other constraints

• approach
1. analyze remaining slack in architecture (1 or

multidimensional)
• uses binary search or evolutionary algorithms

2. optimize system parameters to maximize slack
• uses evolutionary algorithm

• search parameters and controlled by designer

� R. Ernst, TU Braunschweig, 2008 70

Example System

• Distributed embedded system
• 4 priority scheduled computational

resources
• connected via CAN bus
• 3 sub-applications

– Sens�Act
– Sin�Sout

– Cam�Vout

� R. Ernst, TU Braunschweig, 2008 71

Improving slack for T1 + C0 + C1 (1)

Org. Config. Optimized

� R. Ernst, TU Braunschweig, 2008 72

Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles

• modeling activation and event streams

• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion

� R. Ernst, TU Braunschweig, 2008 73

event
model

RTC

arrival
curve

w. periodic
extension

symbolic
simulation

fix point
iteration

for
composition

component
analysis

system analysis

PJD arrival
curve

approx

The Compositional Analysis „Landscape“

SymTA/S MPA

� R. Ernst, TU Braunschweig, 2008 74

Summary and Comparison

• the core difference between MPA and SymTA/S is the
component analysis engine and not so much the event
model (any more)

• RTC focuses on a closed notation of event and service
model with a closed and intuitive formalism as a result
– hierarchy is easier modeled in this formalism
– very good results are achieved for the covered design space

• SymTA/S uses a generalisation of the busy window
approach by Lehoczky/Tindell that develops the task
sequence over a busy window
– very versatile approach that covers complex features such as

release offsets, mutual dependencies (round robin), context
switching with blocking (non-preemptive) and „secondary“
memory access models

– very good results shown for a wide range of industrial
systems

� R. Ernst, TU Braunschweig, 2008 75

Conclusion

• several performance analysis and optimization approaches
have been proposed for heterogeneous embedded
multiprocessor systems which have brought the
technology far beyond the stage of toy examples

• the cost of a predictable design has been reduced by
higher modeling and analysis precision

• applications range from early design stages when no
executable code is available to verification of design
integration

• the technology is applicable both to large scale distributed
systems and for MpSoC

� R. Ernst, TU Braunschweig, 2008 76

References Symta/S 1/4

[RRE03] K. Richter and R. Racu and R. Ernst. "Scheduling Analysis Integration for Heterogeneous
Multiprocessor SoC." In IEEE Real-Time Systems Symposium (RTSS), Cancun, Mexico, December
2003.

[HHJ05] R. Henia and A. Hamann and M. Jersak and R. Racu and K. Richter and R. Ernst. "System
Level Performance Analysis - the SymTA/S Approach." In IEE Proceedings Computers and Digital
Techniques, 2005.

[RER07] R. Racu and R. Ernst and K. Richter and M. Jersak. "A Virtual Platform for Architecture
Integration and Optimization in Automotive Communication Networks." In SAE World Congress,
Detroit, USA, April 2007.

[RHE07] R. Racu and A. Hamann and R. Ernst and K. Richter. "Automotive Software Integration." In
Proc. of the 44th Design Automation Conference, San Diego, CA, USA, June 2007.

[HRE06] A. Hamann and R. Racu and R. Ernst. "Formal Methods for Automotive Platform Analysis
and Optimization." In Proc. Future Trends in Automotive Electronics and Tool Integration
Workshop (DATE Conference), Munich, March 2006.

[HRE07] A. Hamann and R. Racu and R. Ernst. "Multi-Dimensional Robustness Optimization in
Heterogeneous Distributed Embedded Systems." In Proc. of the 13th IEEE Real-Time and
Embedded Technology and Applications Symposium, April, 2007.

[HJR06] A. Hamann, M. Jersak, K. Richter, R. Ernst. "A framework for modular analysis and
exploration of heterogeneous embedded systems." In Real-Time Systems Journal, Volume 33, pp
101-137, July 2006.

� R. Ernst, TU Braunschweig, 2008 77

References Symta/S 2/4

[RHE06] R. Racu and A. Hamann and R. Ernst. "A Formal Approach to Multi-Dimensional Sensitivity
Analysis of Embedded Real-Time Systems." In Proc. of the 18th Euromicro Conference on Real-
Time Systems (ECRTS), Dresden, July 2006.

[RE06] R. Racu and R. Ernst. "Scheduling Anomaly Detection and Optimization for Distributed
Systems with Preemptive Task-Sets." In 12th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Jose, USA, April 2006.

[HE07] R. Henia, R. Ernst. "Scenario Aware Analysis for Complex Event Models and Distributed
Systems." In Proc. Real-Time Systems Symposium, December 2007.

[SHR07] S. Schliecker and A. Hamann and R. Racu and R. Ernst. "Formal Methods for System Level
Performance Analysis and Optimization." In Proc. of the Design Verification Conference (DVCON),
San Jose, CA, February 2008.

[SIE06] S. Schliecker and M. Ivers and R. Ernst. "Integrated Analysis of Communicating Tasks in
MPSoCs." In Proc. 3rd International Conference on Hardware Software Codesign and System
Synthesis (CODES), Seoul, Korea, October 2006.

[SHE06] S. Stein and A. Hamann and R. Ernst. "Real-time Property Verification in Organic
Computing Systems." In Proc. of the 2nd International Symposium on Leveraging

Applications of Formal Methods, Verification and Validation, November 2006.

[RE08] J. Rox and R. Ernst. "Modeling Event Stream Hierarchies with Hierarchical Event Models.“
In Proc. Design, Automation and Test in Europe (DATE), Munich, 2008.

[KHT07] S. Künzli, A. Hamann, L. Thiele, R. Ernst. “Combined Approach to System Level
Performance Analysis of Embedded Systems”. Codes+ISSS 2007, Salzburg, 2007.

� R. Ernst, TU Braunschweig, 2008 78

References MPA 3/4
• E. Wandeler. Modular Performance Analysis and Interface-Based Design for Embedded Real-Time

Systems. PhD Thesis ETH Zurich, 2006
[WT07a], E. Wandeler and Lothar Thiele, Workload correlations in multi-processor hard real-time

systems. Journal of Computer and System Sciences, Mar. 2007

[WTVL06] E. Wandeler and Lothar Thiele and Marcel Verhoef and Paul Lieverse, System Architecture
Evaluation Using Modular Performance Analysis - A Case Study, Software Tools for Technology
Transfer (STTT), Oct. 2006}

[TWS06] Lothar Thiele and Ernesto Wandeler and Nikolay Stoimenov, Real-time interfaces for
composing real-time systems, International Conference On Embedded Software EMSOFT 06, 2006.

[TWC05] Lothar Thiele and Ernesto Wandeler and Samarjit Chakraborty, A Stream-Oriented Component
Model for Performance Analysis of Multiprocessor DSPs, IEEE Signal Processing Magazine, special
Issue on Hardware/Software Co-design for DSP, May 2006

[WMT05] Ernesto Wandeler and Alexandre Maxiaguine and Lothar Thiele,Quantitative characterization of
Event Streams in Analysis of Hard Real-Time Application}, Real-time Systems. Mar, 2005

[CKT03] Samarjit Chakraborty and Simon K\"unzli and Lothar Thiele. A General Framework for
Analysing System Properties in Platform-Based Embedded System Designs},. DATE 2003.

[TCN99] Lothar Thiele and Samarjit Chakraborty and Martin Naedele, Real-time Calculus for Scheduling
Hard Real-Time Systems, International Symposium on Circuits and Systems ISCAS 2000, Mar. 2000.

� R. Ernst, TU Braunschweig, 2008 79

References other 4/4

• J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceedings
Real-Time Systems Symposiom, pages 201–209, 1990.

• K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing fixed priority hard real-
time systems. Journal of Real-Time Systems, 6(2):133–152, Mar 1994.

• F. Baccelli, G. Cohen, G. J. Olster, and J. P. Quadrat, Synchronization and Linearity --- An Algebra
for Discrete Event Systems, Wiley, New York, 1992.

• J.-Y. Le Boudec and P. Thiran, Network Calculus - A Theory of Deterministic Queuing Systems for
the Internet, Lecture Notes in Computer Science, vol. 2050, Springer Verlag, 2001.

Formal Methods in System and
MpSoC Performance Analysis
and Optimisation

Hans Sarnowski
EF-611, BMW Group

Tutorial, DATE 08 Conference
March 10, 2008

Marek Jersak
Symtavision GmbH

Performance Analysis and
Optimisation –

industrial applications in
automotive design

Tutorial, DATE 08 Conference
March 10, 2008

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Integration Challenges: 5 buses, 55 ECUs, hundreds of
messages, thousands of functions

Representative
vehicle example

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Typical Automotive Architecture Today

Bus protocols
� CAN
� FlexRay
� Lin
� MOST
� Proprietary

ECU (electronic control unit)
� Single-Core CPU (but moving to dual-

core)
� OSEK RTOS

Gateway

ECU1

Bus1 Bus3

Bus2

ECU2

ECU3

ECU4

ECU5

ECU6

ECU8ECU7

Local + end-to-end timing / performance are important

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Many functional problems are in fact timing
problems

� ECUs (temporarily) overloaded
� tasks not always schedulable
� deadlines are missed

� network (temporarily) overloaded
� messages arrive "too late“ or with “too large” jitter
� messages are lost (buffer overflow)

� end-to-end deadlines of car function are missed
� stability of distributed control is compromised

� Carefully monitor performance and timing
during design and integration

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Established Design Process

Requirements

System Design System Verification

Requirements Verification

Network Design

ECU Design ECU Verification

Network Verification

O
EM

Su
pp

lie
r

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Adding Performance Design and Verification

Requirements

System Design System Test

Requirements Test

Network Design

ECU Design ECU Test

Network Test

Network Performance
Design

Network Performance
Design

ECU Performance
Verification

ECU Performance
Verification

Network Performance
Verification

Network Performance
Verification

System Performance
Design

System Performance
Design

System Performance
Verification

System Performance
Verification

ECU Performance
Design

ECU Performance
Design

O
EM

Su
pp

lie
r

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Selected Automotive
Use Cases

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Example 1: Safety-Critical ECU

Chassis domain: Active Front Steering
� Verifying Performance and Timing for all critical cases
� Safeguarding against liability claims
� Optimizing ECU performance and cost (use of cheaper CPU)

Source: BMW

Hans Sarnowski, responsible BMW Engineer: „You really get to know your system and can detect real-time errors in a fraction of time“

Requirements

System Design System Test

Requirements Test

Network Design

ECU Design ECU Test

Network Test

Network Performance
Design

Network Performance
Design

ECU Performance
Verification

ECU Performance
Verification

Network Performance
Verification

Network Performance
Verification

System Performance
Design

System Performance
Design

System Performance
Verification

System Performance
Verification

ECU Performance
Design

ECU Performance
Design

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Integration: Tracing + SymTA/S

– Single function execution times

– Interrupt Frequency

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Focus: Tracing vs. SymTA/S Analysis

Risk avoided

� Measured 10ms task: Response time 6,9ms
� 4 CAN, 8 SPI interrupts, 7 preemptions by 1ms task

� SymTA/S Analysis of 10ms task: Worst-case response time 9ms
� 10 CAN, 8 SPI interrupts, 9 preemptions by 1ms task, blocking

10ms task

10ms task

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Example 2: High-Performance ECU

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

3000 3500 4000 4500 5000 5500 6000

Engine Speed (RPM)

EC
U

 L
oa

d
(%

)

Total
Task Expansion
other tasks and INTs
synch tasks and INTs

Powertrain domain: Engine Control
� Verifying Performance and Timing for all engine speeds (RPM)
� Avoiding Deadline Overruns (would lead to ECU reset)
� Optimizing ECU performance and cost for different markets

Requirements

System Design System Test

Requirements Test

Network Design

ECU Design ECU Test

Network Test

Network Performance
Design

Network Performance
Design

ECU Performance
Verification

ECU Performance
Verification

Network Performance
Verification

Network Performance
Verification

System Performance
Design

System Performance
Design

System Performance
Verification

System Performance
Verification

ECU Performance
Design

ECU Performance
Design

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

3600

3700

3800

3900

4000

4100

4200

4300

4400

3000 3500 4000 4500 5000 5500 6000
EngineSpeed (RPM)

M
ax

im
um

 R
es

po
ns

e
Ti

m
e

(u
s)

BG Task Response
20ms_Task Response

Detecting "Anomalies"

Additional preemption by
RPM-synchronous tasks

(increases task interference)

Task cut-off
(reduces core
execution time)

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Example 3: Bus Configuration

Bus / Network : CAN-Protocol
� Balancing Periodic load
� Calculating limits for dynamic load
� Configuring existing networks to handle additional traffic

Source: EDAG

Absolute Response Times for Different Dynamic Load Situations

0

100

200

300

400

500

600

700

800

900

1000

1100

0 20 40 60 80 100 120 140 160 180 200

messages (order by priority)

re
sp

on
se

 ti
m

es
 [m

s]

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0% (only
periodic)"

Requirements

System Design System Test

Requirements Test

Network Design

ECU Design ECU Test

Network Test

Network Performance
Design

Network Performance
Design

ECU Performance
Verification

ECU Performance
Verification

Network Performance
Verification

Network Performance
Verification

System Performance
Design

System Performance
Design

System Performance
Verification

System Performance
Verification

ECU Performance
Design

ECU Performance
Design

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Focus: Reliable CAN Bus Configuration

� Optimized COM-Task Offsets
� Optionally: Optimized signal to frame mapping, CAN IDs
� Result: Reliable and optimized bus extension

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30
Message Number (ordered by priority)

R
es

po
ns

e
Ti

m
e

(m
s)

Worst Case

current system

optimal configuration

ut
ili

za
tio

n
ga

in
re

se
rv

e

overload management time-out

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30
Message Number (ordered by priority)

R
es

po
ns

e
Ti

m
e

(m
s)

Worst Case

current system

optimal configuration

ut
ili

za
tio

n
ga

in
re

se
rv

e

overload management time-out

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Example 4: Network Extension

Bus / Network : Gated Network
� Verifying end-to-end Timing
� Gateway dimensioning
� Optimizing synchronization to reduce end-to-end latency

Requirements

System Design System Test

Requirements Test

Network Design

ECU Design ECU Test

Network Test

Network Performance
Design

Network Performance
Design

ECU Performance
Verification

ECU Performance
Verification

Network Performance
Verification

Network Performance
Verification

System Performance
Design

System Performance
Design

System Performance
Verification

System Performance
Verification

ECU Performance
Design

ECU Performance
Design

Source � ECU1 � CAN � Gateway � FlexRay � ECU2 � Sink

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Focus: End-to-end Timing Analysis

e.g.: Source � ECU1 � CAN � Gateway � FlexRay � ECU2 � Sink

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Example 5: System Extension

Automotive System: Many ECUs and Protocols
� Complete System-level analysis of alternative configurations
� Migration to FlexRay and AUTOSAR
� Timing contracts between Integrator and Supplier

HS CAN

ECU01
ECU03

ECU02

ECU04

ECU05

direct serial

LS CAN
ECU11

ECU13

ECU12

ECU14

Gateway

NEW

NEWNEWFlexRay
ECU32

ECU31

NEW

Requirements

System Design System Test

Requirements Test

Network Design

ECU Design ECU Test

Network Test

Network Performance
Design

Network Performance
Design

ECU Performance
Verification

ECU Performance
Verification

Network Performance
Verification

Network Performance
Verification

System Performance
Design

System Performance
Design

System Performance
Verification

System Performance
Verification

ECU Performance
Design

ECU Performance
Design

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Timing Challenges in
FlexRay and AUTOSAR

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

FlexRay : A challenge for ECU integration

� FlexRay does not solve timing problems in general
� A good FlexRay design requires timing effects to be understood
� Sync / async ECU integration can make a huge difference

simple, static
FlexRay schedule

complex, dynamic
system schedule

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

LOST OK
double
transmission

OSEK (preemptive OS) synchronized with FlexRay

OK OK OK OK

delayed delayed delayed

� ideal situation: all OK

� typical situation: some ok, some double, some lost

� no loss but all delayed by one full FlexRay cycle

„ok window“, given by FlexRay
schedule

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

full FlexRay cycle (more when using mux)

OSEK ECU Asynchronous to FlexRay

� clock skew effects � large send & receive signal jitters

� bad synchronization � bad responsiveness

„ok window“, given by
FlexRay schedule

2 FlexRay cycles (more when using mux)

LOST

DOUBLE

DOUBLE

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Vision

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Sensor SWCSens B
SW R
TE

B
SW B
SW R
TE Actuator SWCSWC1 R
TE

R
TEI/O CAN

B
SWR
TE ActI/O

end-to-end timing chain

HOPs

AUTOSAR System Timing Aspects

INTER-ECU

communication

INTRA-ECU

communication

Actuator
SWCSWC-1

BSW
RTE

BSW
RTE

Sensor

Sensor
SWC

ActuatorSignal Path / Data Flow

timing chain segments

ActuatorActuator
SWCSWC1Sensor Sensor

SWC

ECU1 ECU2

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

AUTOSAR SW-C vs. "Runnables" and Tasks

� SW architecture:
2 SW components,
6 runnables

� Implementation: 3 Tasks

� Schedule and timing dependencies

ECU 1
SW-C2

runnableY

runnableX

runnableZ

BSW
RTE

SW-C 1
runnableA

runnableB

runnableC

runnableArunnableY runnableBrunnableCrunnableX runnableZ

O
S

O
S

O
S

O
S Task 4

O
S

SW-C 1
runnableA

runnableB

runnableC

SW-C 2

runnableY

runnableX

runnableZ

Performance Analysis and Optimisation –
industrial applications in automotive design
© Symtavision GmbH, Germany

Ongoing work

� INTEREST – FlexRay Methodology
http://www.interest-strep.eu/index.html

� TIMMO – AUTOSAR Methodology
https://www.timmo.org/

TIMMO is a project in the framework of the ITEA 2, EUREKA
cluster programme �! 3674. The work of the German partners is
funded by the German Ministry for Education and Research
(BMBF) under the funding IDs 01IS07002(B-I,K). The
responsibility for the content rests with the authors.

INTEREST is a project funded by the Sixth European Framework
Programme (FP6) - including the Information Society
Technologies (IST) priority. The responsibility for the content rests
with the authors.

Time is Money – Real-Time is a lot of Money
System Optimization for BMW-Active
Front-Steering

Hans Sarnowski
EF-611

DATE’08 Conference, 10. March 2008, Munich

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 28

Steering with Pleasure.
Agenda.

� Introduction

� System overview Active Front-Steering

� Application of timing tools for Active Front-
Steering design

� Evaluation of results

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 29

Introduction.
Design goals.

� Conventional steering systems have no further potential as the
diversification/variation of hand moments (Servotronic) is largely
exhausted.

� Driving performance is increasing continuously. A rigid steering system
can hardly provide both stability and handling.

� Stability control through breaking of individual wheels is experienced as
more and more uncomfortable.

Superposition steering offers both the advantages of conventional steering
systems and the functions of steer-by-wire-systems.

� Pure by-wire-systems are (still?) too complex, too costly and show a
synthetic steering sensation. Their market acceptance is questionable.

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 30

System Overview
Components of Active Front-Steering

Components of Active
Front-Steering:

� Rack steering
� E-Motor

� Superposition gearbox
� Steering column
� Control unit
� Sensor cluster
� Power steering pump,

oil tank
� Tubes, cooler

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 31

Function Overview
Steering Functions

� The steering ratio depends on
steering wheel angle and
vehicle velocity

� Adjusting objective target-
settings according to the
driving dynamics of the
vehicle

� Coupling with Servotronic
(Steering transmission and
the level of steering power
are adjusted to each other)

Superposition steering offers both the advantages of conventional
steering systems with the functions of steer-by-wire-systems.

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 32

Mechanics.
Mechanical Design.

Substructure of steering
gear

Superposition gear

Electric motor
Steering
valve

Sum angle
sensor

Motor
position
sensor

View from top
View from left

Lock

Driving direction
(Installation position in

the car)

Quelle: ZFLS GmbH

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 33

Function Overview
Integration of Active Front-Steering - DSC.

Motion variables of the vehicle

Active-
Front-
Steering

Vehicle

Steering wheel angle

+

+

Superposition
gear

DSC

Sum steering angle

Braking
interventions

GMK

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 34

Goal Conflict
Use of a considerably cheaper, simpler and
slower processor hardware at a higher
functionality

Measures:

� Constant control with measuring and visualization tools
traceGURU (Gliwa GmbH)

� Use of Scheduling Analysis tool SymTA/S
(Symtavision)

� Setup of networked “hardware in the Loop” test rig with
“worst-case” configuration

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 35

Development Process
Tool Chain

� Analysis / definition of
functional goals

� Design of a function- /
controller-structure

Matlab/Simulink

� HIL and Worst-Case HIL

� Confirmation at test drive

HIL test rig

� Implementation on targetASCET-SD TIP, ERCOSEK

� Regular measuring of SW

� Calculation of worst-case
timing

� Optimization of SW

traceGURU, SymTA/S,

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 36

Development
Use of timing tools

Timing tools were used for the following actions:

� Processor selection

� Execution time measurements for Integration stages (releases)

� Design of timing layout

� Relaxation of run time situation

� Measurement of individual functions

� Optimization of run times

� Detection of timing problems

� Verification of timing corner-cases

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 37

Use of Timing Tools
Debugging of timing problems I

Use of traceGURU as debugging tool for specific timing problems

Example: A significant deviation from the given 10 ms period occurs occasionally
for CAN messages

Cause: timers were reset
during “application mode
changes”, so that the
required 10 ms pattern was
violated

Solution: Adjusting the
delays of periodic tasks
which operate the CAN
driver

Change of application
mode

10ms = ok

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 38

Use of Timing Tools
Debugging of timing problems II

Example: Infrequent error occurring at the calculation of the delay angle

Cause: Coincidence of a series of time-critical interrupts and application
mode change. This causes a longer disabling of interrupts at a particularly
short(!) run time of the 10 ms task.

Solution : A modified
timing layout and
deterministic switch of
the application mode,
this provides that the
interrupts cannot
coincide with the lock.

Previous
application mode

New
appli-
cation
mode

Interrupt lock

Time-critical interrupts

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 39

Comparison of Tracing and Scheduling Analysis

� Measurement: Response time 6.9ms
4 CAN, 8 SPI interrupts, 7 preemptions by 1ms task

� Worst-Case Analysis with SymTA/S: Response time 9ms
10 CAN, 8 SPI Interrupts, 9 preemptions by 1ms task, blocking

safeguard

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 40

Optimization:
Delayed task activation

Response time 5ms Task
Previous: 1.608 ms
New: 1.146 ms

Use of SymTA/S for delay optimization

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 41

Use of timing tools
Processor selection

Goal:

Cost reduction at higher functionality
Situation: MPC Processor family is set, but which derivative to
choose?
- a derivative providing internal flash (as used in the previous
project) or
- a derivative without internal flash (slower but lower-priced).

After comprehensive delay analyses (traceGURU/delayGURU*,
SymTA/S) and an estimation of future functionality the lower-priced
alternative without internal flash was selected.

With hindsight the right decision was made: the processor load of
the meanwhile completed series software just differs insignificantly
from the prediction.
*delayGURU: targeted and run time scalable (can be automated if required)
delay of the application

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 42

Safety requirements
Understanding the system
Predictable, time-stable software behavior

Similar to the software function design (“what is happening?”),
the timing behavior is to be defined precisely (“when does it
happen?”)

Conclusion: The graphic display showing the execution of
tasks, processes, interrupts and arbitrary pieces of code
provides completely new insights into the software.

„You really get to know your system and this enables you to
discover runtime errors in a fraction of time.”

Time is Money – Real-
Time is a lot of Money
EF-611
Hans Sarnowski
DATE’08 Conference,
10. March 2008,
Munich
Page 43

Summary

� Strengths of Tracing
� Visualization enables a fast understanding of the system
� Debugging of special, clearly identifiable timing problems
� Easily connectable to a real ECU and real buses
� Fast and efficient input of timing data

� Strengths of Scheduling Analysis
� Safeguarding against hard-to-find worst-cases
� Analysis of end-to-end timing
� Fast optimization of the system configuration
� Architecture exploration already in early design stages

� The combination enables a fast and effective development.

Dataflow analysis for predictable
multiprocessor design

Marco Bekooij

2

Outline

Context
– Stream processing applications
– Application characteristics
– Architecture characteristics
– Design requirements

Dataflow analysis techniques
– Latency-rate characterization of schedulers
– Cyclic dependencies between tasks
– Single rate dataflow analysis

Summary

3

Application model

use-case

input data
stream

task

use-case

SRT video job

task

input data
stream output stream

to display

FRT audio job

task

task output stream
to speakers

task

Jobs are composed of tasks

Simultaneously running jobs together form use-cases

Jobs often have real-time requirements
– Firm (FRT) if deadline misses are highly undesirable: steep quality

degradation
– Soft (SRT) if occasional deadline misses are tolerable

4

In-car infotainment use-case

use-case

use-case

ADC

FRT digital radio job

PDC CFE

f1

VIT CBE SRC APP DAC

f2

FRT source decoding job

SRC APP DAC

f3

MP3BR

Observations:
– Reactive system because stream from transmitter cannot be slowed down
– Firm real-time jobs because deadline misses are highly undesirable but not

catastrophic
– Both streams are equally important
– Throughput constraints dominate latency constraints

5

Architecture evolution

• Statically configured connections + communication with addresses
• Processors write in destination memory
• On-chip memories preferably small (<256kByte)

Tile Tile

DSP

mem Arb

NI

DSP

mem

NI

Arb

ARM

mem

NI

Arb

Tile

Æthereal NoC

FPGA demo [A. Hansson, University Booth, DATE 2008]

[A. Moonen et. al., GSPx2005]

6

Car-radio IC of NXP

Digital In Out (DIO) Switch

Audio
DAC 4x

Cordic FIR
Ext

SPDIF-inPCM I/fSRC
Audio

ADC 4x

Host
IIS-in 2x
IIS-out 2x

IF –IN
1x

Ext
IIS-in 3x

Host/ext
IIS-out 1x

Keyed
AGC 1x

Radio 8*fs
In + out

Cordic

DSP
EPICS

MEM

ITCAHB if ITCAHB if ITCAHB if ITCAHB if

Controller
ARM

MEM

Inter Tile Communication (ITC)

Multi-layer AHB bus (3 layer)

VPB
Domain 0

VPB
Domain 1

VPB
Domain 2

MEM MEM MEM MEM MEMDMA SPI
CD

Block
Dec.

AHB2VPB AHB2VPB AHB2VPB

DSP
EPICS

MEM

DSP
EPICS

MEM

DSP
EPICS

MEM

ARM based subsystem

Tile 0 Tile 1 Tile 2 Tile 3

Accelerators Peripherals

[A. Moonen et. al., GSPx2005]

7

Architecture evolution

NoC

• Statically configured connections + communication with addresses
• Large external memory is needed for digital radio channel decoders

Use of WCET of the tasks is not cost effective!

DSP

mem Arb

NI NI

$

I/O

NI

External
SDRAM

NI

CA

ctrl

μP

[M. Bekooij et. al.: Bits & Chips 2007]

8

Dataflow analysis

Dataflow analysis

task graph with
WCET of the tasks

multiprocessor
instance

throughput and
latency constraint

scheduler settings and
communication buffer capacities

Guarantee: no deadline misses for all possible input streams

9

Estimated worst-case execution time (EWCET)
of tasks

t(s)

WCETEWCET0

EWCET= measured upper-bound for the set of test streams
• requires knowledge input data to obtain a tight conservative WCET
• caches and external SDRAM ⇒ large difference average and worst-case

Design requirement:
• guarantee that there are no deadline misses for the set of test streams

• impractical to do better!

10

Dataflow analysis for firm real-time jobs

Dataflow analysis

task graph with
EWCET of the tasks

multiprocessor
instance

throughput and
latency constraint

scheduler settings and
communication buffer capacities

Guarantee: no deadline misses for the set of test streams

11

Audio echo cancellation example

ARM7

DSP1

DSP2

speaker

• multiple jobs and streams
• real-time constraints: throughput + latency
• PCM stream has external clock
• starting & stopping streams without clicks
• EWCET of MP3 task

BT

max latency 30 ms

mic.

BR MP3 SRC APP DAC

ADC

44.1kHz

8 kHz

SRC

AECOUT

8 kHz

SRC
PCM

12

Overload behavior

Execution time (ET) > EWCET ⇒ deadline misses

Deadline misses:

Under-run output buffer (OUTB) or overflow input buffer (INB)

Prevent internal buffer (IB) overflow because difficult to handle by tasks

Design requirements:

Overflow and under-run should not occur for the set of test-streams

Compensation for ET>EWCET should be supported

Worst-case temporal behavior other jobs should not be affected

Design and verify each job in isolation

Use only WCETs in case of analogue radio jobs

T1 T2

EWCET EWCET

ADC DAC

f1 f2

INB OUTB
IB

13

Advanced task models are needed in the
audio echo cancellation application

1 1
Single rate

80 80

<1,3> <0,2>

Multi rate

Cyclo static

[1,..,1024] 576
Variable rate

APP

AEC

SRC

MP3

14

Recent extensions dataflow analysis

1. Express effects arbitration in dataflow model

2. Throughput analysis techniques with a low computational complexity

3. Interfacing with environment

4. Latency constraints

5. Data-dependent I/O

15

Requirement dataflow analysis: latency-rate
(LR) server characterization of arbiters

t[s]

service

θ

ρ

All starvation free arbiters can be characterized as an LR-server
• Latency θ
• Rate ρ

16

Static priority preemptive (SPP)

• High priority
• Low priority

Unknown minimum interval between events ⇒ not an LR- server
• not starvation free; high priority task 1 can prevent execution task 2

T1

T2

Processor with SPP

Events for T1

Events for T2

17

Static priority preemptive with traffic regulator

• High priority
• Low priority

Known minimum time between events + known WCET ⇒ LR- server
• bounded latency θ and minimum rate ρ

TR
Events for T1

TR
Events for T2

T1

T2

Processor with SPP

18

Starvation free arbitration examples

Given known WCET
– Round-robin, weighted round-robin
– With traffic shapers

• Static priority preemptive (SPP)

• EDF

Does not require known WCET or minimum distance between events
– Time division multiplex (TDM)
– Constant bandwidth server (CBS)
– Polling server

19

Characteristics traffic regulation

Events for T1

R
Events for T2

T1

T2

Processor with SPP

• High priority
• Low priority

Traffic regulation does not maximize progress and slack of tasks

► no events for T1 ⇒ no earlier starts of T2

► ETx<WCETx ⇒ no earlier starts of Tx

R

20

Characteristics service regulation

Feedback loop used to maximize progress & bound interference
• no events for T1 ⇒ earlier starts of T2
• ETx<WCETx ⇒ earlier starts of Tx
• feedback loop is often implicit TDM, CBS

R
Events task 1

processor

R
Events task 2

T1

T2

21

Backpressure

T1 buffer T2

1. Functional determinism ⇒ data may not be lost ⇒ buffer may not overflow
2. WCET of T2 is not known (only EWCET is known) ⇒ unknown consumption rate

⇒ T1 checks for space
3. Check for space ⇒ backpressure & cyclic dependency

v1 v2
Dataflow
model

22

Cyclic dependencies

Cyclic dependencies must be taken into account:
– Functional cyclic dependencies (e.g. previous frame in video decoder)
– Maximum buffer capacities can be a constraint (e.g. buffers in interface of

the communication network)
– Consumption or production rate of a task can be data-dependent

Trade-off buffer capacity and budget:
– Higher processor cycle budget for a task ⇒ smaller buffers

Tightness of the analysis:
– Checking space bounds jitter ⇒ smaller buffers

Requires analysis techniques with a low computational complexity
– Analysis of the complete job is done at once

23

Variable consumption rate

BR MP3 SRC DAC

44.1 kHz

480 441

576
3 n=[1..100] 1

Digital to analog converter (DAC) determines throughput constraint

MP3 decoder task consumes variable amount of data

Block-reader (BR) task must “know” consumption speed MP3 task
– Implies cyclic dependency that affects the temporal behavior!

[M. Wiggers et.al.,DATE 2008]

24

Dataflow analysis

25

Elements of a single-rate dataflow graph

v1 Nodes denote actors

Edges denote unbounded queues

Dots denote tokens

Firing rule = enabling condition

Response time (RT) = interval between enabling and finish

Characteristics of a dataflow actor

An actor:

can represent a quantum of work

has a firing rule (e.g. a token on each input)

is enabled if the firing condition is satisfied

is stateless

consumes input tokens when actor starts

produces output tokens in zero time when actor finishes its execution

v1

actor enabled t(s)

RT

produce output tokens
actor

consume input tokens

Auto-concurrency (overlapping execution)

v1

next execution cannot start before previous has finished

tokens produced at
t=0, t=10

v1

multiple executions happen simultaneously

two tokens produced at
t=0

Assume two tokens arrive at t=0

WCRT=10

WCRT=10

Unbounded queue

v1v0

Edge represents a queue with unbounded capacity

Bounded FIFO model

v1v0

Number of tokens on the cycle equals the FIFO capacity

space

data

T1T0

cap=2

30

Monotonicity

Monotonic temporal behavior:
– An earlier production of a token cannot result in a later start of an actor

during self-timed execution

Consequence:
– Sufficient to show that a schedule exist that satisfies the throughput and

latency constraints given worst-case response times
– Smaller response time result in earlier arrival tokens

• Scheduling anomalies do not occur during self-timed execution of a dataflow
model

Requires sequential firing rules

v1v0

Earlier arrival token
results in earlier start
v1 and v0

Tasks versus dataflow actors

task finishes

Actor

produce the output
tokens atomically

dataflow
model

Tasktask graph

task enabled

t(s)
0

RT

actor enabled

t(s)
0

RT

task starts

Response time

Response Time (RT)

Execution Time (ET)

ET

RT

enabled
started

finished

start finish

33

t

TDM-period

slice

T1(i) T1(i+1)

Time Division Multiplex (TDM)

processor is busy-waiting (non-workconserving)

fixed slice at fixed position

34

Throughput analysis

Task-graph T1 T3

EWCET=1ms

T2

EWCET=1ms

EWCET=1ms

Assume:
• T1 and T2 share one processor, each task get a TDM-slice of 4 ms every 8 ms
• Infinite buffer capacity

What is the minimum throughput?

35

Dataflow model after latency-rate characterization

T1Task-graph

Dataflow model
(including effects arbitration)

[M. Wiggers et.al., Scopes 2006]

v1’ v1’’

component
θ 1/ρ

EWCET

36

Latency-rate characterization

• Latency θ=3ms
• Rate ρ=4/8=0.5 executions/ms

t[ms]

tokens

∼ρ=0.5

1 2 θ =3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

12 13 14 15 16

37

Throughput analysis

Dataflow model

Maximum cycle mean (MCM) =
maxc∈Cg (∑v on c EWCRT(v))/ tokens(c) = 2/1 = 2 ms/execution

TDM: ρ=0.5 execution/ms, θ=3 ms

∞

3

v’3 v’’3v’1

2 0∞

v’2

3 2

∞

1

T1 T3

EWCET=1ms

T2

EWCET=1ms

EWCET=1mstask-graph

v”2

v’’1

38

Throughput analysis

Dataflow model

3

Maximum cycle mean (MCM) =
maxc∈Cg (∑v on c EWCRT(v))/ tokens(c) = 2/1 = 2 ms/execution

v’3v’1 v’3

2 0 1

v’2 v”2

3 2

v’’1

39

Buffer capacity computation

Dataflow model
3

Maximum cycle mean (MCM) =
maxc∈Cg (∑v on c EWCRT(v))/ tokens(c) = 2/1 = 2 ms/execution

v’3

TDM: ρ=0.5 execution/ms, θ=3 ms

v’3v’’1v’1

2 0
1

6

3

v’2

3 2

5
v”2

40

Summary

Introduced dataflow analysis techniques to compute buffer capacities
and scheduler settings given throughput and latency constraints

Dataflow analysis techniques are applicable if starvation free arbiters
are applied

– SPP is not starvation free

Service regulation: bound interference + reduce miss-probability
– Compared to traffic regulation
– Space must be available before task can start ⇒ cyclic dependencies

Sufficient to show at design-time that a schedule exist
– Due to monotonic temporal behavior of self-timed dataflow graphs

Multiprocessor architecture includes processors with caches
– Use of WCETs is not cost-effective, use EWCET instead

41

References
B. Akesson, K. Goossens, and M. Ringhofer. Predator: A Predictable SDRAM Memory Controller.
In Proc. Int’l Conference on Hardware-Software Codesign and System Synthesis (CODES+ISSS),
2007.

M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and Composable Multiprocessor
System Design: A Constructive Approach, In Proc. Bits&Chips Symposium on Embedded Systems
and Software, October 2007, Eindhoven, The Netherlands.

M. Bekooij, M.Wiggers, J. van Meerbergen, Efficient Buffer Capacity and Scheduler Setting
Computation for Soft Real-Time Stream Processing Applications, In Proc. Int’l Workshop on
Software and Compilers for Embedded Systems (SCOPES), April 2007.

A. Kumar, A. Hansson, J. Huisken and H. Corporaal. An FPGA Design Flow for Reconfigurable
Network-Based Multi-Processor Systems on Chip. In Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), April 2007.

A. Moonen et.al. A Multi-Core Architecture for In-Car Digital Entertainment, GSPX publication
24-27 October 2005: In Proc. Int’l Conference on Global Signal Processing (GSPx), October
2005.

O. Moreira and M. Bekooij. Self-Timed Scheduling Analysis for Real-Time Applications, In
EURASIP Journal on Advances in Signal Processing, 2007

42

References
O. Moreira and M. Bekooij. Scheduling Multiple Independent Hard Real-Time Jobs on a
Heterogeneous Multiprocessor, In Proc. Int’l Conference on Embedded Software (EMSOFT),
September 2007

S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. Marcel Dekker Inc., 2000

D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model for Analysis of Traffic
Scheduling Algorithms. In IEEE/ACM Transactions on Networking, 6(5):611–624, October 1998.

S. Stuijk, T. Basten, M.C.W. Geilen and H. Corporaal. Multiprocessor Resource Allocation for
Throughput-Constrained Synchronous Dataflow Graphs, In Proc. Design Automation Conference
(DAC), June 2007.

M. Wiggers, M. Bekooij, and G. Smit. Modelling Run-Time Arbitration by Latency-Rate Servers
in Data Flow Graphs. In Proc. Int’l Workshop on Software and Compilers for Embedded Systems
(SCOPES), April 2007.

M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient Computation of Buffer Capacities for
Cyclo-Static Real-Time Systems with Back-Pressure. In Proc. IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2007.

Formal Methods in System and MpSoC
Performance Analysis and Optimization

-- Combining State-based and Functional Models --

Samarjit Chakraborty
National University of Singapore

2DATE 2008, Munich

Performance Analysis Problem

� Tasks have different activation rates and execution demands
� Each computation/communication element has a different

scheduling/arbitration policy

PE

Communication Bus

PE PE

C
om

m
. C

on
tr

ol
le

r

Round Robin Fixed Priority EDF

In
pu

t E
ve

nt
s

Output Events
� Timing Properties?
� End-to-end delay?
� Buffer requirements?

3DATE 2008, Munich

Performance Analysis Challenges

� Heterogeneous processing elements
� Different scheduling policies (e.g. EDF, Rate

Monotonic, Round Robin, etc.)
� Wide variation in task execution times
� Different bus protocols (e.g. TDMA, FCFS etc.)
� Irregular event arrival patterns

4DATE 2008, Munich

Solution: Use Simulation

� SimpleScalar (www.simplescalar.com) Instruction
Set Simulator and SystemC (www.systemc.org) for
transaction-level modeling and simulation

� Disadvantages
� Excessive running times
� Insufficient corner case coverage
� No formal guarantees
� Difficulty in integration

5DATE 2008, Munich

Solution: Analytical Methods

� Standard event models [Richter et al. 2002, Yi. et al. 2004, etc.]

� Periodic, sporadic events
� Using classical scheduling theory from the real-time

systems literature

� Real-time Calculus [Chakraborty, Kunzli and Thiele 2003]

� Models general event streams and resource availability
� Bursty arrival patterns, irregular resource availability

� Represents arrival/service patterns as functions
� Uses min/max-plus algebraic framework for analysis

6DATE 2008, Munich

Solution: Analytical Methods (cont.)

� Event Count Automata
[Chakraborty, Phan and Thiagarajan 2005]

� Represents event streams and resource availability as
automata

� Accepts integer sequences, which represent all possible
permissible arrival/service patterns

� Uses automata verification techniques (e.g. model
checking) for analysis

7DATE 2008, Munich

Different Possibilities: Comparison

Methods Standard Event
Models
(SEM)

Real-time
Calculus
(RTC)

Event Count
Automata

(ECA)

Design scope � � � � � �

Efficiency � � � � � � �

Accuracy � � � � � �

Design scope � � � � � �

Efficiency � � � � � � �

Criteria

A modeling technique that is:
� Expressive enough
� Efficiently analyzable ? Combinations of

two or more models

8DATE 2008, Munich

Integrating Multiple Performance Models

� Simulation + Real-time Calculus [Kunzli et al. DATE’06]

� SymTA/S + Real-time Calculus [Kunzli et al. CODES +
ISSS’07]

� Synchronous Data Flow graphs + Standard Event
Models [Schliecker et al. DATE’07]

� Provides the required amount of modeling power
� Without incurring excessive analysis complexity

9DATE 2008, Munich

This Talk

� Composing a functional and state-based model
� Real-time Calculus (RTC): efficient
� Event Count Automata (ECA): expressive

� Technical Challenge: An interfacing technique for
composing RTC and ECA
� RTC: functional, requires algebraic techniques for analysis
� ECA: state-based, requires more expensive state space

exploration techniques
� Advantages

� Formal performance guarantees
� Expressive, but analysis is not expensive

10DATE 2008, Munich

ECA-RTC Interfacing

Real-time
Calculus

(RTC)

Real-time
Calculus

(RTC)

Event Count Automata
(ECA)

11DATE 2008, Munich

System Modeling

� Both RTC and ECA rely on a count-based
abstraction for modeling workload and service
� How many events can arrive over any time window of

length �?
� How many events may be processed with any time window

of length �?
� RTC models such information as functions and uses

algebraic techniques for analyzing them
� ECA models such information as automata and relies

on state-space exploration techniques

12DATE 2008, Munich

Execution
Requirements

Load on
processor/bus

RTC-Based Modeling: Overview

Processor
Task

Input
Data/Events

Service
Model

Concrete
Instance
Abstract
Representation

Processing
Model

Processor/Bus
bandwidth

Scheduling/
arbitration

policy

13DATE 2008, Munich

t [ms]

eventsArrival Pattern

maximum/minimum
number of events in any
interval of length 2.5 ms

2.5

Arrival Curves [�l, �u]
events �u

� [ms]

�l

2.5

number of events in
t=[0 .. 2.5] ms

slide window
and record

max and min

�l(�) · R(t+�) – R(t) · �u(�), � t, � � 0

Event Model – Modeling Execution Requirements

t

�

14DATE 2008, Munich

� Max/Min number of events arriving over different time
interval lengths

maximum/minimum
number of events in any

interval of length 4

number of events in
the time interval [0,4]

�l(�) · R(t+�) – R(�) · �u(�), � t, � � 0

Event Model – Modeling Execution Requirements

15DATE 2008, Munich

Event Model - Examples

periodic periodic w/ jitter

periodic w/ burst complex

Service
Model

Event
Model

Processing
Model

16DATE 2008, Munich

Service Model – Modeling Resource Availability

t [ms]

availabilityResource Availability

maximum/minimum
available service in any
interval of length 2.5 ms

available service
in t=[0 .. 2.5] ms

2.5

service
�u

Service Curves [�l, �u]

� [ms]

�l

2.5

�l(�) · S(t+�) – S(t) · �u(�), � t,� � 0 t

�

17DATE 2008, Munich

maximum/minimum
events processed in any

interval of length 2

events processed in
the time interval [0,2]

],[ulC ���

�l(�) · S(t+�) – S(t) · �u(�), � t,� � 0

Service Model – Modeling Resource Availability

18DATE 2008, Munich

Service Model - Examples
full resource bounded delay

TDMA resource periodic resource

Service
Model

Event
Model

Processing
Model

19DATE 2008, Munich

Processing Model

HW/SW Components

Model

�
�

�’

�’

Tasks mapped onto the
processor and the
scheduling policy

processing
model

t

�

Service
Model

Event
Model

Processing
Model

20DATE 2008, Munich

remaining supply

processed events

Processing Model
Service
Model

Event
Model

Processing
Model

input events

available resource supply
Abstract representations of:

21DATE 2008, Munich

Processing Model
Service
Model

Event
Model

Processing
Model

� Computation of
� Timing properties of the processed events
� Bounds on the remaining resource

22DATE 2008, Munich

task task

task comm.
task

comm.
task shaper

Compositional Analysis

CPU BUS DSP

How to model
shared service?

RM TDMA

Scheduling!

23DATE 2008, Munich

Modeling Schedulers

FP

Using Scheduling Networks

24DATE 2008, Munich

Compositional Analysis

PE1

Modeling
dependency

PE2

Compositional Schedulability/Timing Analysis
� E.g. How much does the jitter increase?

25DATE 2008, Munich

Compositional Analysis – Complete Example

CPU BUS DSP

RM TDMA

task task

task comm.
task

comm.
task

shaper

TDMA

26DATE 2008, Munich

Analysis: Delay and Backlog

delay dmax

backlog bmax

�l

�u
[�l, �u]

[�l, �u]

[�l’, �u’]

[�l’, �u’]

task

� Max/Min buffer fill level
� Max/Min delay
� Utilization
� ….

27DATE 2008, Munich

� The service offered by PE3 depends on the state of
the buffer BHR
� Cannot be modeled easily in a functional setting

But, We Need to Model State!
Blocking-write at BHR

Processing two video streams in a PiP application

28DATE 2008, Munich

But, We Need to Model State

� We would like to retain the count-based abstraction to specify
arrival and service

� But at the same time be able to model systems where the
arrival and service depend on the state of the system

� Recently timed automata has been used as a generalization of
traditional real-time event models

� But timed automata explicitly records/specifies timing
information. Analysis/verification might be expensive …

� Exact arrival times of data items is not relevant. Rather the
number of items that can arrive within a certain time interval is
of relevance to us

29DATE 2008, Munich

Event Count Automata (ECA)

� Event stream /resource = ECA

� ECA = FSM + Count variables (CVs)
� Records the arrival patterns of a stream and

decides to accept or reject the stream

� CV: records number of events observed on a
stream over a time interval

30DATE 2008, Munich

Event Count Automata (ECA)

A = (S, sin, X, Inv, �, �, F)

S = set of states
sin is the initial state
X = set of count variables
Inv = function that assigns to

each state an invariant
constraint

� = rate function
� = transition relation
F = set of final states

State-based modeling of stream processing systems

31DATE 2008, Munich

Event Count Automata (ECA)
Arrival pattern =
3 2 2 3 2 2 2 3 2 4

Corresponding run of the
automaton =
(A, 0) � (A, 3) � (A, 5)
� (A, 7) � (A, 10)
� (B, 0) � (B, 2)
� (B, 4) � (B, 6)
� (A, 6) � (A, 9)
� (A, 11) � (C, 11)
� (C, 15)

32DATE 2008, Munich

ECA - Properties

� ECA describes arrival patterns of the form n1, n2, …, nk with ni
denoting the number of events arriving during the time [i-1, i)

� The dynamics of an ECA is captured by an associated
behavioral automata, whose states are configurations of the
form (s, V). s is a state of the ECA and V is a valuation of the
variables

� The basic theory of ECAs follows from the fact that the
associated behavioral automata can be quotiented into a finite
state automata which accepts the same set of sequences.
Arguments are similar to those used for constructing the
regional automata for a timed automata

33DATE 2008, Munich

ECA - Properties

� If L(A) is the language defined by an ECA A, then L(A) is
regular

� ECA-definable languages are closed under boolean operations
� It is possible to effectively determine if L(A) is empty

34DATE 2008, Munich
s2

1 2

3
5

#events

�

�u

7
9

3 40
arrival curve �u

x0 � 5 � x1 � 7 �

x2 � 9; x2 � 0

x3 � 5 � x0 � 7 �

x1 � 9; x1 � 0

x1 � 5 � x2 � 7 �

x3 � 9; x3 � 0

ECAs Representing Arrival & Service

[0, 3] [0, 3]

[0, 3] [0, 3]

x2 � 5 � x3 � 7 �

x0 � 9; x0 � 0

s0 s1

s3

ECA corresponding to �u

35DATE 2008, Munich

System Modeling using ECAs

input video
stream

Bb

VLD + IQ IDCT + MC

output
device

VLD: Variable Length Decoding IDCT: Inverse Discrete Cosine Transform
IQ: Inverse Quantization MC: Motion Compensation

�u(�) �l
1(�) �l

2(�) c(�)

ECA� ECA�1 ECA�2 ECAc

MPEG-2 video decoder mapped onto two processors
communicating via FIFO buffers

36DATE 2008, Munich

Networks of ECAs
� Each ECA is augmented with

� I/O buffers
� Update function: implements scheduling policy

A network of ECAs

streams buffers

processor
availability

37DATE 2008, Munich

Encoding ECAs as CPNs

ECA�

38DATE 2008, Munich

Networks of ECAs

39DATE 2008, Munich

Scheduling Multiple Streams

Complex schedulers can
now be easily specified

40DATE 2008, Munich

RTC vs. ECA

Real-time Calculus Event Count Automata

� Functional

� Cannot model state
information

� Efficient Analysis

� State-based

� Able to model state
information naturally

� Complexity increases as
the system grows

41DATE 2008, Munich

Integrating Performance Models

� RTC + ECA
� State-based components: ECA
� Non state-based components: RTC
� Using interfaces to connect RTC and ECA

components
� Technical Challenge

� RTC � ECA interface
� ECA � RTC interface

42DATE 2008, Munich

RTC+ECA

43DATE 2008, Munich

RTC�ECA Interface

� Converts an arrival curve v into an ECA A
� An arrival pattern satisfies v if and only if it is

accepted by A
� Finds a suitable set of count variables CV
� Necessary and sufficient conditions on CV under

which an arrival pattern satisfies v
� Appropriate resets of CV to capture all the time

intervals constrained by v

44DATE 2008, Munich

RTC to ECA

[0,4]

[0,4] [0,4]

x2�7 � x3�9
x3�0

x1�7 � x2�9
x2 � 0

x3�7 � x1�9
x1�0

� �upper(�)

1 4
2 7
3 9

x1, x2, x3 : count variables of the ECA

x1�4 �

x3�4 �

x2�4 �

A

BC

45DATE 2008, Munich

RTC to ECA

[0,4]

[0,4] [0,4]

x2�7 � x3�9
x3�0

x1�7 � x2�9
x2 � 0

x3�7 � x1�9
x1�0

� �upper(�)

1 4
2 7
3 9

x1�4 �

x3�4 �

x2�4 �

A

BC

46DATE 2008, Munich

RTC to ECA

[0,4]

[0,4] [0,4]

x2�7 � x3�9
x3�0

x1�7 � x2�9
x2 � 0

x3�7 � x1�9
x1�0

� �upper(�)

1 4
2 7
3 9

x1�4 �

x3�4 �

x2�4 �

A

BC

47DATE 2008, Munich

RTC to ECA

[0,4]

[0,4] [0,4]

x2�7 � x3�9
x3�0

x1�7 � x2�9
x2 � 0

x3�7 � x1�9
x1�0

� �upper(�)

1 4
2 7
3 9

x1�4 �

x3�4 �

x2�4 �

A

BC

48DATE 2008, Munich

RTC to ECA

[0,4]

[0,4] [0,4]

x2�7 � x3�9
x3�0

x1�7 � x2�9
x2 � 0

x3�7 � x1�9
x1�0

� �upper(�)

1 4
2 7
3 9

x1�4 �

x3�4 �

x2�4 �

A

BC

49DATE 2008, Munich

RTC to ECA

[0,4]

[0,4] [0,4]

x2�7 � x3�9
x3�0

x1�7 � x2�9
x2 � 0

x3�7 � x1�9
x1�0

� �upper(�)

1 4
2 7
3 9

x1�4 �

x3�4 �

x2�4 �

A

BC

50DATE 2008, Munich

ECA�RTC Interface

� Given an ECA component, construct the
output arrival and remaining service curves

� Idea
� Time interval : use different window sizes �
� For each �, compute �u(�) and �l(�)

� �u(�) and �l(�): max. and min. number of output events
observed in any interval of length �

� Using automata verification to compute the bounds

51DATE 2008, Munich

Experimental Evaluation

� Based on:
� Real-time Calculus Toolbox (for RTC)

� http://www.mpa.ethz.ch/Rtctoolbox
� Developed at ETH Zürich

� Symbolic Analysis Laboratory (for ECA)
� http://sal.csl.sri.com/
� Developed in collaborations of SRI, Stanford and

Berkeley

52DATE 2008, Munich

Exp 1: AND-task Activation

AND

Compute backlog

Combine 2 streams and process them

53DATE 2008, Munich

Exp 1: Backlog Results

over-estimation
resulting from

RTC-based model

54DATE 2008, Munich

Exp 1: Analysis Time

RTC

improvement in
analysis time

compared to only ECA

55DATE 2008, Munich

Exp 2: Picture-in-picture (PiP) Application

Blocking-write at BHR

B, b: buffers, PE: Processing Element

High res.
stream

Low res.
stream

56DATE 2008, Munich

High res.
stream

Low res.
stream

Modeling the PiP Application

RTC Components ECA Component

57DATE 2008, Munich

Exp 2: Backlog Results

ECA model gives tighter results

58DATE 2008, Munich

Exp 2: Analysis Times

… at the cost of significantly
higher analysis times

59DATE 2008, Munich

Experiments

� Experiment 1
� RTC is not accurate
� ECA is slow

� Experiment 2
� RTC cannot model
� ECA is slow

� Both experiments
� Our proposed method is more accurate than RTC and much

more efficient than ECA

60DATE 2008, Munich

Concluding Remarks

� MpSoCs are increasingly becoming complex and
heterogeneous
� Single modeling/analysis paradigm might no longer be

sufficient
� Using multiple specification formalisms has been studies

before (SPI: A System Model for Heterogeneously Specified
Embedded Systems, Ziegenbein et al., TVLSI 2002)

� However, the use of multiple performance models is
relatively new and is open for research

61DATE 2008, Munich

Acknowledgements

� Thanks are due to
� Linh T.X. Phan and P. S. Thiagarajan from the National

University of Singapore
� Lothar Thiele, Simon Kuenzli, Ernrsto Wandeler and

Alexander Maxiaguine from ETH Zurich

62DATE 2008, Munich

Selected References
� S. Künzli, F. Poletti, L. Benini, L. Thiele, Combining simulation and formal methods
for system-level performance analysis, Design Automation and Test in Europe (DATE),
2006

� S. Chakraborty, L. T. X. Phan, P. S. Thiagarajan, Event Count Automata: A State-
Based Model for Stream Processing Systems, IEEE Real-Time Systems Symposium
(RTSS), 2005

� S. Schliecker, S. Stein, R. Ernst, Performance analysis of complex systems by
integration of dataflow graphs and compositional performance analysis, Design
Automation and Test in Europe (DATE), 2007

� Simon Künzli, Arne Hamann, Rolf Ernst, Lothar Thiele, Combined Approach to
System Level Performance Analysis of Embedded Systems, Intl. Conf. on Hw/Sw Co-
design and System Synthesis (CODES+ISSS), 2007

� L. T. X Phan, S. Chakraborty, P. S. Thiagarajan, L. Thiele, Composing Functional
and State-based Models for Analyzing Heterogeneous Real-Time Systems, IEEE Real-
Time Systems Symposium (RTSS), 2007

