
Exercise 1:

a) Combinational Logic

In the first exercise, you will learn to design, simulate and verify a VHDL module with standard
text editors and the widely used tool ModelSim from Mentor Graphics.  As a first example, you
should develop a simple module which realises the logic function a∧b̄ . 

Port declaration:
● i_a : in std_logic
● i_b : in std_logic
● o_c : out std_logic

To write the VHDL-Code, you should use GNU emacs as your default editor. Emacs is a powerful
editor with a steep learning curve, but it is a powerful tool for the development of VHDL code
because of the many possibilities it offers. 

Once you have written  your  code,  you must  simulate  it  to  verify  its  functional  behaviour.  An
important point you must consider with hardware description languages is the difference between
simulatable and synthesizable code. Synthesizable code is the code you can implement in hardware.
This code is only a small subset of VHDL. You cannot e.g. synthesize timing-conditions like “wait
for 10ns”, since hardware such as a simple CMOS transistor does not understand any timings, but
can  only  switch  on  and  off.   Nevertheless,  VHDL  offers  such  statements,  along  with  other
constructs, to simplify the simulation your modules.  
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Figure 1: comb_logic



Now you can start ModelSim. In order to do this properly, you must setup the ModelSim program
as follows. Because of the files ModelSim creates, please be sure to start the program from the
correct directory.

$ setup-lm modelsim 10.1b

The following message appears:  

Setup for ModelTech ModelSim SE 10.1b ok. 
Info: Doc: <mold> 

           Start: <vsim> 

Now you can start ModelSim with: 

$ vsim &

There are several ways to work with ModelSim, two of them will be explained in this lab. The
obvious way to work with the tool is with the help of the GUI. Another more common approach in
EDA is the use of scripts written in TCL (Tool Command Language). 

We will start using ModelSim by setting up a project with the help of the Project Navigator inside
the GUI.
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Working with the Project Navigator

First of all, you must create a new project as shown in figure 2. 

In the next window, you have the possibility to add existing files to your project. Here you add your
*.vhd file combinational_logic.vhd, which now exists in your workspace, as you can see in the
figure below. In the next step, you will compile your module.

You can compile your module by right-clicking on it in your project workspace. If the syntax of
your module is correct, ModelSim will compile the module to the default library work. Otherwise,
ModelSim shows you syntactic mistakes and the lines where they occur. If necessay, you should
correct these mistakes step by step. 
After a successful compilation, you know that your module has a correct syntax, but you don't know
if it  works correctly.  To simulate  the function of your module,  you must add the  testbench,  a
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Figure 2: Creating a project

Figure 3:   Modules in
workspace

Figure 4:  Libraries in
workspace



special type of file that feeds your module with stimuli, to your project. 

After compiling your testbench to the work library, you must add a simulation configuration to the
project. Here you choose the testbench as design unit. 

By double-clicking on the simulation configuration, you start the simulation environment.

You can add waves to a Waveform, by right-clicking on the objects.  If you now press run-all, 
ModelSim generates a Waveform and you can see the signal sequence your module generates as 
shown in figure 7 . 

By analysing this Waveform, you can see that the output o_c is only set when i_a is high and i_b is
low, whis means that the function of this example is correct and satisfies the logic equation given. 
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Figure 5: Adding a simulation
configuration

Figure 6: Starting the simulation environment 

Figure 7: Example Waveform 



b) Developing and Testing a Simple Register

 
In the next example, you must describe the function of a register and simulate it with the help of a
provided script.  The register you have to develop is a single-bit register with synchronous reset and
should have the same function as a standard D Flip-Flop. This means that  the value of the input i_d
is assigned to the output o_q on each rising clock edge.

Port declaration:
● clk    : in std_logic
● reset : in std_logic
● i_d    : in std_logic
● o_q   : out std_logic
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Figure 8: reg



Working with scripts

As you have seen, working with the Project Navigator requires many manual steps inside of the
GUI  to  simulate  your  code.  This  can  quickly  become  tedious  for  larger  projects  with  many
design-iterations,  so  designers  often  try  to  automate  this  process  through  the  use  of  scripts.
ModelSim  offers  the  possibility  to  use  standard  TCL  or  a  simpler  ModelSim-specific
TCL-derivative. 
The provided script you have to use is built with a few, simple commands. Of course, ModelSim
offers much more possibilities to run a simulation with a script. For further information, please see
the ModelSim Quick Guide on the lab's homepage. 

# vlib creates library
vlib work

# vcom compiles your VHDL-modules (use vlog for Verilog-Code)
# regard hierarchy of modules, compile order is down to top
# if not declared in another way, modules are compiled to the 
# default library work
vcom reg.vhd 
vcom reg_tb.vhd 

# start simulator 
vsim -novopt reg_tb 

# add wave adds wave to waveform
# hint: you can also add the waveforms by hand, save the 
# waveform file and start the waveform file with simulation  
# script (do waveform.do)   
add wave sim:/reg_tb/clk 
add wave sim:/reg_tb/reset 

# insert divider
add wave -divider inputs 
add wave sim:/reg_tb/i_d 
add wave -divider output 
add wave sim:/reg_tb/o_q 

# run simulation
run -all

You can start the script in the ModelSim prompt with the do command. 

VSIM 5>  do SCRIPT_NAME.do

Now the waveform window should open and you can check the function of your Flip-Flop.

To get used to work with ModelSim, you will have to use each of the described methods once in the
next two exercises. For thefollowing exercises, you are free to choose the method you prefer. 
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Exercise 2:

a) Using Design Hierarchy in VHDL

Design Hierarchy is one of the key concepts in VHDL development. Now that you have learned to 
test  your code with ModelSim, you will  learn to construct an easy hierarchical  design with the 
modules you have developed. For this, you must declare components of the modules and connect 
instances of these components as shown in figure 1. 

Port declaration:
● clk    : in std_logic
● reset : in std_logic
● i_a : in std_logic
● i_b : in std_logic

We could  also  integrate  the  functionality  of  the  combinational  logic  into  the  part  of  the  code 
describing  the  register.  Instead,  however,  we  will  use  the  VHDL  component  construct.  One 
advantage of using components is the possibility for code reuse. Also, the simulation and debugging 
of  the  code is  simplified,  since you can  now simulate  small  parts  of  your  design.   This  is  an 
important point, since you can easily have several thousand signals in a design. 
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Figure 1: seq_logic



To build a component, you must declare the component in the declaration part (the same part where 
you have to declare your signals) of your architecture first. The name of the component has to be 
the name of the entity  you want  to  use in this  case,  the entities  of the modules of Exercise 1 
(comb_logic, reg). The generics and ports must be declared in the same way they are in the entities.  
Because no generics are used in this exercise, this declaration can be omitted.

-- component declaration
component entity_name is

   generic (generic_declarations );
     port (input_and_output_declarations);
  end component entity_name;

Now, the component with its generics and ports is known to your architecture, but not yet used. To 
use this component, you must instantiate it inside your architecture. 

First  of  all,  you  can  label  the  component  with  a  name  deviating  from  the  entity  name 
(comp_comb_logic, comp_reg). Now you can connect the ports of the instantiated component with 
signals used in your architecture as shown in the figure. Ports of your entity can be used directly in 
the port map of the component. Again, you can omit the generic map. (If you want to use a generic 
map, be aware of the syntax! There is no semicolon between a generic map and a port map!)

-- component instantiation
  label : entity_name

 generic map (component_generic => generic) 
             port map (component_input => input / signal,
                       component_output => output / signal);

Since you connect two components directly, you must declare an additional signal to connect the 
output o_c from comp_comb_logic with the input i_d from comp_reg.

Furthermore, a direct instantiation of components was defined in VHDL-93. This instantiation does 
not require a component declaration and has the following syntax.

-- direct component instantiation
  label : entity library_name.entity_name(architecture_name)

   generic map (component_generic => generic) 
               port map (component_input => input / signal,
                         component_output => output / signal);

If you use this instantiation, consider that you must specify the library in which your entity resides. 

Now set up a new ModelSim project with the Project Navigator and simulate and verify your design 
with the given testbench! Do not forget to compile the files of Exercise 1 to your  work library, 
otherwise your components will be unbound and the simulation will not work.
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b) Debugging of a counter

The next task is to debug a given six-bit counter. 

Port declaration:
● clk    : in std_logic
● ncl   : in std_logic
● reset : in std_logic
● i_enable : in std_logic
● o_count_neg : out std_logic_vector (5 downto 0)

The counter should implement the following functions: 

• count up from 0  to 63 in steps of 1.
• counting must be enabled by setting the input i_enable to 1, else the counter retains its old 

value. 
• the input reset works as a synchronous and the input ncl as an asynchronous reset. Both set 

the counter back to 0.
• the output o_count_neg is the inverted value of the actual counter.

 
Write a simulation script and correct the mistakes in the module. You will find syntactic, as well as 
functional mistakes. 
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Figure 2: counter



Exercise 3

a) Signals vs. Variables in VHDL

In  the  previous  exercises,  you  used  signals to  describe  your  hardware.  VHDL also  offers  the 
possibility to use variables, which have a different behavior. 

The main functional difference between signals and variables is the “value history” associated with 
signals. Variables do not have a history of their previous values; a variable only knows its current 
value. This especially results in a different behavior when assigning a value within a process. The 
value of a signal will be updated at the end of the execution of the process, while variables will be 
updated  immediately.  Because  of  this  property,  variables  can  be  overwritten  with  a  sequential 
statement in a process. Overwriting a signal with multiple assignments in a sequential process will  
just use the last statement while ignoring all earlier assignments. 
The behavior of variables can e.g. be exploited in complex calculations to hold intermediate values, 
but this can also lead to problems: It is not possible to see the intermediate changes of a variables'  
value over time in a waveform during simulation, which can complicate debugging. Also, it is not 
possible  to  use  variables  in  the  sensitivity  list  of  the  process,  which  can  result  in  differences 
between the simulation results and the synthesized hardware (synthesizers mostly ignore sensitivity 
lists and just issue a warning). 
For larger designs like memories, it might be advantageous to use variables, since they consume 
less memory resources during simulation than signals do. 

As you can see in the example code below, the syntax for variables is slightly different than the 
syntax for signals.   

-- usage of signals
architecture rtl of example is

signal sig: std_logic_vector(3 downto 0) := (others => '0');
begin

sig <= “0010”;
end; 

--  usage of variables
process(sensitivity list) is

variable var: integer;
begin

var := var + 1;
end process;
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In this exercise, you must design two modules which perform the same calculation. To clarify the 
differences between signals and variables, you must implement one of the modules using variables 
and the other using signals.

The calculation shown in Figure 2 should be performed. The values of a_in and b_in must be fed to 
A and B, the result E must be fed to q. Try to convert all the values from type std_logic_vector to 
type integer to perform the calculation. You can search on the internet for the conversion functions 
you will need.

In this  exercise,  no explicit  testbench is  given.  The stimuli  for  the inputs  are  provided by the 
ModelSim simulation  script  with the  help  of  the  force command.  This  is  an easy approach to 
generate stimuli, but it will not be sufficient to test larger and more complex designs.

Try to find out the differences between variables and signals by analyzing the waveforms of both 
modules. If you understand the differences properly, you are free to use either signals or variables to 
describe your hardware in the upcoming exercises. But since we neither have complex calculations 
nor very large designs in our lab, the general recommendation is to use signals. 
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Figure 2:  
Calculation rule

Figure 1: variable_vs_signal



b) Serial To Parallel Conversion 

This block should convert a serial data stream into a parallel data word using a shift register. 

Port declaration:
● clk : in std_logic
● ncl : in std_logic
● reset : in std_logic
● i_enable : in std_logic
● i_serial_in : in std_logic
● o_parallel_out : out std_logic_vector (25 downto 0)
● o_conv_complete : out std_logic

To do so, each new incoming bit must be shifted into the register on a rising clock edge when the 
i_enable signal is active. You can realize a shift register by using the concatenation operator &. This 
operator concatenates vectors, as shown in Figure 4. 

After the conversion of each data word, a reset is triggered from the outside and the value of the 
shift register is set to 0. The serial data stream is sent to the converter with the MSB first and  
consists of 27 bits. The MSB is always 1 and is called the start bit of the data word.
When the whole data stream has been completely shifted into the register, this start bit has reached 
the MSB position of the shift register, which is assigned to the output o_conv_complete. This output 
signifies  that  a  complete  data  word  has  been  converted  and  that  it  is  available  at  the  output 
o_parallel_out.
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Figure 3: ser_par

Figure 4: Concatenation operation



Exercise 4:

In  this  exercise  you will  learn  how to  implement  a  finite  state  machine  (FSM) in  VHDL.  As 
examples, the two most commonly used types of FSMs were selected: the Moore and the Mealy 
state machines (it is assumed that the differences in the behavior of both types are already known). 
There a several ways to code a state machine in VHDL. Most examples found on the internet or in 
the literature use a 2-process model, some even use 3 processes. The most common approach at our 
institute is a 1-process model, therefore this model is explained in this exercise. 

a) Mealy Machines

In the following code, you will find a simple example of how to implement a Mealy FSM with 1 
process. The first thing you must do is declare a new type for your states and a signal of this type. 

type fsm_states is (STATE_ONE, STATE_TWO);
signal state_fsm : fsm_states := STATE_ONE; 

 
Now, you have a signal state_fsm with the possible values STATE_ONE or STATE_TWO. In the 
next step, you have to calculate your state transitions. First, you must read out the actual state of 
your  signal  state_fsm with  a  case  statement.  Then,  you  can  assign  a  new state  to  this  signal 
depending on the conditions of your FSM. 

state_transitions : process (clk)
begin

if rising_edge(clk) then
if reset = '1' then

state_fsm <= STATE_ONE;
else

case state_fsm is
when STATE_ONE =>

if condition then
 state_fsm <= STATE_TWO;

end if;
when STATE_TWO =>

if condition then
state_fsm <= STATE_ONE;

end if;
end case;

end if;
end if; 

end process state_transitions;

After  you have calculated  your  state_transitions,  you  can  assign  your  outputs  with  concurrent 
statements  outside  the  process.  This  concurrent  statement  describes  a  simple  multiplexer. 
Remember that the outputs of a Mealy machine depend on the state and on the inputs.

o_x <= '0' when ( )
    else '1';
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Your task is to implement a Mealy machine from the given state diagram on the next page. 

Port declaration:
● clk : in std_logic
● reset : in std_logic
● i_a : in std_logic
● i_b : in std_logic
● o_c : out std_logic
● o_d : out std_logic

Hint: There  is  only  one  testbench,  which  tests  both  state  machines.  If  you compare  the  state 
machines with each other in the waveform of your simulation, they should always be in the same 
state –  with a different behavior at the outputs!
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Figure 1: mealy_fsm
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Figure 2: State chart of Mealy machine



b) Moore Machines

Now, you will implement a Moore machine of a given state diagram. This time, no example is 
given. Considering the differences in the design of Moore state machines compared to the Mealy 
design, it should be easy to change the given design from Mealy to Moore.

Port declaration:
● clk : in std_logic
● reset : in std_logic
● i_a : in std_logic
● i_b : in std_logic
● o_c : out std_logic
● o_d : out std_logic
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Figure 3: moore_fsm



5

Figure 4: State chart of Moore machine



c) Testbenches (game_states)

As you have seen in the previous tasks, testing through simulation is an important step in the design 
process. At design time, the best choice is to test each module separately. This allows the designer 
to avoid problems and time consuming debugging after all modules have been combined into a 
larger  design,  because  it  is  less  difficult  to  find  an  error  in  the  smaller,  independent  and less 
complex sub-modules. 

Hardware description languages (HDLs) allow simulation at various levels, ranging from behavioral 
simulation, where only the logic behavior is simulated, up to a post-route simulation, where the 
HDL model is combined with technology libraries of the target architecture (in our case the FPGA) 
to get information on delays and rise and fall times of gates or signal lines. In this lab, we will only  
use a behavioural simulation of our VHDL models.
Unlike in the earlier lessons, where the test benches were provided, it is your task to write a test 
bench for a given VHDL file.

The unit under test will be the module game_states, a sub-module from the block game_engine. It is 
responsible  for  controlling  the  game flow,  counting  points  and changing  the  serving  player.  It 
consists of two Mealy state machines. The state diagrams for both are provided for clarity.

The first state machine has four states:
● SERVE : In this state, the ball is bound to the serving player's paddle. Paddle movement is 

allowed. The state is exited when the serve key is pressed.
● PLAYING : In this state, ball and paddle movement is allowed. It is exited when one player 

scores a point.
● WAITING : After a scored point, the FSM enters this state and remains there for a period of 

time. Ball and paddle movement is disabled, but the ball remains at its previous location to 
give the players a chance to see the scored point. When exiting this state, there are two 
possibilities. If no player has reached the point limit to win the game, the state machine 
returns to the SERVE state. Otherwise it changes to the WON state.

● WON : This state is only entered when one player reaches the score limit. In this state ball 
and paddle movement remain disabled and it can only be exited by a reset of the module 
game_engine.

The second FSM has only two states:
● PLAYER_1 : Player 1 has the right to serve. The state is exited after five serves.
● PLAYER_2 : Player 2 has the right to serve. The state is exited after five serves.

The first thing you should do is examine the state diagrams and the VHDL code to fully understand  
the function of the module.
Then you can begin writing the testbench. Like in the previous lessons, the stimulus data should be 
read  from a  text  file  with  the  file  ending  .vec. It  would  be  a  good  idea  to  look  at  previous 
testbenches to learn how to build them and how read data from files.
The testbench should move the state machine through all  its transitions at  least once. For each 
transition, you must ensure that it only occurs when all transition conditions are true.

Hint: To keep the simulated time low, you should change the value of the constant C_WAIT_TIME.
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Exercise 5

a) 4-bit Multiplier

In this exercise, you must design a 4-bit multiplier. 

Port declaration:

● clk : in std_logic
● reset : in std_logic
● i_a : in std_logic_vector (3 downto 0) 
● i_b : in std_logic_vector (3 downto 0) 
● o_p : out std_logic_vector (7 downto 0) 

To design this  module,  you will  use a  structural  description.  This  means that  you describe the 
structure of the hardware instead of describing its behavior. With a behavioral description, we can 
multiply two signals in a very simple way like it is shown in the example code. 

A <= B * C;

The synthesis tool will use the dedicated multipliers on the FPGA or, if no multipliers are available, 
synthesize the code in the usual way. Your task is to describe a 4-bit multiplier using a structural 
description. 
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Figure 1: multiplier_4x4



To understand the structure of a binary multiplier, you should first have a look at the scheme of the 
binary multiplication shown in Table 1. 

Binary multiplication is very similar to the multiplication of decimal values and is achieved by 
adding a  list  of  shifted  multiplicands according to  the digits  of  the multiplier.  You can  see an 
example multiplication in table 2. 

In hardware, we can realize a binary multiplier with an array of multiplier units, as shown in Figure 
1. These units multiply two input bits and feed the result to a full adder.  With this unit, we are able  
to multiply two single bits, e.g. b1 x a0  , and add a shifted multiplicand, e.g. b0 x a1. Since the inputs 
ain and bin must also be connected to the next multiplier unit,  they are also fed directly through as 
unmodified signals.  

 

For a 4-bit multiplier, 16 MUs are needed and must be connected as shown in Figure 2. Comparing 
this array of MUs to the scheme shown in Table 1, you can see that both have exactly the same  
structure. 
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Figure 2: Multiplier unit

Table 1: Binary multiplication scheme

Table 2: Example  
multiplication



Figure 3: 4-bit multiplier schematic



Instead of instantiating and connecting each of these components separately, you should use the 
generate statement. This statement is particularly important for generating regular structures such as 
memories.  Figure 4 shows a simple 4-bit shift register that is realized with the generate statement. 

Now have a look at the code we need to generate this shift register. It consists of 3  if  (condition) 
generate statements within  a  for (loop  variable) generate statement.  The  component  d_ff  is 
instantiated inside of the if statement and connected with signals depending on the loop variable. 

            shift_reg: for i in 4 downto 1 generate

            -- connection of first flip-flop
            reg_begin: if (i = 1) generate
                           d_ff_begin: d_ff
                             port map ( d => serial_in,

                   clk => clk,
               q => internal(i));

                       end generate;

-- connection of middle flip-flops
            reg_middle: if (i > 1) and (i < 4) generate
                           d_ff_middle: d_ff
                              port map ( d => internal(i-1) 

 clk => clk, 
              q => internal(i));

                        end generate;

-- connection of last flip-flop
            reg_end: if (i = 4) generate
                          d_ff_end: d_ff
                              port map ( d => internal(i-1),  

clk => clk, 
q => serial_out);

                     end generate;

            end generate;

The two main challenges when designing the 4 bit multiplier will be the differentiation between the 
various cases and the numbering of the interconnections required. Therefore, it is helpful to create a 
scheme of all interconnections before writing any code. Since the multiplier has a 2-dimensional 
structure, you must use a nested loop with different loop variables for the rows and columns. 
Try to reduce the number of cases you have to consider. Nevertheless, you will have to use at least 6 
different if statements inside the nested loop. 
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Figure 4: 4-bit shift register



Furthermore, you cannot leave any inputs unconnected, so they must be set to '0'. Unconnected 
outputs  only  produce  warnings  during  synthesis.  To suppress  these  warnings,  you can  use  the 
keyword open in the component instantiation. 
The component mu is provided (you can find mu.vhd in the folder of this exercise), so you only 
have to declare and instantiate it. 

When you have a look at the multiplier structure, you can see that it consists of a large amount of  
combinational logic. As you can see in Figure 5, the connection of different combinational modules 
may result in a very long critical path, which lowers the maximum usable frequency. 

To prevent this, it is good design practice to use registers for the inputs and outputs. This results in 
shorter critical paths, but you have to put up with additional cycles of latency (1 for every register 
inserted).
 

Therefore, you should also use registers for the inputs and outputs of the multiplier. 

The stimuli of the provided testbench tests all possible input combinations.  The testbench is self-
checking, which means that it recognizes each incorrect output value of your module. It expresses a 
warning in the ModelSim prompt every time you have an incorrect output value. This is done with 
an assertion and a severity warning in the VHDL code. Examine the testbench to see how that  
works. 
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Figure 5: Critical path without I/O registers

Figure 6: Critical path with I/O registers



Exercise 6:

a) Generation Of Synchronisation Pulses For The Monitor 

Driving a  monitor  with synchronisation  pulses  originates  from the  time when cathode-ray-tube 
(CRT) displays were the standard display type for computers. In these monitors an electron beam 
forces the phosphorous coating on the inside of the front of the screen to emit visible light. 

This electron beam moves from left to right and top to bottom. When the beam reaches the right or 
bottom end of the screen, the corresponding synchronisation impulse (horizontal or vertical) forces 
the monitor to retrace the electron beam to its starting position as shown in figure 1. 

During the time the beam requires to move back, no image data can be displayed. All other signals  
required by the monitor are derived from these two synchronisation signals, so it is important that  
their timing is correct (although modern monitors tend to be more flexible in handling non-standard 
timings than older ones). 
The timing conditions and the generics for the sync pulse are given in the waveform in figure 2. As 
you can see, a front and a back porch have to be considered along with the sync pulse and the 
visible area (for the horizontal and for the vertical sync pulse). 
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Figure 1: Vertical and horizontal synchronization pulse

Figure 2: Timing conditions for the vertical and horizontal sync pulse



Your task will be to implement a synchronisation pulse generator in VHDL that functions properly 
for for different resolutions and refresh frequencies (although only 640x480 at a 60 Hz refresh rate 
will be used in the final project). 

Port declaration:
● clk : in std_logic
● reset : in std_logic
● o_h_sync : out std_logic
● o_v_sync : out std_logic
● o_in_active_region : out std_logic

To realize a sync pulse generator which works for different resolutions and refresh frequencies, we 
will use generics. Generics are used to parametrize modules and can be written hierarchically (using 
a generic map described in Exercise 2). Therefore, you will perform calculations using only these 
generics instead of the values we need for our specific monitor. Afterwards, these generics will be 
defined in another module. Nevertheless, you can find the values required on the next page. 

List of generics:
● G_H_PIXEL_NUMBER : horizontal pixel number (incl. non visible)
● G_H_RESOLUTION : visible horizontal resolution
● G_H_FRONT_PORCH : horizontal front porch length in pixels
● G_H_BACK_PORCH : horizontal back porch length in pixels
● G_H_SYNC_LENGTH : horizontal sync pulse length in pixels
● G_H_SYNC_ACTIVE : horizontal sync pulse polarity (1 = pos, 0 = neg)
● each of the above generics exist with a leading 'G_V'  instead of 'G_H'  for their  vertical 

counterparts, too.

Generic declaration:
All generics are of type integer, except G_H_SYNC_ACTIVE and G_V_SYNC_ACTIVE, which are 
of type std_logic.

The output  for  horizontal  synchronisation  pulses  is  o_h_sync, o_v_sync for  the vertical  pulses. 
Additionally, the output o_in_active_region should be active ('1')  when the electron beam is in the 
area where the picture is displayed on the screen.
In order to make the time between two impulses measurable, the synchronisation pulse generator 
(and the whole block graphic_output) is fed with a different clock signal than the rest of the circuit.  
It has a cycle length that represents the time required by the electron beam to display one pixel on 
the screen. All times needed are multiples of this pixel clock cycle length and and can thus be 
measured by a simple counter.
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Figure 3: sync_pulse_generator



To ensure that all PC monitors work with all computers the VESA (Video Electronics Standards 
Association1) specifies the signal timings. In this lab the display should run at a 640x480 resolution 
with a refresh frequency of 60 Hz. The detailed  timing data  for this  resolution is  given in the 
manual2 of the FPGA evaluation board used in this  lab (a detailed list  for most standard video 
modes can be found here3).

"VGA industry standard" 640x480 pixel mode

General characteristics
Clock frequency 25.175 MHz
Line  frequency 31469 Hz
Field frequency 59.94 Hz

One line
  8 pixels front porch
 96 pixels horizontal sync
 40 pixels back porch
  8 pixels left border
640 pixels video
  8 pixels right border
---
800 pixels total per line

One field
  2 lines front porch
  2 lines vertical sync
 25 lines back porch
  8 lines top border
480 lines video
  8 lines bottom border
---
525 lines total per field              

Other details
Sync polarity: H negative, V negative
Scan type: non interlaced.

1 http://www.vesa.org
2 http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD-rm.pdf
3 http://www.epanorama.net/documents/pc/vga_timing.html
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Exercise 7:

a) Graphic Buffer 

During one read operation from the RAM, the colour data for 32 consecutive pixels is read. This 
data must then be buffered and converted from a parallel data word to a serial data stream.

Port declaration:
● clk : in std_logic
● reset : in std_logic
● i_select : in std_logic
● i_shift_enable : in std_logic
● i_load : in std_logic
● i_rgb_data : in std_logic_vector (255 downto 0)
● o_data_req : out std_logic
● o_rgb : out std_logic_vector (7 downto 0)
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Figure 1: graphic_buffer



To serialize the data,  you can use a shift register, as shown in figure 2. 

Two of these buffers are used, so one can be reloaded while the other is converting its data. Since 
both buffers may not send data simultaneously to the VGA-port, you have to consider the control of 
these two buffers. 
The active buffer is selected by the input i_select. On each rising clock edge, the buffer outputs the 
data of a new pixel at the output  o_rgb when both  the  i_select and the  i_shift_enable inputs are 
active  ('1').  It  is  important  that  the output  data  is  valid  immediately  after  a  rising edge on the 
i_select input. The value of the output o_rgb is never used during the time i_select is 0, so it does 
not have to have a defined value.
The input i_load is used to reload the buffer with new data. Because there are two of these buffers 
and the load signal is connected to both, only the unselected buffer (the buffer that requested new 
data is disabled by the graphic_buffer_controller and its input i_select is set to 0) is reloaded. 
After all 32 pixels have been displayed, the active buffer requests new data by setting the output 
signal o_data_req. It is important that this signal is already active on the rising edge after the clock 
cycle in which the 32nd pixel has been displayed, so that the buffer controller can switch the active 
buffer on the next clock edge. The data request output must be set after a reset, too.
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Figure 2: Shift register used to serialize pixel data



Exercise 8:

a) Graphic Buffer Controller

The task of the  graphic_buffer_controller module is to reload the two graphic buffers with data 
from the RAM and to select the currently active buffer. It also generates the read address for the 
RAM controller.

Port declaration:
● clk : in std_logic
● reset : in std_logic
● i_data_req_reg_0 : in std_logic
● i_data_req_reg_1 : in std_logic
● i_read_done : in std_logic
● i_new_frame_ready : in std_logic
● o_reg_select : out std_logic
● o_load_reg : out std_logic
● o_read_req : out std_logic
● o_read_address : out std_logic_vector (22 downto 0)
● o_page_switched : out std_logic

Generic declaration:
● G_H_RESOLUTION : integer
● G_V_RESOLUTION : integer
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Figure 1: graphic_buffer_controller



On an incoming request for data through the inputs  i_data_req_reg_0 or  i_data_req_reg_1, the 
controller immediately switches the active buffer to the buffer not requesting data on the next rising 
clock edge. The value of the output  o_reg_select signifies the selected buffer (0 = buffer 0, 1 = 
buffer 1). If both buffers send a request simultaneously, one of them must have a higher priority. At 
the same time as changing the buffer, a read request is sent to the RAM controller by setting the 
output o_read_req. After the RAM controller completes the read operation (indicated by the input 
i_read_done), the unselected buffer is loaded with new data by setting the output o_load_reg.

After the next rising edge, the outputs o_load_reg and o_read_req must be disabled and the RAM 
address can be incremented. Now the controller is ready to process the next data request from one 
of the buffers.
The data is stored in the RAM in words of 16 bits (2 pixels). Since we are using a dynamic RAM,  
data has to be read in bigger bursts to mask the initial latency of opening an internal row. For this 
application, a burst size of 16 is chosen (32 pixels, 256 bits total). After each read operation, the 
address must be incremented by 16 to point to the next burst start point. After reading an entire 
frame (how many reads?), the address counter must be reset to the start address of the next frame.

To avoid forcing the renderer to change the image data of the currently displayed frame, a method 
called 'page flipping' is used. That means that the RAM is separated in two regions called pages. 
The start address of the first page is 0, while the second page starts at 262144 (0x40000). 
While the first page is used to store the new data from the renderer, the frame that is currently 
displayed is read from the second page, and vice versa. When the renderer has finished a new frame 
(indicated by the signal  i_new_frame_ready) the graphic output displays the rest of the current 
frame and then switches the page and displays the next frame. If the i_new_frame_ready signal is 
not set at the end of the frame, the old frame will be displayed again. On a reset, the first page  
(starting at address 0) should be selected. 
The  renderer  itself  waits  until  a  successful  page  switch  is  signified  through  the  output 
o_page_switched of the graphic buffer controller. The o_page_switched signal can be set back to 0 
with the next RAM address increment after a page switch.

To implement the Graphic Buffer Controller, you must first design a state machine. You can use the 
template of the state chart given on the next page. 

Hints: If you want to increment the RAM-address, you can simply set a flag in your state-machine 
and increment the address in another process depending on that flag. To calculate the RAM-address, 
you should first examine the binary representations of the start addresses! Which bits do you have 
to actually change to increment the address or flip the page?
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Figure 2: State chart of the Mealy machine for the 
graphic_buffer_controller



Exercise 9:

a) Graphic Output

The entity graphic_output groups the previous three modules together and provides the connections
between them. It is also a multiplexer for the color component outputs o_red, o_green and o_blue.
These outputs are fed from the currently selected register or set to 0 when the  in_active_region
signal is not set by the sync_pulse_generator.
The component declaration of the modules utilized should not be placed inside the architecture of
graphic_output, but instead in a separate package file named graphic_output_package.vhd. This file
will then be included in the graphic_output module.

Port declaration:
● clk : in std_logic
● reset : in std_logic
● i_read_done : in std_logic
● i_read_data : in std_logic_vector (255 downto 0)
● i_new_frame_ready : in std_logic
● o_h_sync : out std_logic
● o_v_sync : out std_logic
● o_red : out std_logic_vector(2 downto 0)
● o_green : out std_logic_vector(2 downto 0)
● o_blue : out std_logic_vector(1 downto 0)
● o_read_req : out std_logic
● o_read_address : out std_logic_vector (22 downto 0)
● o_page_switched : out std_logic

Generic declaration:
The same generics as in the module sync_pulse_generator are used.
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Figure 1: graphic_output



Your first task is to design the entity and architecture of the module graphic_output and to create
the package file. Have a look at the schematic of the graphic_output module in the overview and
think about all the interconnections before writing any VHDL code. 

Since you should have previously tested the functionality of the sub-modules of graphic_output,
you  must  now  only  test  the  interconnection  of  these  modules  and  their  interaction.  Most
importantly, the multiplexing between the two buffers must be tested. Therefore, you should have a
detailed look at the signals of the two buffers and the three data outputs. 
This time, no vector file with stimuli for the testbench is provided, so you must create your own
vector  file  called  input_data.vec.  This  file  should  feed  all  the  inputs  of  graphic_output  with
stimuli.  Try to create  a reasonable test  case by carefully examining the function of the module
before writing the vector file!

After a successful simulation, the entire module and all its sub-modules will be integrated into a test
project, implemented on the FPGA and tested on a real monitor.
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b) Synthesis of graphic_output

Working with Xilinx ISE

To synthesize your code, we use the FPGA design software Xilinx ISE.  
To setup Xilinx ISE (in this lab, we use Xilinx ISE14.6) to run on the IDA application servers, run:

$ setup-lm xilinx ise14.6
$ ise &

ISE will start with the last project opened. If no project has been created yet, click on File => New 
Project. Enter a project name and change the path to your exercise directory.

Now enter all of the required data for your FPGA and click Next.  Note that the device properties
vary depending on the board you use. You can find the correct properties on your device. For the
Nexys3 boards it should be: Device=XC6SLX16, Package=CSG324 and Speed=-3
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Figure 2: Project Wizard – Create new project



After finishing the project setup, you should see a plain project without any sources. First you have 
to add some sources of your previous exercises. In the main menu, select Project → Add Source 
and add the following files:

● graphic_buffer.vhd
● graphic_buffer_controller.vhd
● sync_pulse_generator.vhd
● graphic_output.vhd
● graphic_output_package.vhd
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Figure 3: Project Wizard - Device properties

Figure 4: Project Wizard - Add sources



You should not use the “Add Copy of Source” option, so that you do not have to replace the file in
the project directory once it is changed in its destination directory. Xilinx ISE will do a quick syntax
check and if everything is fine, it will present you some green check marks.

To implement the complete test project, you must also add the following files: 

● pixel_clk_generator.vhd
● rom.vhd
● graphic_output_synth.vhd
● graphic_output_synth.ucf

You can find these files in the folder of this exercise. Have a look at the *.ucf file, which contains
the pin assignment of your FPGA. This file is known as a “constraints” file and is necessary to map
the signals in your design to the physical FPGA inputs and outputs.

Now you see the Project Navigator window with all files (in fact you see the entities or instances of
entities). Missing entities are marked with a question mark. The top entity is marked with three
small squares. In most cases, the top entity is correctly chosen by ISE. If you have to change it,
click on the entity you want to move to the top and right-click on it. Then select Set as Top Module.
To add files, right click in the Project Navigator and select either Add Source... for existing files or
New Source... to create a new source file.

Once  you  have  added  all  files,  you  must  right  click  on  Generate  Programming  File in  the
Processes window and select Properties. Select Startup Options, and change FPGA Start-Up Clock
to JTAG Clock.
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Figure 5: Project Navigator window



To generate a programming file, simply double-click on Generate Programming File, or you can
run all three necessary steps one after another by clicking on them separately. At the end you should
have a file named [project name].bit in your project directory. This FPGA bitstream file is then used
to program the FPGA.
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Figure 6: Process properties



Working with Digilent Adept tools

Digilent Adept is used to program the FPGA. First thing to do is connect the FPGA board to the PC
with  the  USB cable  plugged  into  the  micro-usb  socket  called  “USB PROG”  and  connect  the
monitor via VGA. To use the programming tool, open a terminal window and navigate to your
project directory where your bit-file is located.  Check the connection by issuing:

$ djtgcfg enum

The output should look like:
Found 1 device(s)

Device: Nexys3
Product Name:   Nexys3
User Name:      Nexys3

 Serial Number:  210182475328

Then initialize the JTAG chain with:  
$ djtgcfg init -d Nexys3

You will see something like:
Initializing scan chain...
Found Device ID: 34002093

Found 1 device(s):
Device 0: XC6SLX16

To program the FPGA run (insert the correct name of your bitfile):
$ djtgcfg prog -d Nexys3 -i 0 -f [project name].bit

The result should be:
Programming device. Do not touch your board. This may take a few minutes...
Programming succeeded.

If the programming of the FPGA was successful, your monitor should display a test screen which
alternates  between  Figure  7  and  Figure  8.  Otherwise,  one  of  your  modules  is  not  functioning
correctly. 
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Figure 8: Second test screenFigure 7: First test screen



Exercise 10:

a) RAM Controller

The  communication  between  the  FPGA  and  the  external  PSRAM  is  done  by  the  module
ram_controller. 

Port declaration:
● clk : in std_logic
● reset : in std_logic
● i_read_req : in std_logic
● i_write_req : in std_logic
● i_read_address : in std_logic_vector (22 downto 0) 
● i_write_address : in std_logic_vector (22 downto 0)
● i_write_data : in std_logic_vector (255 downto 0)
● o_read_done : out std_logic
● o_write_done : out std_logic
● o_read_data : out std_logic_vector (255 downto 0)

● io_ram_dq : inout std_logic_vector (15 downto 0)
● o_ram_address : out std_logic_vector (22 downto 0)
● o_ram_ce_neg : out std_logic
● o_oe_neg : out std_logic
● o_we_neg : out std_logic 
● o_ram_ub_neg : out std_logic
● o_ram_lb_neg : out std_logic
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Figure 1: ram_controller



The PSRAM used on the board uses a DRAM architecture. This has some important drawbacks
from a  programmer's  point  of  view:  Since  Data  is  addressed  via  rows  internally,  accessing  or
writing  data  is  delayed  by  the  time  needed  to  open  the  corresponding  row.  Additionally,  the
capacitors  used  to  store the information  in  DRAM lose their  charge  over  time.  This  mandates
periodic refreshes of all rows by opening them and writing back the result. If this refresh cycle
collides with a read or write request from the FPGA, the access is delayed even further. 

All together, this causes extremely long access times when the PSRAM is used as an asynchronous
SRAM, since  the  on-chip  controller  assumes  the  worst  case  for  every  access  (possible  refresh
collision  and  initial  row  opening  latency).  To  overcome  this  problem,  the  PSRAM  has  a
synchronous interface which masks the initial access latency by transferring larger bursts of data
from the same row that was initially opened. This synchronous interface is more complex to design,
so this part will be provided to you. However, the PSRAM has be be configured initially to use the
synchronous interface via asynchronous signals. 

Your task is to configure the PSRAM for synchronous operation.

The complete parameters are: 
• synchronous operation
• fixed initial latency 
• ... of 4 clock cycles
• wait active high
• ... asserted during delay cycles
• 1/2 drive strengh
• no burst wrap
• continous bursts until the end of row

The procedure for writing to control registers using CRE, the correct register and the bit positions as
well as the timing can be found in the PSRAM's Datasheet in your documentation folder.

The controller should finish the configuration in as few clock cycles as possible. Note: Your “clk”
input runs at 100Mhz, so one clock cycle equals 10ns.

To simulate the interaction between the controller and the SRAM, a simulation model of the SRAM
is  provided.   The  necessary  Modelsim directives  for  compiling  this  Verilog  model  are  already
included in the .do-file.

Draw your chosen timing in the diagram on the following page.
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Exercise 11:

 a) Pseudorandom Number Generator 

This module creates a sequence of pseudo-random numbers.

Port declaration:
● clk : in std_logic
● o_random_number : out std_logic_vector (5 downto 0)

This is done using a linear feedback shift register. Such a register with a length of n bits creates a  
sequence of numbers between 1 and 2n-1, where each number appears only once before the entire 
sequence  is  repeated.  (For  detailed  information  on  linear  feedback  shift  registers,  see  1).  The 
polynomial for 6 bits is: 

x(1) <= x(6) XOR x(5)

NOTE: 0 is not a valid value!

This random number generator is later used in the Pong game to create a random number to be 
utilized for the ball movement. It will determine the initial direction and speed of the ball when the 
player serves. Additonally, it will be used to change the angle of the edge of the paddle every time 
the ball hits it. 

Implement the randon number generator in VHDL, simulate its behavior and test it with the given 
testbench. 

1 http://en.wikipedia.org/wiki/Linear_feedback_shift_register
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Figure 1: random_number_generator



b) Event Trigger

This module generates the so-called event signal for the ball and paddle movement. These signals 
are  then  used  by  the  modules  ball_movement and  paddle_movement.  Each  time  these  signals 
become active,  there is a possibility for the ball or paddles to move. This is done to divide the 
system clock and slow down the ball and paddle movement to a value the user can react to.
The time between two events can be changed by the generics G_PADDLE_EVENT_INTERVAL and 
G_BALL_EVENT_INTERVAL.  These  generics  define  the  number  of  clock  cycles  between  two 
events. When this time has elapsed, the corresponding signal must become active for one clock 
cycle.

Port declaration:
● clk : in std_logic
● reset : in std_logic
● o_paddle_event : out std_logic
● o_ball_event : out std_logic

Generic declaration:

● G_PADDLE_EVENT_INTERVAL : integer
● G_BALL_EVENT_INTERVAL : integer

This module should then be tested with your own testbench.
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Figure 2: event_trigger



c) Input Decoder

The input decoder scans the PS/2 data input of the FPGA board and reads data from the keyboard. 
Because the PS/2 port  runs at  its  own clock frequency,  there is already a process given which 
samples the PS/2 clock each system clock cycle and generates a signal to signify a negative PS/2 
clock edge. This signal is called  new_ps2_data. When it becomes active, the value of the input 
i_ps2_data is valid.
Now your task will be to implement the rest of the input decoder. It should support the following 
features:

● recognition for pressing a key and setting the corresponding output
● recognition for releasing a key and disabling the corresponding output
● a time-out function for the case that a scan-code is not completely transmitted
● a detection if both movement keys for one player are pressed simultaneously to prevent the 

up and down outputs of one player from being active at the same time.

A communication from the FPGA board to the keyboard is not necessary. Received data which can 
not be associated with the pressing or releasing of a key can be ignored. All outputs should be 
active as long as the corresponding keys are pressed.

For information on the PS/2 protocol, see the FPGA evaluation board manual2.

Port declaration:
● clk : in std_logic
● reset : in std_logic
● i_ps2_clk : in std_logic
● i_ps2_data : in std_logic
● o_player_1_up : out std_logic
● o_player_2_up : out std_logic
● o_player_1_down : out std_logic
● o_player_2_down : out std_logic
● o_serve_key : out std_logic
● o_reset_key : out std_logic

2 http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD-rm.pdf
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Figure 3: input_decoder



Exercise 12:

a) Pong Completion

The last task is to implement the complete Pong game. Therefore you have to set up an ISE project
with the following files you designed:

● random_number_generator
● sync_pulse_generator
● graphic_buffer
● graphic_buffer_controller
● graphic_output
● ram_controller
● event_trigger
● input_decoder

To start ISE from the application servers, run:

setup-lm xilinx ise14.6
ise &

You can find all the missing files you must include for the complete Pong game in the directory of
this task. You can also find the *.ucf file you will need. 
If  you  do  not  want  to  use  the  ISE  GUI  to  set  up  your  project,  you  can  find  a  .tcl  file
(setup_pong_synth.tcl) in the syn directory. Like the *.do files in ModelSim, these files are used to
automate your synthesis. You can start this file with the  source command in the ISE command
shell. If you used the correct directories, it should automatically include all the necessary files and
set  up the  project.   You can  now start  the synthesis  with  the  GUI,  or  also  with  a  script.  The
commands required to start the synthesis using a script can be easily found in the ISE help. 

If your game is running, the main task of this lab is finished. 
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