
Computer-aided Design Of Digital Circuits

1

1. Organizational Behavior
The goal of this lab is to develop and implement the well known game Pong on a FPGA evaluation
board in a team of two students. To finish the lab successfully, the game must run properly with
each of the modules you developed. Furthermore, the running game must be presented and you will
be required to answer various questions about it. After that, you receive a certificate of completion
and 5 or 6 credit points, depending on your field of study, without a grade.

To ensure the successful implementation of the game, the project is divided into several exercises.
You will work on these exercises at the designated dates, which makes your participance necessary
at every lab meeting. Usually, a lab session lasts for 3 hours. If you are unable to attend the lab, it is
obligatory to inform Sean (whitty@ida.ing.tu-bs.de) and Carsten (carsten.siemers@gmx.de) with a
short email. In this case, or in the case you could not complete the exercise within one session, you
are advised to work on your tasks on your own time until the next lab session. Other than one other
lab, which also uses the same room, you have access to the laboratory Monday through Friday,
from 08:00 until 18:00. Please note that the doors to the corridors close automatically at 18:00 and
cannot be opened without a key.

2. Project Overview

2.1. Goal

The game Pong must be implemented on a FPGA evaluation board, which provides all the
necessary hardware for this project. This includes a PS/2 port for the keyboard used to control the
game, a VGA port to connect a monitor, 1 MB of SRAM to store data and the FPGA itself (Xilinx
Spartan 3 FPGA).
Because it would be too complex and time consuming to build the complete game from scratch,
only selected parts are designed in this lab. The rest is provided to you. At the end of the lab, the
pre-existing components and the newly designed ones must be combined to create a fully functional
project.

2.2. Technical realization

The game is controlled by an external keyboard, connected to the PS/2 port. The on-board buttons
are only used for reseting the game. A monitor with an analog VGA input is used as the display
device. All image data is buffered in the on-board SRAM before being displayed on the monitor.
All external hardware is directly connected to and controlled only by the FPGA.

2

mailto:whitty@ida.ing.tu-bs.de
mailto:carsten.siemers@gmx.de

2.3. Introduction to FPGAs

A Field Programmable Gate Array (FPGA) is an integrated circuit which is, contrary to Application
Specific Integrated Circuits (ASICs), configurable after manufacturing. It mainly consists of
programmable logic blocks (each manufacturer has a different name for them: Xilinx calls them
“slices”), which are configured with a hardware description language like VHDL or Verilog. With a
large number of these blocks, you can realize very complex digital systems comparable to ASICs.

The structure of a FPGA is shown in the figure below.

The Programmable Logic Blocks are connected with programmable interconnects. The Logic
Blocks and the interconnects are both usually based on SRAM. A simplified structure of a
Programmable Logic Block is shown in the next figure.

3

Figure 2: Programmable Logic Block

4-input
LUT

F
lip

-F
lo

p

M
u

x

i_a
i_b
i_c
i_d

clk

o_y

Programmable Logic Block

Figure 1: FPGA structure

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Programmable
Interconnect

Logic
Block

Logic
Block

The logic function is realized with a 4-input look-up table (LUT). The output of the LUT is
connected to a D-Flip-Flop and a Multiplexer. The behavior is selected with the Multiplexer, and
the Block can act as simple logic or as a Flip-Flop.

The functionality of the LUT is shown in figure 3.

For 4 inputs, we have 2n = 16 logical combinations. The output values of these 16 combinations are
loaded into a 2n = 16 bit SRAM. These values feed a Multiplexer, which is controlled by the 4
inputs. Now, the LUT has the same function as an equivalent logic gate.
Modern high-end FPGAs offer several hundred thousands Logic Blocks with 4 to 6 inputs.
Furthermore, many specialized blocks like DSP blocks, interfaces, Block RAMs or even complete
processors are commonly integrated. For a more detailed view about FPGAs, you can find many
information on the internet or in the literature.

Web:
www.xilinx.com
www.altera.com
www.actel.com

Literature:
Clive Maxfield, The Design Warrior's Guide To FPGAs, Elsevier 2004

4

Figure 3: Lookup Table

i_d i_c i_b i_a o_y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

.

.

.

1 1 1 1 1

bit val

0 0

1 0

2 1

3 0

4 1

. .

. .

. .

15 1

truth table 2n bit SRAM

„0000“

„0001“

„0010“

„0011“

„0100“

„1111“

...

...

...

i_a
i_b
i_c
i_d

y

Programmed 4-input LUT

16
:1

 M
ul

tip
le

xe
r

..

2.4. Game rules

The goal of the game is to prevent the ball from leaving the playing field on your defensive side.
The field is limited by a border on the top and bottom from which the ball bounces back. On the left
and right side, there is no such border, and the player must use a moveable paddle to keep the ball
from leaving the field. If the ball hits this paddle, it will be reflected just as if it had hit a border
(angle of incidence = angle of reflection). The corners of the paddles have a slope, whose angle can
be adjusted by altering the content of a ROM (see chapter about game_engine). If the ball hits these
corners, it will be reflected differently than when hitting the paddle in the center region. If a player
fails in keeping the ball on the field, the other player scores a point. The first player that reaches a
predefined number of points (standard value is 15) wins the game. The right to serve changes after a
given number of serves (standard value is 5).

5

3. Structure of the project
In order to obtain a better structure, the project is divided into several sub-modules by their
function, which are then connected in the top-level entity pong_top.

List of components of the entity pong_top:
● reset circuit
● input_decoder
● game_engine
● points_display
● graphic_engine

3.1. Entity reset_circuit

The reset circuit resets the entire circuit after power-up and ensures the correct function of the reset
button on the FPGA board.
(Note: the reset circuit is not visible in the figure of the entity pong_top)

3.2. Entity input_decoder

This module scans the serial data stream from the PS/2 port and converts the received keyboard
commands into the control signals necessary to control the game.
It provides basic communication from the keyboard to the host device (in this case the FPGA
board). Communication from the host to the keyboard is not implemented (and not necessary for
this application).

3.3. Entity game_engine

While all other components are only needed to communicate with external hardware, the entity
game_engine is responsible for the pong game itself.

6

Figure 4: The entity pong_top

The components paddle_movement and ball_movement control the movement of the ball and the
paddles and store their positions.
The event_trigger is basically a clock divider. It ensures that the ball and paddle movement occur
not at every clock cycle. (Note: it does not generate a clock signal for the movement blocks, but a
kind of enable signal).
The random_number_generator delivers random movement data for the ball during serve, while the
rom is used to store a physically correct movement model for ball hits at the corners of the paddles.
A state machine in the entity game_states stores the current state of the game, including the points
for each player and the current serving status.

3.4. Entity points_display

This entity converts the binary value of both players' points into BCDs (binary coded digits) and
displays the points on the on-board seven-segment LED displays.

7

Figure 5: The entity game_engine

3.5. Entity graphic_engine

The entity graphic_engine connects all components responsible for the processing of the image
data. The structure of the graphic engine is divided into two parts: one for the generation of the
images (render_engine), and one for driving the display and displaying a previously created images
on it (graphic_output). To ensure that generation and displaying of the images are totally
independent of each other, the rendered image is stored in one part of the on-board SRAM before
being displayed, while the graphic output displays the previously rendered image that was stored at
different part of the RAM.

3.5.1. Entity pixel_clk_generator

This module generates the pixel clock needed by all components of the entity graphic_output. The
clock cycle length is equal to the time it takes to display one pixel on the screen. In the case of a
640x480 pixels resolution at 60 Hz refresh rate, the cycle length is 40 ns (25 MHz) and the pixel
clock can be derived from the system clock (which runs at 50 MHz) by a division by two.
(Note: the pixel clock generator is not visible in the figure of the entity graphic_engine)

8

Figure 6: The entity graphic_engine

3.5.2. Entity render_engine

The entity render_engine groups and connects all components used to render new frames.
In the first step of the rendering process, the position_sample_register samples the ball and paddle
positions. Then the renderer generates image data for eight pixels and stores them into the
render_buffer, from which they are then written to the RAM. Afterwards, the renderer generates
the next eight pixels, and so on.
The whole rendering process is controlled by the render_engine_controller.

3.5.3. Entity ram_controller

The RAM controller is the interface between the SRAM and the FPGA. On the FPGA, it is situated
between the modules render_engine and graphic_output and stores all data coming from the
render_engine in the RAM and reads the data requested by the graphic_output.

9

Figure 7: The entity render_engine

3.5.4. Entity graphic_output

The module graphic_output is responsible for driving the VGA port of the board with all signals
necessary to display an image on the connected monitor.
The VGA signal consists of two components. The image data itself is read from the SRAM by the
graphic_buffer_controller and is then stored in two buffers (buffer_0 and buffer_1) for a parallel-to-
serial conversion.
The second part of the VGA signal is the synchronization impulses. They define the resolution and
refresh rate of the monitor. These signals are generated in the module sync_pulse_generator.
Besides the four sub-modules above, the graphic_output includes a multiplexer that selects the
image data from the currently active buffer.

10

Figure 8: The entity graphic_output

4. Coding rules
For a better structure of the created files and readability of the VHDL code, a set of coding rules
was used during the creation of this project and must be adhered to during the lab.

4.1. Case

Although VHDL is not case sensitive, the following rules apply:
● port names, variables and signals are written in lower case
● constants, generics and states are written in capital letters

4.2. Signal naming

● all generics start with G_
● all constants start with C_
● type names start with t_
● signals used as shift registers start with sr_
● signals used as counters start with cnt_
● signals used for states start with state_
● inputs start with i_
● inouts start with io_
● outputs start with o_

4.3. File naming

● testbench file names have the same name as the tested module except that the ending is
_tb.vhd

● a package file has the ending _package.vhd
● files with simulation data (e.g. stimuli for inputs) start with the name of the tested unit and

have the ending .vec (for vector)

4.4. Entity, architecture and instance names

● entity names should be the same as the file name in which they were written
● architectures are named rtl for synthezisable code and beh (behaviour) for test benches or

other non-synthezisable code
● instance names end with _inst, except in testbenches. There the tested component's instance

name is uut_ (unit under test), followed by the entity name of the component

4.5. Initial values

All variables, signals and ports are declared with initial values. This is important, because later the
Xilinx tools will use these values to initialize the content of registers during the power-up of the
circuit.

11

5. Lab Schedule

The lab follows the schedule shown in table 1.

Note that only the highlighted modules are necessary for the pong game.

12

Table 1: Lab schedule

	1. Organizational Behavior
	2. Project Overview
	2.1. Goal
	2.2. Technical realization
	2.3. Introduction to FPGAs
	2.4. Game rules

	3. Structure of the project
	3.1. Entity reset_circuit
	3.2. Entity input_decoder
	3.3. Entity game_engine
	3.4. Entity points_display
	3.5. Entity graphic_engine
	3.5.1. Entity pixel_clk_generator
	3.5.2. Entity render_engine
	3.5.3. Entity ram_controller
	3.5.4. Entity graphic_output

	4. Coding rules
	4.1. Case
	4.2. Signal naming
	4.3. File naming
	4.4. Entity, architecture and instance names
	4.5. Initial values

	5. Lab Schedule

