
Computer-aided Design of Digital
Circuits:

VHDL Fundamentals

by Arthur Strasser and Sean Whitty
a.strasser@tu-bs.de, whitty@ida.ing.tu-bs.de

Institute of Computer and Network Engineering
Technische Universität Braunschweig

1 VHDL: A Hardware Description Language

VHDL (Very-high-speed integrated circuit Hardware Description Language) is a solution
for describing digital circuits in computer-aided electronic design automation. VHDL,
along with Verilog, is the most common hardware description language used in the devel-
opment of Field-Programmable Gate Arrays (FPGA) and Application-Specific Integrated
Circuits (ASIC). The use of VHDL allows the development of designs with greater levels
of complexity than earlier methods used to describe hardware, and increase productivity
which can shorten lengthy time to market associated with other design solutions.

The design process can be split into three different phases:

Specification A hardware description of a given specification in VHDL is prepared

Validation/verification Simulation of a VHDL design and comparison of the results with
the specification

Synthesis Automated translation of a hardware description into ready-to-fab logic (ASIC
or FPGA)

1.1 System Structure

Chip

Process

Entity_1

Process

Entity_2

Entity_3

Component

Component

Component

The general structure of circuits described in VHDL is composed of a heterogeneous
description of dataflow and behavior between various entities and their architectures.

1

entity Definition of signals and the entity name from the external point of view

architecture Contains the internal realization

1.1.1 Entity

The entity can contain parameters called generics, which define specific properties, such as
the width of signals and ports.

Listing 1: Example of an entity with generics
1 e n t i t y ADDER i s

g e n e r i c (BIT WIDTH : i n t e g e r range 2 to 64 := 1 6) ;
3 port (A, B : in s i g n e d (BIT WIDTH−1 downto 0) ;

SUM : out s i g n e d (BIT WIDTH downto 0)) ;
5 end e n t i t y ADDER;

1.1.2 Architecture

The architecture is divided in two sections, which are known as declarations and statements.
The declarations define types, constants, and subroutines. Statements compose the essence
of the behavior. Three statement style types can be utilized:

Behavioral Constructed by processes with a sequential execution of statements

Dataflow Equivalent to a combinatorial function with logic operators

Structural A description of components (from a netlist)

1.1.3 Behavior

Statements contained inside a VHDL process behave similar to those in a conventional pro-
gramming language, such as C or Java. The statements within a process are sequentially
executed, based on control statements and locally defined variables. Furthermore, all as-
signments of a process are evaluated at the end of the process; in other words, new values
are available only at the beginning of the next activation. In contrast to other programming
languages, in VHDL, all hardware components are active at the same time. Parallelism in
a design can therefore be accomplished, for example, with the definition of more than one
process. A process is activiated by signals defined in its sensitivity list. This means that
changes to signals which are defined within the sensitivity list cause the activation of the
appropriate process. The following listing shows a process that is activated synchronously
by a periodic clock (Listing 2), and a process that is activated asynchronously by signal
changes (Listing 3).

Listing 2: Example of a synchronous process
1 a r c h i t e c t u r e r t l of e n t i t y n a m e i s
−− p l a c e here s i g n a l / c o n s t a n t / component d e c l a r a t i o n s

3 begin
−− p l a c e here s t a t e m e n t s

5 p r o c e s s s y n c h r o n o u s : p r o c e s s (c l k)
begin

7 i f (r i s i n g e d g e (c l k)) then
i f (A = B) then

9 C <= ’ 1 ’ ;
e l s e

11 C <= ’ 0 ’ ;
end i f ;

13 end i f ;
end p r o c e s s p r o c e s s s y n c h r o n o u s ;

15 end a r c h i t e c t u r e r t l ;

2

Listing 3: Example of an asynchronous process
1 a r c h i t e c t u r e r t l of e n t i t y n a m e i s
−− p l a c e here s i g n a l / c o n s t a n t / component d e c l a r a t i o n s

3 begin
−− p l a c e here s t a t e m e n t s

5 p r o c e s s a s y n c h r o n o u s : p r o c e s s (A, B)
begin

7 i f (A = B) then
C <= ’ 1 ’ ;

9 e l s e
C <= ’ 0 ’ ;

11 end i f ;
end p r o c e s s p r o c e s s a s y n c h r o n o u s ;

13 end a r c h i t e c t u r e r t l ;

1.1.4 Dataflow

This statement type is defined by a static assignment of signals in combination with gates,
adders, decoders, and multiplexers. Dataflow statements function like a static wiring be-
tween hardware components. Every change on the input signals leads to an immediate
change on the output signals.

Listing 4: Example of a asynchronous process
1 a r c h i t e c t u r e r t l of e n t i t y n a m e i s
−− p l a c e here s i g n a l / c o n s t a n t / component d e c l a r a t i o n s

3 begin
−− p l a c e here s t a t e m e n t s

5 C <= not (A xor B) ;
end a r c h i t e c t u r e r t l ;

1.1.5 Structure

A hardware description can consist of components from several sources. IPs and libraries
from other IP Core vendors are frequently included with self-written code. A so-called
structure description instantiates all components and connects them to one another (Listing
5).

Listing 5: Example of a structure description
a r c h i t e c t u r e r t l of e n t i t y n a m e i s

2 −− p l a c e here s i g n a l / c o n s t a n t / component d e c l a r a t i o n s
−− s i g n a l d e c l a r a t i o n

4 s i g n a l wire : s t d l o g i c ;
−− f i r s t component d e c l a r a t i o n

6 component XYZ i s
port (X,Y : in s t d l o g i c ;

8 Z : out s t d l o g i c) ;
end component XYZ;

10 −−second component d e c l a r a t i o n
component INV i s

12 port (X : in s t d l o g i c ;
Z : out s t d l o g i c) ;

14 end component INV ;
begin

16 −− p l a c e here s t a t e m e n t s
comp1 : XYZ port map (X => A, Y => B , Z => wire) ;

18 comp2 : INV port map (X => wire , Z => C) ;
end a r c h i t e c t u r e r t l ;

3

1.2 Communication

In VHDL, a developer must distinguish between signals and variables. Signals can be used
in a more physical manner to allow communication between various parts of a design, pro-
cesses, and different levels of a design hierarchy. Signals can be thought of as a direct,
wired connection with timing features that are necessary for simulation purposes. On the
other hand, variables are used only within processes to save values for sequential evaluation
without timing constraints.

1.2.1 Signal

Signals connect entities and establish communication between processes. In contrast to
variables, the value of a signal is modified after a given period of time and not immediately.
Inside a process, a new value is assigned after the entire sequence of statements is com-
pletely processed and next iteration begins. The following listings shows some signal
declarations (6) and some language characteristics (7).

Listing 6: Example of signal declarations
1 s i g n a l COUNT : i n t e g e r range 1 to 5 0 ;

s i g n a l DATA BUS : s t d l o g i c v e c t o r (10 downto 0) ;

Listing 7: Example of typical language characteristics
VHDL JAVA | P1 : p r o c e s s (A, B) i s

2 A <= B A = B | begin
C <= A C = A | A <= B ;

4 −− n o t e q u i v a l e n t | A <= C;
| −− r e s u l t : A = C

6 | end p r o c e s s P1 ;

1.2.2 Variable

In contrast to signals, variables value assignments occur immediately (Listing 9). There-
fore, the results are visible to subsequent sequential statements within the same process.
Communication between processes with variables is not possible. The following listing
(8) shows some examples of variable declarations. One of them is used to initialize and
constrain the range of a variable (INDEX).

Listing 8: Example of a variable declaration
v a r i a b l e INDEX : i n t e g e r range 1 to 50 := 1 0 ;

2 v a r i a b l e REG : s t d l o g i c v e c t o r (7 downto 0) ;
v a r i a b l e X, Y : i n t e g e r ;

Listing 9: Example of a variable assignment
1 P2 : p r o c e s s (A, B) i s

begin
3 v a r i a b l e a , b , c : i n t e g e r ;

a := a and b ;
5 a := a and c ;

−− r e s u l t : a := a and b and c
7 end p r o c e s s P2 ;

1.3 Datatypes

Every signal or variable must receive a data type at declaration time. A compiler checks ev-
ery assignment and type for consistency; therefore, it is often necessary to use type conver-
sions when making certain assignments (Listing10). The following subsections distinguish

4

between scalars and complex types, which are both frequently used. It should be noted that
not all types are suitable for synthesis, but can nonetheless be helpful during simulation.

Listing 10: Example of type conversion
1 s i g n a l a : i n t e g e r ;

s i g n a l b : s t d l o g i c v e c t o r (31 downto 0) ;
3 −− c o n v e r s i o n : i n t e g e r t o s t d l o g i c

−− second parame te r i s e q u i v a l e n t t o t h e w i d t h o f t h e t a r g e t
5 b <= s t d l o g i c v e c t o r (t o u n s i g n e d (a , 3 2)) ;

−− c o n v e r s i o n s t d l o g i c t o i n t e g e r
7 a <= t o i n t e g e r (t o u n s i g n e d (b , 3 2)) ;

1.3.1 Scalars

std logic Defined by IEEE package 1164 with nine different values

boolean Boolean values: false/true

integer Values with a range between −231-1 and +231-1 described in dec, oct or hex

1.3.2 Complex

std logic vector An array of std logic

signed/unsigned Usable with numeric std package for numbers and computations in
twos complement

1.4 Target System Architectures

Many use cases exist for VHDL, such as emulation, simulation, rapid prototyping, and au-
tomatic synthesis.
In general, however, certain design steps must be considered in advance in order to realize
a hardware design. First, one must describe the hardware design in VHDL. This includes
the use of one’s own intellectual property and is often combined with reusable components
from other vendors or recent projects. In the next step, the designer must compile and
map the design to the specified technology. In most cases, the compilation and synthesis
is accomplished with tools like Mentor Graphics ModelSim and Xilinx ISE, or other simi-
lar tools from technology vendors for FPGAs, ASICs or CPLDs (Complex Programmable
Logic Devices). The following sections provide a short introduction of FPGAs and ASICs.

1.4.1 FPGA: Field-Programmable Gate Array

The FPGA is a programmable device which consists of LUTs (Lookup Tables) and SRAM
cells. The lookup tables are realized as logic elements like AND and OR gates. A complex
design is composed of many LUTs which are connected by switches to map a design onto
the target FPGA hardware. The switches are equivalent to SRAM cells. These cells must be
programmed by a bitstream file from a synthesis tool. FPGAs can be programmed multiple
times and are very cost-effective when small volumes of a design are to be produced.

1.4.2 ASIC: Application-Specific Integrated Circuit

In contrast to FPGAs, ASICs are integrated circuits with fixed functionality that cannot be
reprogrammed after design time. They offer a significant cost reduction for vendors of high
volume products, such as mobile phones and other embedded systems. Moreover, ASICs
allow the designer to develop resource efficient platforms by reducing the number of ICs.

5

1.5 VHDL Example: Gates and Processes

Listing 11: Example of an entire VHDL code file
1 l i b r a r y i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3

e n t i t y g a t e s i s
5 port (i a , i b , i c , i d , i e , i f : in s t d l o g i c ;

o x , o y , o z : out s t d l o g i c) ;
7 end g a t e s ;

9 a r c h i t e c t u r e r t l of g a t e s i s
s i g n a l i n t e r n a l o u t : s t d l o g i c ;

11 s i g n a l i , j , k , l , m : s t d l o g i c ;
begin

13 −− some g a t e s
i <= i a or i b ;

15 j <= i b and i c ;
l <= not (i d and i e) ;

17 o z <= i when (i f = ’ 1 ’) e l s e j ;

19 −− some p r o c e s s e s
MUX : p r o c e s s (k , l , i a)

21 begin
i f i a = ’1 ’ then

23 m <= k ;
e l s e

25 m <= l ;
end i f ;

27 end p r o c e s s MUX;

29 FF : p r o c e s s (i f)
begin

31 i f r i s i n g e d g e (i f) then
i n t e r n a l o u t <= i e ;

33 end i f ;
end p r o c e s s FF ;

35 o y <= i n t e r n a l o u t ;

37 LATCH : p r o c e s s (i f , m)
i f (i f = ’1 ’) then

39 o x <= m;
end i f ;

41 end p r o c e s s LATCH;
end r t l ;

6

	VHDL: A Hardware Description Language
	System Structure
	Entity
	Architecture
	Behavior
	Dataflow
	Structure

	Communication
	Signal
	Variable

	Datatypes
	Scalars
	Complex

	Target System Architectures
	FPGA: Field-Programmable Gate Array
	ASIC: Application-Specific Integrated Circuit

	VHDL Example: Gates and Processes

