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Introduction 

 growing variety and complexity  
(e.g. automotive domain) 

 object-oriented and component-based design for 
reusability and separation  
(e.g. AUTOSAR) 

 interfaces with procedure call semantics (same core) 
     (e.g. microkernel-based systems) 
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Motivational example 

Two ADAS functions implemented by multiple software components: 

 Parking assistant (P),  
trajectory calculation (T),  
object recognition (O1) 

 Lane detection (L),  
object recognition & object masking (O2),  
steering (S) 

How can we verify latency requirements of P and L? 
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Modelling communicating threads for timing analysis 

Threads 

 sequence of instructions and  
communication 

 scheduled by the OS 
(here: static priority) 

precedence constraints  
(dependencies) between  
 thread segments 

Tasks 

 activated by preceding task 
(or external stimulus) 

 communicate at completion 

 activations can queue up 

 execute on the thread‘s priority 

task graph 

thread communication 

task chains (w/ latency constraints) 
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Observations 

1. Task graph obfuscates procedure call (synchronous) semantics. 

 Caller is blocked until the callee returns 

non-overlapping execution of task chains 

predecessors cannot interfere with dependent tasks (pessimistic results) 

Example: 

 

a0 a1 a2 

synchronous  semantics 
(non-overlapping execution) 

asynchronous semantics 
(overlapping execution) 
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task-chain latencies 
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Observations 

1. Task graph obfuscates procedure call (synchronous) semantics. 

 caller is blocked until the callee returns 

non-overlapping execution of task chains 

predecessors cannot interfere with dependent tasks (pessimistic results) 

2. Task chains have non-monotonic priorities. 

 in contrast to: descending priority assignment 

 task-chain latency = response time of last task 
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Wanted: 
Worst-case latency analysis for task chains on the same resource that… 
 considers the procedure call semantics of the thread communication 
 can deal with non-monotonic, i.e. arbitrary priority assignments. 
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Outline 

 Motivation 

 Analysis approach and system model 

 Response-time analysis for synchronous task chains  

 Application to asynchronous task chains 

 Related work 

 Experimental evaluation 

 Conclusion 
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Analysis approach – preliminary work 

Analysis flow of Compositional Performance Analysis (CPA) 

 event model interface 𝜂+/− Δ𝑡 :  
max/min number of activations between any time window Δ𝑡 

 local scheduling analysis based on busy-window technique:  
Calculates amount of time a resource is busy processing 𝑞 events of task 𝑖. 

 e.g.:    𝐵𝑖 𝑞 = 𝑞 ∙ 𝐶𝑖
+ +  𝜂𝑗

+ 𝐵𝑖 𝑞 ∙ 𝐶𝑗
+

𝑗∈𝐼𝑖
 

 

 

 event model propagation:  
Derives new event models based  
on local scheduling analysis results. 

 repeated until convergence 

 path latency: sum of WCRTs Resource 

𝜏 𝜏 

𝜏 

Resource 

η+/-(Δt) 

η+/-(Δt) 

𝜏 

𝜏 

core execution 
time 

interference from 
other tasks 

propagation 



April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 10 

 

Analysis approach – modification 

Problem: Interference accounted multiple times within a task chain. 

 Can be limited dependent on the semantics of the task chain. 

Idea: busy-window analysis for entire task chains 

 q-event task-chain busy window 

 

 

 

 

 

 

 improvement of local scheduling analysis  

 applied but not limited to CPA 
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System Model 

Assumptions 

 static-priority preemptive (SPP) scheduling on processing resource 

 task chains do not cross resource boundaries 

 tasks within the chain have exactly one incoming and outgoing edge 

 same communication semantics for entire resource (easily extensible) 

 arbitrary priorities 

Terminology 

 a task chain 𝑖 consists of a sequence of tasks 𝜏𝑖1, 𝜏𝑖2, … , 𝜏𝑖𝑛𝑖  

 synchronous task chain = non-overlapping execution 

 asynchronous task chain = overlapping execution possible 

 best-case/worst-case execution time for each job of 𝜏𝑖𝑘: 𝐶𝑖𝑘
−/𝐶𝑖𝑘
+  
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Response time analysis for synchronous task chains 

Intra-chain interference 

 no overlapping execution 

Inter-chain interference 

 stalling and deferred activations: 
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Response time analysis for synchronous task chains 

Intra-chain interference 

 no overlapping execution 

Inter-chain interference 

 stalling and deferred activations: 

 

a0 
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b0 b1 
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priority 

chain 
under analysis 

busy window including 
deferred activation 
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Task-chain busy window for synchronous task chains 

Q-event task-chain busy window: 

 self interference bounded by 𝑞 

 considers every (non-deferred)  
task on a higher priority than 
any task in the chain: 𝐼𝑖𝑗  

 single-time blocking limited to the  
critical deferred segment 𝑆𝑖𝑗 

busy-window for task chain 𝑖: 

 
𝐵𝑖 𝑞 = 𝒒 𝑪𝒊𝒌

+

𝒌
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+
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Can this be applied to asynchronous chains? 
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Application to asynchronous task chains 

Q-event task-chain busy window for asynchronous task chains: 

 additional self-interference 

 deferred tasks 𝐷𝑖𝑗 = tasks dependent on 

a stalled task 

single-time blockers 

𝐵𝑖 𝑞 = 𝜼𝒊
+(𝑩𝒊 𝒒 ) 𝑪𝒊𝒌

+

𝒌

+ 

  𝜼𝒋
+ 𝑩𝒊 𝒒 ∙ 𝑪𝒋𝒌

+
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+  𝑪𝒋𝒌
+

𝒌∈𝑫𝒊𝒋𝑗≠𝑖
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Outline 

 Motivation 

 Analysis approach and system model 

 Response-time analysis for synchronous task chains  

 Application to asynchronous task chains 

 Related work 

 Experimental evaluation 

 Conclusion 



April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 18 

 

Related work 

Context-aware analysis extensions (distributed systems) 

 offset-based analyses [Palencia et al. 1999, Redell 2003, Henia et al. 2006] 

 pay bursts only once [Schliecker et al. 2009] 

 limiting event streams [Kollmann et al. 2010, 2011] 

Refinement of task models 

 classification and schedulability analysis [Stigge 2014]  

 no exploitation of (synchronous) communication semantics in chains on a 
single resource 
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Experimental evaluation 

Implementation 

 extension module for pyCPA 

 requires small modification of pyCPA core (limit propagation) 

Experiments 

 synthetic experiments 

 conventional pyCPA (sum of tasks’ WCRTs) 

 task-chain busy window 

 automotive use case (park assist + lane detection) 

 conventional pyCPA (sum of tasks’ WCRTs) 

 task-chain busy window 

MAST (offset-based analysis with precedence relations) 

 
pyCPA: http://bitbucket.org/pycpa  

MAST: http://mast.unican.es/ 

http://bitbucket.com/pycpa
http://mast.unican.es/
http://mast.unican.es/
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Synthetic experiments – Setup  

Comparison of conventional pyCPA with our extension for task chains. 

 task set of six tasks with fixed WCET/BCET 

 three different compositions into two chains (a & b) 

 

 

 

 

 

 

 utilisation: 𝑈3:3 = 0.97 | 𝑈4:2 = 0.82 | 𝑈5:1 = 0.78  

 distinct task priorities 

 ran analysis for all possible priority permutations in each composition 

 compared resulting WCRTs of both task chains 

3:3 4:2 5:1 

a 

b 
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Synthetic experiments – Synchronous 

𝑡𝑎𝑠𝑘 𝑐ℎ𝑎𝑖𝑛 𝑊𝐶𝑅𝑇

 𝑊𝐶𝑅𝑇𝑖𝑖

 

conventional pyCPA 

our results 

relative latency  
improvement: 

median improvement: 
3:3) a: 0.18 | b: 0.19 
4:2) a: 0.13 | b: 0.29 
5:1) a: 0.13 | b: 0.6 
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Synthetic experiments – Asynchronous 

smaller improvement  
due to self-interference 

median improvement: 
3:3) a: 0.35 | b: 0.29 
4:2) a: 0.17 | b: 0.33 
5:1) a: 0.13 | b: 0.6 
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Automotive use case 

Parking assistant and lane detection (introductory example): 

 

 

 

 

Task chain P 

 period 200ms, jitter 5ms, core execution time 70ms 

Task chain L 

 period 100ms, jitter 5ms, core execution time 50ms 

 

Objective: Find a feasible thread priority assignment under given latency 
constraint for both task chains (150ms).  

 analyse 5040 priority assignments 

 

task chain P 

task chain L 

U=0.85 
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Automotive use case – Results summary 

Conventional CPA: 

 analysed 5040 priority assignments in about 8h (single core desktop) 

 no convergence for all but 6 cases 

 latency results between 4949 and 8613ms (P), 1017 and 2322ms (L) 

 deemed not feasible 

MAST: 

 analysis took 34 seconds, results for all 5040 priority assignments 

 11 assignments feasible (below the required maximum latency) 

Task-chain busy window: 

 analysis took 22 seconds, converged for all 5040 priority assignments 

 2880 assignments feasible (below the required maximum latency) 
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Automotive use case – Detailed latency results 
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Summary & Conclusion 

 Task chains resulting from communicating threads imply certain semantics. 

 Improved local scheduling analysis for SPP-scheduled task chains. 

 Improved coverage (# analysable systems). 

 Much tighter (and realistic!) WCRT results. 

 Reduced analysis run-time (from hours to seconds). 

 Enables (in-field) design-space exploration. 

 Enhances applicability of response-time analysis for existing software 
implementations (e.g. RTE, 3rd-party software stacks, libraries). 

Thank you for your attention. Questions? 
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