
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Response-Time Analysis for Task Chains in Communicating
Threads (RTAS’16)

Johannes Schlatow, Rolf Ernst April 14th, 2016

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 2

Introduction

 growing variety and complexity
(e.g. automotive domain)

 object-oriented and component-based design for
reusability and separation
(e.g. AUTOSAR)

 interfaces with procedure call semantics (same core)
 (e.g. microkernel-based systems)

© automotiveIT.com

SW
comp.

run-time environment (RTE)

SW
comp.

operating-system (OS) view

thread

thread

thread

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 3

Motivational example

Two ADAS functions implemented by multiple software components:

 Parking assistant (P),
trajectory calculation (T),
object recognition (O1)

 Lane detection (L),
object recognition & object masking (O2),
steering (S)

How can we verify latency requirements of P and L?

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 4

Modelling communicating threads for timing analysis

Threads

 sequence of instructions and
communication

 scheduled by the OS
(here: static priority)

precedence constraints
(dependencies) between
 thread segments

Tasks

 activated by preceding task
(or external stimulus)

 communicate at completion

 activations can queue up

 execute on the thread‘s priority

task graph

thread communication

task chains (w/ latency constraints)

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 5

Observations

1. Task graph obfuscates procedure call (synchronous) semantics.

 Caller is blocked until the callee returns

non-overlapping execution of task chains

predecessors cannot interfere with dependent tasks (pessimistic results)

Example:

a0 a1 a2

synchronous semantics
(non-overlapping execution)

asynchronous semantics
(overlapping execution)

a1

a2

a3

task-chain latencies

a1

a2

a3

task-chain latencies

priority

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 6

Observations

1. Task graph obfuscates procedure call (synchronous) semantics.

 caller is blocked until the callee returns

non-overlapping execution of task chains

predecessors cannot interfere with dependent tasks (pessimistic results)

2. Task chains have non-monotonic priorities.

 in contrast to: descending priority assignment

 task-chain latency = response time of last task

 P

tc

or

tc

P

p
ri

o
ri

ty

L

or

L

om

L

S

L

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 7

Observations

1. Task graph obfuscates procedure call (synchronous) semantics.

 caller is blocked until the callee returns

non-overlapping execution of task chains

predecessors cannot interfere with dependent tasks (pessimistic results)

2. Task chains have non-monotonic priorities.

 in contrast to: descending priority assignment

 task-chain latency = response time of last task

 P

tc

or

tc

P

p
ri

o
ri

ty

L

or

L

om

L

S

L

Wanted:
Worst-case latency analysis for task chains on the same resource that…
 considers the procedure call semantics of the thread communication
 can deal with non-monotonic, i.e. arbitrary priority assignments.

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 8

Outline

 Motivation

 Analysis approach and system model

 Response-time analysis for synchronous task chains

 Application to asynchronous task chains

 Related work

 Experimental evaluation

 Conclusion

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 9

Analysis approach – preliminary work

Analysis flow of Compositional Performance Analysis (CPA)

 event model interface 𝜂+/− Δ𝑡 :
max/min number of activations between any time window Δ𝑡

 local scheduling analysis based on busy-window technique:
Calculates amount of time a resource is busy processing 𝑞 events of task 𝑖.

 e.g.: 𝐵𝑖 𝑞 = 𝑞 ∙ 𝐶𝑖
+ + 𝜂𝑗

+ 𝐵𝑖 𝑞 ∙ 𝐶𝑗
+

𝑗∈𝐼𝑖

 event model propagation:
Derives new event models based
on local scheduling analysis results.

 repeated until convergence

 path latency: sum of WCRTs Resource

𝜏 𝜏

𝜏

Resource

η+/-(Δt)

η+/-(Δt)

𝜏

𝜏

core execution
time

interference from
other tasks

propagation

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 10

Analysis approach – modification

Problem: Interference accounted multiple times within a task chain.

 Can be limited dependent on the semantics of the task chain.

Idea: busy-window analysis for entire task chains

 q-event task-chain busy window

 improvement of local scheduling analysis

 applied but not limited to CPA

Resource (SPP)

𝜏𝑎2 𝜏𝑎1

𝜏𝑐2 𝜏𝑐1

𝑩𝒂(𝒒)

𝑩𝒄(𝒒)

Resource
(SPP)

𝜏𝑏2

𝜏𝑏1

𝑩𝒃(𝒒)

Input

event model

Output

event model

propagated

event models

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 11

System Model

Assumptions

 static-priority preemptive (SPP) scheduling on processing resource

 task chains do not cross resource boundaries

 tasks within the chain have exactly one incoming and outgoing edge

 same communication semantics for entire resource (easily extensible)

 arbitrary priorities

Terminology

 a task chain 𝑖 consists of a sequence of tasks 𝜏𝑖1, 𝜏𝑖2, … , 𝜏𝑖𝑛𝑖

 synchronous task chain = non-overlapping execution

 asynchronous task chain = overlapping execution possible

 best-case/worst-case execution time for each job of 𝜏𝑖𝑘: 𝐶𝑖𝑘
−/𝐶𝑖𝑘
+

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 12

Response time analysis for synchronous task chains

Intra-chain interference

 no overlapping execution

Inter-chain interference

 stalling and deferred activations:

a0

a1
b0 b1

a2

a0

a2

b0

b1

a1

priority

priority

chain
under analysis

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 13

Response time analysis for synchronous task chains

Intra-chain interference

 no overlapping execution

Inter-chain interference

 stalling and deferred activations:

a0

a1
b0 b1

a2

a0

a2

b0

b1

a1

priority

priority

chain
under analysis

busy window including
deferred activation

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 14

Task-chain busy window for synchronous task chains

Q-event task-chain busy window:

 self interference bounded by 𝑞

 considers every (non-deferred)
task on a higher priority than
any task in the chain: 𝐼𝑖𝑗

 single-time blocking limited to the
critical deferred segment 𝑆𝑖𝑗

busy-window for task chain 𝑖:

𝐵𝑖 𝑞 = 𝒒 𝑪𝒊𝒌

+

𝒌

+

 𝜼𝒋
+ 𝑩𝒊 𝒒 ∙ 𝑪𝒋𝒌

+

𝒋∈𝑰𝒊𝒋

+ 𝑪𝒋𝒌
+

𝒌∈𝑺𝒊𝒋𝑗≠𝑖

self interference
(bounded by 𝒒)

critical
deferred segment normal interference

(bounded by 𝜼𝒂
+)

inter-chain
interference

M M

H

L

H

L

H

mutual-exclusive
deferred segments

chain 𝑖 chain j

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 15

Task-chain busy window for synchronous task chains

Q-event task-chain busy window:

 self interference bounded by 𝑞

 considers every (non-deferred)
task on a higher priority than
any task in the chain: 𝐼𝑖𝑗

 single-time blocking limited to the
critical deferred segment 𝑆𝑖𝑗

busy-window for task chain 𝑖:

𝐵𝑖 𝑞 = 𝒒 𝑪𝒊𝒌

+

𝒌

+

 𝜼𝒋
+ 𝑩𝒊 𝒒 ∙ 𝑪𝒋𝒌

+

𝒋∈𝑰𝒊𝒋

+ 𝑪𝒋𝒌
+

𝒌∈𝑺𝒊𝒋𝑗≠𝑖

self interference
(bounded by 𝒒)

critical
deferred segment normal interference

(bounded by 𝜼𝒂
+)

inter-chain
interference

M M

H

L

H

L

H

mutual-exclusive
deferred segments

chain 𝑖 chain j
Can this be applied to asynchronous chains?

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 16

Application to asynchronous task chains

Q-event task-chain busy window for asynchronous task chains:

 additional self-interference

 deferred tasks 𝐷𝑖𝑗 = tasks dependent on

a stalled task

single-time blockers

𝐵𝑖 𝑞 = 𝜼𝒊
+(𝑩𝒊 𝒒) 𝑪𝒊𝒌

+

𝒌

+

 𝜼𝒋
+ 𝑩𝒊 𝒒 ∙ 𝑪𝒋𝒌

+

𝒋∈𝑰𝒊𝒋

+ 𝑪𝒋𝒌
+

𝒌∈𝑫𝒊𝒋𝑗≠𝑖

self interference
(bounded by 𝜼𝒃

+)

deferred tasks
(bounded by 1,

proof in the paper)

normal interference
(bounded by 𝜼𝒂

+)

inter-chain
interference

M M

H

L

H

L

H

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 17

Outline

 Motivation

 Analysis approach and system model

 Response-time analysis for synchronous task chains

 Application to asynchronous task chains

 Related work

 Experimental evaluation

 Conclusion

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 18

Related work

Context-aware analysis extensions (distributed systems)

 offset-based analyses [Palencia et al. 1999, Redell 2003, Henia et al. 2006]

 pay bursts only once [Schliecker et al. 2009]

 limiting event streams [Kollmann et al. 2010, 2011]

Refinement of task models

 classification and schedulability analysis [Stigge 2014]

 no exploitation of (synchronous) communication semantics in chains on a
single resource

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 19

Experimental evaluation

Implementation

 extension module for pyCPA

 requires small modification of pyCPA core (limit propagation)

Experiments

 synthetic experiments

 conventional pyCPA (sum of tasks’ WCRTs)

 task-chain busy window

 automotive use case (park assist + lane detection)

 conventional pyCPA (sum of tasks’ WCRTs)

 task-chain busy window

MAST (offset-based analysis with precedence relations)

pyCPA: http://bitbucket.org/pycpa

MAST: http://mast.unican.es/

http://bitbucket.com/pycpa
http://mast.unican.es/
http://mast.unican.es/

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 20

Synthetic experiments – Setup

Comparison of conventional pyCPA with our extension for task chains.

 task set of six tasks with fixed WCET/BCET

 three different compositions into two chains (a & b)

 utilisation: 𝑈3:3 = 0.97 | 𝑈4:2 = 0.82 | 𝑈5:1 = 0.78

 distinct task priorities

 ran analysis for all possible priority permutations in each composition

 compared resulting WCRTs of both task chains

3:3 4:2 5:1

a

b

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 21

Synthetic experiments – Synchronous

𝑡𝑎𝑠𝑘 𝑐ℎ𝑎𝑖𝑛 𝑊𝐶𝑅𝑇

 𝑊𝐶𝑅𝑇𝑖𝑖

conventional pyCPA

our results

relative latency
improvement:

median improvement:
3:3) a: 0.18 | b: 0.19
4:2) a: 0.13 | b: 0.29
5:1) a: 0.13 | b: 0.6

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 22

Synthetic experiments – Asynchronous

smaller improvement
due to self-interference

median improvement:
3:3) a: 0.35 | b: 0.29
4:2) a: 0.17 | b: 0.33
5:1) a: 0.13 | b: 0.6

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 23

Automotive use case

Parking assistant and lane detection (introductory example):

Task chain P

 period 200ms, jitter 5ms, core execution time 70ms

Task chain L

 period 100ms, jitter 5ms, core execution time 50ms

Objective: Find a feasible thread priority assignment under given latency
constraint for both task chains (150ms).

 analyse 5040 priority assignments

task chain P

task chain L

U=0.85

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 24

Automotive use case – Results summary

Conventional CPA:

 analysed 5040 priority assignments in about 8h (single core desktop)

 no convergence for all but 6 cases

 latency results between 4949 and 8613ms (P), 1017 and 2322ms (L)

 deemed not feasible

MAST:

 analysis took 34 seconds, results for all 5040 priority assignments

 11 assignments feasible (below the required maximum latency)

Task-chain busy window:

 analysis took 22 seconds, converged for all 5040 priority assignments

 2880 assignments feasible (below the required maximum latency)

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 25

Automotive use case – Detailed latency results

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 26

Summary & Conclusion

 Task chains resulting from communicating threads imply certain semantics.

 Improved local scheduling analysis for SPP-scheduled task chains.

 Improved coverage (# analysable systems).

 Much tighter (and realistic!) WCRT results.

 Reduced analysis run-time (from hours to seconds).

 Enables (in-field) design-space exploration.

 Enhances applicability of response-time analysis for existing software
implementations (e.g. RTE, 3rd-party software stacks, libraries).

Thank you for your attention. Questions?

April 14th, 2016 | Johannes Schlatow, Rolf Ernst | Response-Time Analysis for Task Chains in Communicating Threads | Slide 27

References

 [Diemer et al. 2012] J. Diemer, P. Axer, and R. Ernst, “Compositional Performance Analysis in Python with pyCPA,” in 3rd
International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS), July 2012.

 [Henia et al. 2006] R. Henia and R. Ernst , “Improved offset-analysis using multiple timing-references,” in Proceeding Design
Automation and Test in Europe, March 2006.

 [Kollmann et al. 2010] Kollmann, Steffen, Victor Pollex, Kilian Kempf, and Frank Slomka. “A Scalable Approach for the Description of
Dependencies in Hard Real-Time Systems.” In Leveraging Applications of Formal Methods, Verification, and Validation, Oct 2010

 [Kollmann et al. 2011] Kollmann, Steffen, Victor Pollex, and Frank Slomka. “Reducing Response Times by Competition Based
Dependencies.” In Methoden Und Beschreibungssprachen Zur Modellierung Und Verifikation von Schaltungen Und Systemen
(MBMV), Oldenburg, Germany, February 2011.

 [Perathoner 2011] S. Perathoner, “Modular performance analysis of embedded real-time systems: improving modeling scope and
accuracy,” Ph.D. dissertation, ETH Zurich, 2011.

 [Palencia et al. 1999] J. C. Palencia and M. G. Harbour, “Exploiting precedence relations in the schedulability analysis of distributed
real-time systems,” in Real-Time Systems Symposium, 1999. Proceedings. The 20th IEEE, 1999, pp. 328–339.

 [Redell 2003] O. Redell, “Response Time Analysis for Implementation of Distributed Control Systems”, Doctoral Thesis, TRITA-MMK
2003:17, ISSN 1400-1179, ISRN KTH/MMK/R--03/17--SE, 2003

 [Schliecker et al. 2009] S. Schliecker and R. Ernst, “A recursive approach to end-to-end path latency computation in heterogeneous
multiprocessor systems,” in Proc. 7th International Conference on Hardware Software Codesign and System Synthesis (CODES-ISSS).
Grenoble, France: ACM, oct 2009.

 [Stigge 2014] M. Stigge “Real-time workload models: Expressiveness vs. analysis efficiency”, Ph.D. dissertation, Uppsala University,
2014.

