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Abstract—One of the key challenges in future Ethernet-based
automotive and industrial networks is the low-latency transport
of time-critical data. To date, Ethernet frames are sent non-
preemptively. This introduces a major source of delay, as, in
the worst-case, a latency-critical frame might be blocked by a
frame of lower priority, which started transmission just before the
latency-critical frame. The upcoming IEEE 802.3br standard will
introduce Ethernet frame preemption to address this problem.
While high-priority traffic benefits from preemption, lower-
priority (yet still latency-sensitive) traffic experiences a certain
overhead, impacting its timing behavior. In this paper, we present
a formal timing analysis for Ethernet to derive worst-case latency
bounds under preemption. We use a realistic automotive Ethernet
setup to analyze the worst-case performance of standard Ethernet
and Ethernet TSN under preemption and also compare our
results to non-preemptive implementations of these standards.

I. INTRODUCTION

Future in-vehicle backbone networks will be based on
Ethernet, as legacy buses such as CAN or FlexRay cannot keep
pace with the growing bandwidth demands of advanced driver
assistance systems (ADAS) or infotainment systems. Ethernet
enables a scalable high-speed communication infrastructure
and allows to realize arbitrary network topologies. However,
Ethernet has a complex timing behavior. Thus, if safety-critical
real-time applications are added to Ethernet, a formal analysis
is required to verify that their timing requirements are met.

As an in-vehicle backbone network, Ethernet must be able to
transport traffic streams of mixed-criticality. Standard Ethernet
(IEEE 802.1Q) addresses this problem by introducing eight
prioritized traffic classes. As there are typically more traffic
streams than traffic classes in a network, streams must share
traffic classes. In IEEE 802.1Q, arbitration between these traf-
fic classes follows a static-priority-based scheme. Arbitration
between frames of the same traffic class is usually done in
FIFO order. Ethernet AVB and the upcoming Ethernet TSN
(IEEE 802.1Qbv) [1] introduce additional traffic shapers on
top of IEEE 802.1Q, e.g. in order to prevent starvation of
lower-priorities or to implement time-triggered transmission
of latency-critical traffic (respectively).

Until now, however, frame transmission in Ethernet is non-
preemptive, regardless of the arbitration mechanism. Under
non-preemptive frame transmission, a frame, which is in trans-
mission, is guaranteed to finish without interruption. Hence, a
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Fig. 1. Example of non-preemptive and preemptive frame transmission

time-critical high-priority frame can be delayed by a frame
of lower-priority, if the high-priority frame arrives during
the transmission of the lower-priority one. For instance, in
the worst-case, high-priority frames can be delayed by about
120 us per switch at 100 MBit/s links by lower-priority frames.
This might be too much for time-critical control applications.

The upcoming IEEE 802.3br standard addresses this prob-
lem by introducing frame preemption to Ethernet. With frame
preemption the maximum delay that can be experienced by
a higher-priority frame due to lower-priority blocking is re-
duced significantly to about 12 us per switch at 100 MBit/s.
Frame preemption, however, also causes a certain overhead
for preempted frames, which can have a measurable negative
performance impact. This can become a problem when critical
traffic streams with large frames, which are not scheduled on
the highest priority, are preempted. ADAS (camera) traffic,
which is usually scheduled on a priority below high-priority
control traffic, is a typical example.

Figure 1 illustrates frame preemption in standard Ethernet
inside a switch port. There are two frames: HP and LP, where
HP has a higher priority than LP. Frame HP arrives while LP
is in transmission. In the non-preemptive scenario, HP has to
wait for LP to finish its transmission before it can be sent. This
results in a long transmission latency R+

HP of HP. Under frame
preemption, the transmission of frame LP can be preempted
to allow the higher-priority frame HP to be sent early. As
preemption entails a certain overhead, i.e. the first fragment
of frame LP must be terminated with a CRC followed by an
inter frame gap, HP cannot be sent immediately. After HP
has been transmitted, LP is resumed. Again, this introduces
a certain overhead by prepending the new fragment of LP
with a preamble and other information, which is required to
reassemble the preempted frame at the receiving end. As can
be seen, preemption decreases the delay that HP experiences.
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Observe, however, that the preemption overhead increases the
time during which the switch port is busy transmitting data.

The contribution of this paper is twofold. First, we present
a formal worst-case timing analysis for frame preemption in
standard Ethernet and Ethernet TSN. Then, we evaluate the
effect of frame preemption on performance by comparing the
worst-case latency guarantees of our analysis with the results
of a non-preemptive analysis in a realistic automotive setup.

II. RELATED WORK

Simulation has traditionally been used to evaluate network
performance. However, it typically entails long simulation
runs. Furthermore, there is no guarantee that simulation ex-
poses all corner cases, rendering it unsuitable to verify the
timing behavior of timing- and safety-critical systems (e.g.
highly-automated and autonomous driving). It has been shown,
on the other hand, that compositional performance analysis
(CPA) [2], real-time calculus (RTC) [3], or the trajectory
approach [4] can be used to derive safe latency bounds for
Ethernet networks. An RTC-based Ethernet analysis is given in
[5]. AFDX, an avionics Ethernet implementation, is analysed
in [4]. Formal Ethernet timing analyses based on CPA are [6]
for IEEE 802.1Q, [7] for Ethernet AVB, and [8] for Ethernet
TSN. To the best of our knowledge, no formal analysis to
derive worst-case performance guarantees under IEEE 802.3br
frame preemption has been proposed so far.

A simulation-based evaluation of IEEE 802.3br is presented
in [9]. In [10], an experiment-based evaluation of a custom
preemption mechanism, which has a slightly larger overhead
than IEEE 802.3br, is presented. Both [9] and [10] confirm that
frame preemption reduces the latency and jitter of high-priority
traffic. However, no formal worst-case guarantees are given.

An early academic version of TTEthernet supported frame
preemption. However, preempted frames were not resumed but
retransmitted, resulting in poor link utilization. Recent com-
mercial TTEthernet implementations [11] only support timely
blocking (block non-critical frames, so that there is no overlap
with time-triggered critical frames) and shuffling (accept delay
from non-preemptiveness). In [12], an actual frame preemp-
tion mechanism for TTEthernet is presented. The evaluation,
however, is only simulation-based and does neither consider
latency nor jitter. Only frame drop rates are investigated.

III. FRAME PREEMPTION IN ETHERNET (IEEE 802.3br)

Frame preemption in Ethernet is specified in the IEEE
802.3br (interspersing express traffic) standard [13]. In the con-
text of Ethernet TSN, IEEE 802.1Qbu (frame preemption) [14]
adds management and configuration mechanisms for frame
preemption. As we are interested in the timing impact of the
actual preemption mechanism, we will focus on IEEE 802.3br.

IEEE 802.3br only allows one level of preemption. To this
end, it defines two MAC interfaces: the express MAC interface
and the preemptable MAC interface. Each Ethernet traffic class
is mapped to either the express or the preemptable MAC
interface. Frames of express classes cannot be preempted. Only
frames of classes which are mapped to the preemptable MAC
interface may be preempted by express frames. Particularly,
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Fig. 2. MAC frame formats: original IEEE 802.3 MAC frame format on the
top followed by four IEEE 802.3br frame formats (all sizes in bytes)

preemptable frames cannot be preempted by other preemptable
frames regardless of their priority. Note that IEEE 802.3br
defines link-level frame preemption, i.e. frames are split into
fragments and are reassembled at the MAC interfaces, so that
switches (internally) only process complete frames.

As a result of preemption, a frame is split into two or more
fragments. One design goal of IEEE 802.3br was to preserve
the basic structure of IEEE 802.3’s MAC frame format in order
to make frame preemption transparent to Ethernet’s physical
layer (PHY). Hence, each fragment must appear to the PHY
as a valid Ethernet frame. To this end, IEEE 802.3br defines
different MAC frame formats (see Figure 2). All formats start
with a preamble and end with a CRC sum (FCS or MCRC)
followed by an inter frame gap (IFG). Additionally, a (normal)
IEEE 802.3 MAC frame comprises a start of frame delimiter
(SFD), destination and source addresses (DA and SA), an
IEEE 802.1Q tag (Q-Tag), an EtherType field (ET), and finally
the actual payload, e.g. IP and UDP or TCP data.

The MAC frames of IEEE 802.3br’s dual MAC interface
are also called MFrames (MAC merge frames). The express
frame format is very similar to the IEEE 802.3 MAC frame
format. The only difference is that the SFD is replaced by
an SMD-E (start MFrame delimiter - express) field to signal
the express frame. The first preemptable frame is also very
similar to the express frame. Its start, however, is signaled by
the SMD-Sx (SMD - start fragment) delimiter. If this frame is
not preempted, it is terminated by an FCS followed by an IFG
(not shown in Figure 2). A preemptable frame may be split into
fragments. With the exception of the last one, each fragment is
terminated by an MCRC (instead of an FCS) followed by an
IFG. This MCRC protects the fragment’s data and is necessary
to let the fragment appear as a valid IEEE 802.3 MAC frame
to the Ethernet PHY. In the last fragment, this MCRC is
replaced by the FCS of the entire original frame, i.e. if it had
been transmitted without preemption. All fragments following
the first one are signaled by SMD-Cx (SMD - continuation
fragment) and a fragment counter (FCnt). As IEEE 802.3br
only allows one level of preemption, DA, SA, Q-Tag, and ET
only have to be transmitted once. Thus, all fragments after the
first one can accommodate a slightly larger payload. SMD-
Sx/Cx and FCnt are implemented as modulo-4 counters to
facilitate the detection of lost fragments.

All MAC frames (including fragments) must meet the
minimum Ethernet frame size requirement, which is 84 bytes
(including IFG, Figure 2). If the actual payload is too small
to meet this requirement, the payload field is padded accord-
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ingly. However, preemption is not allowed to introduce any
additional padding to the resulting fragments. This imposes
constraints on the preemption instant and the fragmentation
granularity: (a) A preemptable frame cannot be preempted un-
til the fragment (of it) that is currently being transmitted fulfills
the minimum frame size requirement. (b) A preemptable frame
or its remaining data can only be fragmented further if the
resulting fragments meet the minimum frame size requirement.

From a worst-case perspective it is essential to determine
the longest frame or fragment, which can block an express
frame, and the preemption overhead per fragment.

Lemma 1. The longest lower-priority frame or fragment that
can block an express frame is 143 bytes long.
Proof. Two cases must be considered: (a) a lower-priority
frame that cannot be preempted and (b) a frame’s last fragment
that cannot be preempted further. For both cases, we first
determine the smallest frame or fragment that can still be
preempted. (a) As we are interested in the smallest frame, only
one preemption is possible. If we split a frame, both resulting
fragments must fulfill the minimum Ethernet frame size re-
quirement of 84 bytes (preemption is not allowed to introduce
additional padding, v.s.). Hence, our goal is to minimize the
combined payload p=p1 + p2 of both frames, s.t. Preamble +
SMD-Sx+DA+SA+Q-Tag+ET+p1+MCRC+IFG≥84 bytes
(first fragment) and Preamble+SMD-Cx+FCnt+p2 +FCS+
IFG≥84 bytes (second fragment) (see Figure 2). This yields
p1=42 and p2=60 bytes. Hence, the smallest frame, which
can still be preempted, must have a payload of p=102 bytes,
which results in an overall frame size of 144 bytes, if Pream-
ble, SMD-Sx, DA, SA, Q-Tag, ET, FCS/MCRC, and IFG are
added. (b) Any remaining data can only be split further, if the
resulting fragments fulfill the minimum Ethernet frame size
requirement of 84 bytes. Here we minimize p=p1 + p2 s.t.
Preamble + SMD-Cx + FCnt + p1 + MCRC + IFG≥84 bytes
and Preamble + SMD-Cx + FCnt +p2 + FCS + IFG≥84 bytes,
which yields p1=p2=60 bytes. Hence, the smallest amount of
remaining data p that can still be preempted is 120 bytes and
results in an overall fragment size of 144 bytes, if Preamble,
SMD-Cx, FCnt, FCS, and IFG are added. In both cases,
we get the largest frame/fragment that cannot be preempted
further by subtracting 1 byte from the payload p, yielding
frames/fragments of 143 bytes.

Lemma 2. The overhead per preemption is 24 bytes.
Proof. As each additional fragment requires an additional
Preamble, SMD-Cx, FCnt, MCRC, and IFG, the preemption
overhead of a single preemption is 24 bytes (see Figure 2).

IV. COMPOSITIONAL PERFORMANCE ANALYSIS (CPA)
In this paper, we use CPA to reason about the worst-

case timing behavior of Ethernet [2] [15]. In CPA, abstract
resources provide service according to some scheduling policy
(e.g. IEEE 802.1Q or IEEE 802.1Qbv). For the Ethernet anal-
ysis, switch ports (as the points of arbitration) are modeled as
resources [15]. An Ethernet traffic stream is defined to be a se-
quence of (related) Ethernet frames between a source and one
(or more) destination(s). Such a stream is modeled as a chain

of dependent frames, which are mapped to switch ports (CPA
resources) according to its path through the network [15]. On
each switch port, a frame consumes service according to its
transmission time bounds C− and C+. These bounds are
defined to be the shortest and longest time it takes to transmit
the frame in the absence of any interference. For frames of a
stream i the minimum and maximum frame transmission times
depend on their minimum and maximum payload p−/+

i :

C
−/+
i =

(
42 bytes + max{42 bytes,p−/+

i }
)
/rTX (1)

where rTX is the link speed. The constant terms model proto-
col overhead and minimum frame size (Section III). Potential
preemption overhead will be considered during our analysis.

Frame arrivals (and emissions) are abstracted by event
models [2]. In contrast to a single event trace, event models
only consider the best- and worst-case behavior. This behavior
is bounded by a pair of arrival functions η−/+(∆t), which
yield the minimum and maximum number of frame arrivals in
any half-open time interval [t,t + ∆t). Arrival functions have
pseudo-inverse minimum distance functions δ+/−(q), which
yield the maximum and minimum time interval between the
first and the last event in any sequence of q events.

CPA comprises two iterative analysis steps: A local analy-
sis, which is explained in Sections V and VI, derives the best-
and worst-case frame transmission latencies per switch port.
From these latencies new output event models are derived [2].
The output event model of a frame on a switch port becomes
its input event model on the next port. Event models are
propagated by a global analysis loop, which ends if all event
models become stable and initiates a new local analysis with
the new event models otherwise [2]. Afterwards, worst-case
end-to-end latency guarantees can be computed by summing
the frame transmission latencies along a chain of frames.

V. COMPOSITIONAL PERFORMANCE ANALYSIS OF FRAME
PREEMPTION IN STANDARD ETHERNET (IEEE 802.1Q)
This section presents a local analysis, which considers the

effects of frame preemption in IEEE 802.1Q. We focus on the
computation of the worst-case frame transmission latencies
for both frames of express and frames of preemptable traffic
streams. The frame transmission latency is the time from the
arrival of a frame at a switch input port until it has been fully
sent from its output port. There are several delays, which a
frame experiences while traversing a switch: queueing delay at
its input port, forwarding delay in the switch fabric, queuing
delay at its output port, and transmission delay on the link to
the next switch. Since we only model the output ports of a
switch as resources in CPA, we focus on the output queue-
ing delay, which considers all delays from interfering traffic
streams at an output port. The other delays are implementation
dependent and typically in the order of a few clock cycles.
Hence, they only have negligible impact on the transmission
latency of a frame and can be modeled by a constant delay.

As we will see later, the transmission latency of a frame
of traffic stream i can be derived from its queueing delay. To
compute a frame’s worst-case transmission latency, the worst-
case queueing delays of all frame arrivals of stream i within
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its level-i busy period must be evaluated [16]. The level-i busy
period is the longest period of time during which a switch port
is busy processing frames of streams of priority i or higher.
This also includes interference from other streams.

Strictly speaking, [16] only applies to non-preemptive
scheduling. In the formal analysis context, the main difference
between preemptive and non-preemptive scheduling is that
in the former, preemption can occur at any time, while in
the latter, once a non-preemptive entity (e.g. a frame) started
transmitting, it cannot be interrupted. Hence, as discussed in
Section III, IEEE 802.3br technically is still non-preemptive,
but at a much smaller granularity (fragments), and the gen-
eral approach from [16] remains applicable. Still, to support
IEEE 802.3br frame preemption, we have to adjust the formal
definition of the queueing delay from related work, e.g. [8].

We consider a switch output port and assume that the q-th
frame of a traffic stream i arrives at time aqi relative to the
beginning of stream i’s level-i busy period, which was started
by the arrival of the first of the q frames.

Definition 1. The worst-case queueing delay wi(q,a
q
i ) is the

time interval from the beginning of stream i’s level-i busy
period until the last non-preemptable part of said q-th frame
can be transmitted.

For express traffic this part is the frame itself. For preempt-
able traffic it is a minimum-sized (non-preemptable) fragment.

We distinguish two sets of traffic classes. Let P be the
set of preemptable traffic classes and E be the set of (non-
preemptable) express traffic classes. Let the function cl(i) map
a traffic stream i to its traffic class. As discussed, there is
only one level of preemption. Express frames cannot preempt
each other regardless of their priority and also preemptable
frames cannot preempt each other regardless of their priority.
Only preemptable frames can be preempted by express frames.
As express traffic is considered to be more critical than
preemptable traffic, we assume that all express traffic streams
have a higher Ethernet priority than preemptable streams.

In order to compute the worst-case queueing delay, we have
to take into account several blocking effects.

Lower-priority blocking: Preemptable frames can only be
preempted by higher-priority express frames. Consequently,
the worst-case lower-priority blocking for a preemptable frame
of traffic stream i occurs when the largest frame of a traffic
stream with lower-priority than stream i starts transmitting
right before the first frame of stream i starts transmitting [7].
Let lp(i) yield the set of traffic streams of lower priority than
that of stream i. Then we have for the lower-priority blocking
of preemptable frames:

ILPB,P
i = max

j∈lp(i)

{
C+

j

}
(2)

The lower-priority blocking for express traffic can poten-
tially be reduced by taking frame preemption into account.
Hence, in the following, we distinguish between lpE (i), the
set of express traffic streams of lower priority than stream i
and lpP (i), the set of preemptable traffic streams of lower
priority than stream i.

Theorem 1. The longest lower-priority blocking for frames of
express traffic stream i is

ILPB,E
i =max

{
max

j∈lpE (i)

{
C+

j

}
︸ ︷︷ ︸

(a)

,min
{

max
j∈lpP (i)

{
C+

j

}
︸ ︷︷ ︸

(b)

, 143 bytes
rTX︸ ︷︷ ︸
(c)

}}
(3)

Proof. As express frames cannot preempt each other, the
longest blocking time from lower-priority express frames is
given by term (a). The longest blocking time from lower-
priority preemptable frames can be derived from the longest
non-preemptable fragment. This fragment has a size of
143 bytes (Lemma 1), which can be translated to a blocking
time by dividing by the link speed rTX in term (c). If all
lower-priority preemptable frames are shorter than 143 bytes,
this can be exploited by taking the minimum of the largest
lower-priority preemptable frame (term (b)) and term (c). We
do not know which term (term (a) or the minimum over terms
(b) and (c)) is larger. Thus, we take the maximum.

Same-priority blocking: A frame of traffic stream i can be
blocked by frames from traffic streams of equal priority [7].
Let sp(i) yield all traffic streams with a priority equal to that
of stream i (excluding stream i). For express traffic, the q-th
frame of stream i, which arrived at time aqi , must wait until
all frames of other same-priority streams, which arrived before
frame q, and its own q−1 predecessors have been transmitted
before it can be sent. If interfering frames arrive concurrently
with frame q at aqi , we assume the worst-case ordering. To
this end, we define the event arrival function η+](∆t), which
yields the number of frame arrivals in any closed time interval
[t,t+∆t]. The same-priority blocking can be be computed as:

ISPB,E
i (q,aqi )=(q − 1)C+

i +
∑

j∈sp(i)

η
+]
j (aqi )C+

j (4)

For preemptable traffic, only the last non-preemptable frag-
ment is not part of the queueing delay (Definition 1). Thus, in
addition to all frames of other same-priority streams, which
arrived before q, and its own q − 1 predecessors, the last
fragment of q must also wait for all its preceding fragments.
To maximize the potential number of preemptions of q, its last
fragment is, in the worst-case, of minimum size (i.e. 84 bytes),
leaving the rest of q’s size (C+

i − 84 bytes/rTX ) for preemption.

ISPB,P
i (q,aqi )=(q − 1)C+

i + C+
i − 84 bytes

rTX
+
∑

j∈sp(i)

η
+]
j (aqi )C+

j (5)

In Ethernet, frames of equal priority are usually processed
in FIFO order. To compute the worst-case blocking for the q-th
frame of stream i under FIFO scheduling, a candidate search
is required [17]: The earlier frame q arrives (within its jitter
bounds), the longer its transmission latency might be (e.g. by
blocking from (some of) its own q − 1 queued predecessors).
The later it arrives (within its jitter bounds), the more blocking
from other same-priority frames, which have been queued
before its arrival, it might experience. According to [17], all
candidates aqi for the arrival time of the q-th frame of stream i
coincide with the arrivals of interfering same-priority frames:

Aq
i =

⋃
j∈sp(i)

{
δ−j (n)|δ−i (q)≤δ−j (n)<δ−i (q + 1)

}
n≥1

(6)
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Higher-priority blocking: In any time interval ∆t, a frame
of traffic stream i can be blocked by all higher-priority frames,
which arrive before this frame can be transmitted [7]. Let hp(i)
yield the set of all traffic streams with a priority higher than
that of stream i. Then we have for the higher-priority blocking:

IHPB
i (∆t)=

∑
j∈hp(i)

η+j (∆t)C+
j (7)

If this higher-priority blocking is due to preemption, there is a
certain overhead. This overhead is considered separately (see
below).

Preemption overhead: In IEEE 802.3br, only preemptable
frames may experience preemption overhead. If the number
of preemptions within a frame’s queueing delay is known,
their overhead can be modeled as an additional blocking term,
extending the queueing delay. We start by deriving an upper
bound on the maximum number of preemptions per frame.

Lemma 3. The maximum number of preemptions of a single
frame of traffic stream i is given by

F+
i =

⌊
p+i − 42 bytes

60 bytes

⌋
(8)

Proof. The number of preemptions of a frame of stream i
is maximized, if we distribute the frame’s maximum payload
p+i among as many fragments as possible. In IEEE 802.3br,
the minimum payload of the first fragment of a preempted
frame is 42 bytes (see Figure 2). All following (non-initial)
fragments must carry a minimum payload of 60 bytes (see
Figure 2). Thus, we can compute the maximum number of
preemptions of a single frame by first subtracting 42 bytes
from its maximum payload p+i and then dividing the remaining
payload by 60 bytes. If p+i − 42 is not divisible by 60 without
remainder, one of the fragments must be larger and also carry
the otherwise remaining x<60 bytes, as IEEE 802.3br does not
allow fragments smaller than the minimum Ethernet frame size
requirement (see Section III). Hence, we round down.

The maximum number of frame preemptions in the queue-
ing delay can be computed by multiplying the number of
preemptable frames in this period by their respective F+

i .
A preemptable frame of traffic stream i can be blocked by

at most one lower-priority preemptable frame (cf. Eq. (2)). As
preemptable frames cannot preempt each other, this lower-
priority frame will be transmitted entirely, but may be frag-
mented due to preemptions from express traffic. The maximum
number of preemptions of such a lower-priority frame is thus:

NLP
i = max

j∈lpP (i)

{
F+
j

}
(9)

Akin to the same-priority blocking in Eq. (5), we can com-
pute the maximum number of frames of preemptable traffic
streams with identical priority as stream i. If we consider the
arrival of the q-th frame of stream i, which arrived at time aqi
(within its busy period), the maximum number of preemptions
from frames of same-priority traffic streams (including i) is:

NSP
i (q,aqi )=qF+

i − 1 +
∑

j∈sp(i)

η
+]
j (aqi )F+

j (10)

Similar to Eq. (5), we do not consider the preemption over-
head of the last fragment. This fragment (and its preemption
overhead) will be considered later when we derive the worst-
case transmission latency of the q-th frame of traffic stream i.
NSP

i (q,aqi ) is subject to the same candidate search as Eq. (5).
Within any time interval of length ∆t, the number of

preemptable frames of higher priority than stream i can be
computed by summing up the higher-priority frame arrivals
over ∆t (cf. Eq. (7)). Let hpP (i) be this set of preemptable
traffic streams of higher priority than that of stream i. The
maximum number of frame preemptions from these higher-
priority frames can then be computed:

NHP
i (∆t)=

∑
j∈hpP (i)

η+j (∆t)F+
j (11)

Equations (9), (10), and (11) bound the maximum number
of frame preemptions a frame of traffic stream i can experience
during its queueing delay by assuming that all frames are split
into their maximum number of fragments. However, the num-
ber of frame preemptions can also be bounded by the actual
(worst-case) preemption pattern from higher-priority express
traffic. Let hpE (i) be this set of express traffic streams of
higher priority than stream i. The following theorem computes
a bound on the preemption overhead considering both bounds.

Theorem 2. The preemption overhead in a time interval of
length ∆t containing q frames of the traffic stream under
analysis i, out of which the q-th one arrived at time aqi relative
to the beginning of ∆t, is upper bounded by:

IPO
i (∆t,q,aqi )=

24 bytes
rTX

min

{ ∑
j∈hpE (i)

η+j (∆t),NLP
i +NSP

i (q,aqi ) +NHP
i (∆t)

}
(12)

Proof. From Lemma 2 we know that the preemption overhead
is 24 bytes. Its duration can be derived by dividing it by the
link speed rTX . Given ∆t, q, and aqi , the maximum number of
frame preemptions can be computed by adding Eqs. (9), (10),
and (11) (second term in minimum). In the worst-case each
higher-priority express frame causes a preemption. Hence,
there can be no more frame preemptions than there are higher-
priority express frames within ∆t (first term in minimum). So,
we take the minimum of both terms.

For express and preemptable traffic, the worst-case queueing
delay, can be derived by considering their respective blocking
terms. For express traffic streams i, the worst-case queueing
delay for the q-th frame of i, which arrived at time aqi , is:

wE
i (q,aqi )=ILPB,E

i + ISPB,E
i (q,aqi ) + IHPB

i (wE
i (q,aqi )) (13)

As wE
i (q,aqi ) occurs on both sides, Eq. (13) cannot be solved

directly. It represents a fixed-point problem (i.e. the blocking
terms increasewE

i (q,aqi ), which, in turn, might lead to even
more blocking) and can be solved by iteration, as all terms are
monotonically increasing [2] [7]. A starting point is (q−1)C+

i .
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Fig. 3. Frame transmission latency computation example (cf. [8])

For preemptable traffic streams i, we have to consider the
additional preemption overhead when computing the worst-
case queueing delay wP

i (q,aqi ):

wP
i (q,aqi )=ILPB,P

i + ISPB,P
i (q,aqi ) + IHPB

i (wP
i (q,aqi ))+

IPO
i (wP

i (q,aqi ),q,aqi ) (14)

Like Eq. (13), Eq. (14) also represents a fixed-point problem.
A valid starting point for the iterative solution is (q − 1)C+

i .
From the queueing delay, we can derive the worst-case

transmission latency Ri(q) of the q-th frame of stream i by
evaluating all of its arrival candidates aqi ∈A

q
i . As the queueing

delay is defined to be the time until the last non-preemptable
part (frame or fragment) can be sent, we have to consider
this last part when deriving the worst-case transmission la-
tency. For express frames the last non-preemptable part is
its transmission time C+

i . For preemptable frames it is the
smallest fragment size (84 bytes, already including 24 bytes of
preemption overhead), assuming that, in the worst-case, their
remaining payload has been used during the computation of
the queueing delay (Eq. (5)). Figure 3 shows an example for
express frames.

Ri(q)=


max
a
q
i∈A

q
i

{
wE

i (q,aqi ) + C+
i − a

q
i

}
if cl(i)∈E

max
a
q
i∈A

q
i

{
wP

i (q,aqi ) + 84 bytes
rTX

− aqi
}

if cl(i)∈P
(15)

The worst-case frame transmission latency R+
i over all

frames of stream i can be found by taking the maximum of
all Ri(q), ∀q≤q̂i. Where q̂i is the maximum number of frame
arrivals of stream i, which must be evaluated and, according
to [16], equals the maximum number of frame arrivals of
stream i in the longest level-i busy period.

R+
i = max

1≤q≤q̂i
{Ri(q)} (16)

In the remainder of this section, we present how to compute
the longest level-i busy periods from which q̂i can be derived.
By definition, when computing the level-i busy period, there
is no need to distinguish individual frame arrivals q nor their
arrival times aqi . Thus, for express and preemptable traffic the
same-priority blocking in Eqs. (4) and (5) can be replaced by:

ÎSPB
i (∆t)=

∑
j∈sp(i)∪{i}

η+j (∆t)C+
j (17)

Likewise, the preemption overhead IPO
i (∆t,q,aqi ) (Eq. 12)

is replaced by ÎPO
i (∆t), which is defined just like

IPO
i (∆t,q,aqi ), but instead of NSP

i (q,aqi ), it uses:

N̂SP
i (∆t)=

∑
j∈sp(i)∪{i}

η+j (∆t)F+
j (18)

Now, for express and preemptable streams the level-i busy
periods ŵE

i and ŵP
i can be computed by:

ŵE
i =ILPB,E

i + ÎSPB
i (ŵE

i ) + IHPB
i (ŵE

i ) (19)

LP

HP

t

Preemption overhead

Frame arrivals

Frame transmission
(non-preemptive)

Frame transmission
(preemptive)

HP LP

HP LP 
cont.

LPGuard
band

Time-triggered
slot

Reduced guard band

Fig. 4. Example of non-preemptive and preemptive frame transmission in
IEEE 802.1Qbv

and

ŵP
i =ILPB,P

i + ÎSPB
i (ŵP

i ) + IHPB
i (ŵP

i ) + ÎPO
i (ŵP

i ) (20)

Eqs. (19) and (20) represent fixed-point problems, which,
again, can be solved by iteration. A valid starting point is e.g.
C+

i . Then, the maximum number of frame arrivals of traffic
stream i in the longest level-i busy period is q̂i=η+i (ŵE

i ) for
express traffic and q̂i=η+i (ŵP

i ) for preemptable traffic.

VI. COMPOSITIONAL PERFORMANCE ANALYSIS OF
FRAME PREEMPTION IN ETHERNET TSN (IEEE 802.1Qbv)

Ethernet TSN’s time-aware shaper (IEEE 802.1Qbv) [1] in-
troduces time-triggered frame forwarding to Ethernet. It spec-
ifies (periodic) time-triggered slots in which traffic from
(highly) critical traffic classes is scheduled without interfer-
ence from other traffic classes at predefined points in time.
Traffic is categorized according to the priority of its Ethernet
traffic class. Typically, each critical traffic class has its own
time-triggered slot and is only forwarded in this slot [1].
Outside these slots, traffic from all other (less- or non-critical)
classes is scheduled according to its class’ priority.

Originally, frame transmission in IEEE 802.1Qbv is non-
preemptive. To protect the time-triggered slots from less-
critical traffic extending into these slots and delaying critical
traffic, e.g. when a less-critical frame started transmission
just before the beginning of a slot, IEEE 802.1Qbv introduces
guard bands. These are time intervals, which are inserted
before the beginning of each time-triggered slot and during
which no frame transmission is allowed to start. So, to protect
the time-triggered slots, the length of each guard band must
at least be equal to the transmission time of the longest non-
time-triggered frame. This can result in poor link utilization.

As the intention of preemption is to reduce the latency of
critical traffic, we assume that time-triggered traffic is treated
as express traffic, implying that frames of time-triggered
streams cannot be preempted. As IEEE 802.1Qbv already
guarantees their forwarding free from interference from other
traffic classes as soon as their slot starts, they do not benefit
from the preemption of other traffic. As proposed by [18], less-
critical traffic is assigned to the set of preemptable classes1.
Under frame preemption, the performance of this less-critical
traffic can be improved, as now the guard bands can be reduced
to the maximum non-preemptable fragment length (Lemma 1).

This is illustrated in Figure 4. Without preemption, the
less-critical frame LP, which arrives during its guard band,

1Note that our approach can be extended to cover cases where (some) less-
critical traffic streams are also treated as express traffic.



(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

DOI: pending

is blocked to prevent overlap with the time-triggered slot of
the HP frame. Only after HP’s slot is over, LP can transmit.
With preemption, however, the guard band is smaller, so that
in this particular example LP can transmit immediately after
its arrival. LP can transmit until it is preempted by HP’s slot. It
resumes transmission after the slot is over, leading to a shorter
transmission latency R+

LP than in the non-preemptive scenario.
Note that, when computing worst-case bounds, this reduced
guard band must be considered unusable by LP and is modeled
as an additional blocking term (see Theorem 3 below).

In [8], a CPA-compatible formal performance analysis for
non-preemptive IEEE 802.1Qbv is presented. As critical time-
triggered traffic is not affected by preemption, we focus on
extending this analysis to support preemption of less-critical
(non-time-triggered) traffic. Since frames of less-critical traffic
streams (outside the time-triggered slots) use the preemptable
MAC interface, they cannot preempt each other regardless of
their priority. They can only be preempted by IEEE 802.1Qbv’s
scheduler, i.e. to schedule time-triggered slots. Hence, lower-,
same-, and higher-priority blocking can be modeled as in
IEEE 802.1Q [8], i.e. by Eqs. (2), (5), and (7), while taking
into account that only less-critical streams (from P) must be
considered for higher-priority blocking in Eq. (7) [8]. Also,
[8] shows that the interference from time-triggered slots (of
critical traffic) can be modeled by (periodic) blocking terms.

Blocking by critical traffic: We start by bounding the
maximum interference a single time-triggered slot can cause.

Theorem 3. The maximum blocking caused by a single time-
triggered slot from a class J∈E of length tTT

J on a non-time-
triggered traffic class I∈P is

t̃TT
I,J =min

{
max

i∈
⋃

I∈PI

{
C+

i

}
,
143 bytes
rTX

}
+ tTT

J (21)

Proof. The proof is similar to [8]. The minimum term models
the minimum guard band length required to protect the time-
triggered slot of class J from overlapping less-critical traffic.
This length is either the maximum non-preemptable fragment
length 143 bytes/rTX (Lemma 1) or, the maximum over all frames
of less-critical traffic streams, if all these frames are smaller
than 143 bytes/rTX . We do not know in which order the frames of
streams of class I are processed. Thus, in the worst-case, we
have to assume that non-time-triggered traffic arrives such that
a frame or fragment of the length of the guard band becomes
ready to transmit just after J’s guard band started and that the
guard band cannot be used to transmit any traffic of I . The
second term is the length of the time-triggered slot of J .

Let the period of the time-triggered slot of a traffic class
J∈E be tCYC

J . In any time interval ∆t, the maximum number
of times frames of a less-critical stream i can be blocked by
traffic streams from a critical time-triggered traffic class J
can be computed by dividing ∆t by tCYC

J . Conservatively
assuming that, in the worst-case, blocking from different time-
triggered slots does not overlap, the interference from all time-
triggered classes J on stream i can be found by summation [8].

ICTB
i (∆t)=

∑
J∈E

⌈
∆t

tCYC
J

⌉
t̃TT
cl(i),J (22)

100 Mbit/s

1 Gbit/s

ECU7 ECU6ECU5ECU4

ECU3 ECU2ECU1ECU0 Link Speeds

S1 S2 S3 S4

Fig. 5. Quad star topology

Preemption overhead: As the less-critical traffic streams
cannot preempt themselves, there can only be one frame
preemption per time-triggered slot. In any time interval ∆t, the
maximum number of preemptions can be found by summing
over the maximum number of time-triggered slots of all
critical (time-triggered) traffic classes J in ∆t (cf. Eq. (22)).
Multiplying this number with the preemption overhead divided
by rTX yields the preemption overhead (cf. Theorem 2).

IPO(∆t)=
24 bytes
rTX

∑
J∈E

⌈
∆t

tCYC
J

⌉
(23)

Now, for any non-time-triggered traffic stream i, the worst-
case queueing delay wP

i (q,aqi ) of the q-th frame, which arrived
at time aqi , under frame preemption can be computed.

wP
i (q,aqi )=ILPB,P

i + ISPB,P
i (q,aqi ) + IHPB

i (wP
i (q,aqi ))+

ICTB
i (wP

i (q,aqi )) + IPO(wP
i (q,aqi )) (24)

Then, the maximum frame transmission latency of the q-th
frame of traffic stream i under IEEE 802.1Qbv with preemp-
tion can be computed very similarly to that under IEEE 802.1Q
(Eqs. (15) and (16)). As argued before, the worst-case timing
guarantees of critical traffic in IEEE 802.1Qbv are not affected
by frame preemption and can be computed as presented in [8].

VII. EVALUATION

Now, we use our analysis to evaluate the timing im-
pact of IEEE 802.3br frame preemption in combination with
IEEE 802.1Q and IEEE 802.1Qbv under worst-case conditions.
We investigate a heterogeneous setup with multiple traffic
streams of different criticalities (and priorities), including
latency-critical control traffic, high-bandwidth ADAS traffic
with large Ethernet frames, and low-priority (best effort)
infotainment traffic. In our experiments, we vary the mapping
of Ethernet traffic classes (priorities) to IEEE 802.3br’s express
and preemptable MAC interfaces and quantify how each traffic
class benefits or suffers for each mapping. We use worst-case
end-to-end latency guarantees as the comparison metric.

For our evaluation, we use the topology in Figure 5. The
network traffic has been provided by Daimler AG and is
summarized in Table I. There are three different traffic classes:
control data traffic (CDT), general control traffic (GCT), and
camera traffic (CAM). CDT traffic is assumed to be latency-
critical and has the highest Ethernet priority (priority 4 in our
example). GCT traffic is latency-sensitive, but not as critical as
CDT. It is mapped to priority 3. CAM traffic is high-bandwidth
video traffic and has more relaxed latency constraints. It is
mapped to priority 2. Table I also describes how traffic is
transmitted. There are unicast, multicast (the notation n(d)
indicates that there are n multicast streams to d destinations),
and broadcast transmissions. For each traffic class the table
also gives the minimum, maximum, and average payloads and
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periods of its traffic streams. We assume that the payload is
transmitted using UDP/IP. Thus, 28 bytes of protocol overhead
must be added. Frames of CDT, GCT, and CAM traffic are
injected with a periodic with jitter event model [2]. The jitter
is set to the period, to model that an occasional burst of two
frames might be injected into the network. Additionally, two
non-real-time (NRT) traffic streams with maximum frame size
(1542 bytes) are broadcasted in opposite directions as low-
priority interference on priority 1, originating from ECU2 and
ECU4. Both streams have a period of 10 ms.

Figure 6 shows our evaluation results. Even though this is
not a random experiment, we use boxplots to summarize the
worst-case end-to-end latency guarantees of all streams of a
given traffic class. For each traffic class, the box covers 50 %
of the worst-case end-to-end latency guarantees, with its lower
and upper borders giving the 25 % and 75 % quartiles, respec-
tively. The whiskers indicate the worst-case guarantees of the
streams with the shortest and longest latency guarantees. The
median and average among the worst-case latency guarantees
are marked by a red bar and a black dot, respectively. The
x-axis labels identify our experiments, which we discuss next.

Standard Ethernet: We conduct four experiments:
(802.1Q) IEEE 802.1Q without frame preemption as a baseline
for comparison. (e4p321) Only CDT is mapped to the express
MAC interface and GCT, CAM, and NRT are preemptable.
(e43p21) CDT and GCT are mapped to the express MAC
interface and CAM and NRT are preemptable. (e432p1) CDT,
GCT, and CAM are mapped to the express MAC and only
NRT is preemptable. Note that the experiment names indicate
which traffic classes (priorities) are mapped to which MAC.

Figure 6a shows the results of these experiments. The
boxplots are divided into three groups. The first group shows
the results for CDT traffic under different mappings, while the
second and third groups show the results for GCT and CAM
traffic, respectively. By definition, the end-to-end latencies of
NRT traffic do not require timing verification and are omitted.

For e4p321, the worst-case end-to-end latency guarantees
of CDT improve significantly over 802.1Q (60 % on average).
As expected, the worst-case latency guarantees of GCT and
CAM are worse than under 802.1Q, due to the additional
preemption overhead. Their latency degradation, however, is
comparatively small. On average GCT anc CAM traffic have
latency guarantees that are only 6 % and 2 % larger than under
802.1Q, respectively.

In e43p21, the improvement of CDT is smaller than in
e4p321, due to increased lower-priority blocking by GCT
traffic, which cannot be preempted anymore. However, as GCT

TABLE I
QUAD STAR TRAFFIC CHARACTERISTICS

CDT GCT CAM

Unicast (#) 8 18 3
Multicast (#) 2(2) 11(2), 4(3), 1(4) 1(2)
Broadcast (#) 0 6 0

Payload (bytes) [14, 144] [1, 250] [875, 1400]
Average (bytes) 70 50 1231

Period 5ms [10ms, 1s] [100us, 1ms]
Average 5ms 230ms 440us

frames are comparatively small, CDT’s average improvement
is still 56 %. GCT, expectedly, improves and, compared to
802.1Q, its worst-case latency guarantees are, on average,
33 % smaller. CAM traffic suffers from the additional pre-
emption overhead from GCT and its latency guarantees are,
on average, 7 % worse than in 802.1Q.

In e432p1, the average improvements of CDT and GCT
over 802.1Q are 34 % and 25 % (respectively) as now they
experience lower-priority blocking from large CAM frames,
which are now also mapped to the express MAC. The average
improvement of CAM traffic over 802.1Q is 14 %.

Our experiments show that latency-critical traffic clearly
benefits from frame preemption. In our setup, e43p21 appears
to be a good compromise, as the worst-case end-to-end latency
guarantees of both control traffic classes improve significantly,
while CAM traffic only experiences minor degradation.

Ethernet TSN: For IEEE 802.1Qbv, we assume that CDT
traffic is always mapped to a time-triggered slot, which is
repeated with a period of 5 ms. We further assume that the
time-triggered slots at each switch port are scheduled such that
CDT traffic does not need to wait for its slot and that all slots
are large enough to process any CDT traffic arriving within the
slot. This was an important observation from [8], as otherwise
IEEE 802.1Qbv gives in very poor worst-case latency guar-
antees. A slot length of 250 us is sufficient in our setup. We
conduct two experiments: (802.1Qbv) IEEE 802.1Qbv without
frame preemption as a baseline for comparison. (e4p321) Only
CDT traffic is mapped to the express MAC interface and GCT,
CAM, and NRT are preemptable. Mapping GCT to time-
triggered slots would lead to very poor link utilization, due
to the large variance of its periods (cf. Table I).

Figure 6b shows the results of these experiments. Again,
the boxplots are divided into three groups showing the results
for CDT, GCT, and CAM traffic. We compare e4p321 to
802.1Qbv. As expected, time-triggered CDT traffic does not
benefit from the preemption of GCT and CAM, as (plain)
IEEE 802.1Qbv already ensures that time-triggered traffic is
scheduled at predefined times. This is implemented via guard
bands, that block other traffic early enough (cf. Section VI).

GCT and CAM traffic, however, benefits from frame pre-
emption, even though they are the preemptable classes. As
GCT and CAM both use the preemptable MAC interface they
can only be preempted by express traffic, but not preempt
themselves (Section VI). Frame preemption, however, reduces
the interference from the time-triggered CDT slots by reducing
the guard band (see Eq. (21)). In our setup, the guard band is
reduced by 90 %. The preemption overhead is comparatively
small, as there can only be one preemption per time-triggered
slot, i.e. every 5 ms. More precisely, the worst-case end-to-end
latency guarantees of GCT and CAM improve by 15 % and
9 % (on average) compared to 802.1Qbv, respectively.

Discussion: Comparing the results for IEEE 802.1Q and
IEEE 802.1Qbv yields an interesting finding: as long as CAM
traffic is not using the express MAC interface (i.e. stays
preemptable), the worst-case end-to-end latency guarantees
of CDT traffic are almost identical for IEEE 802.1Q and
IEEE 802.1Qbv (e4p321 and e43p21 in Figure 6a vs. 802.1Qbv
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Fig. 6. Worst-case end-to-end latency guarantees of the quad star topology

in Figure 6b). For e4p321, their maximum difference is 46 us
and for e43p21 it is 83 us (i.e. between 1 % and 1.7 % of the
CDT period), which is very low compared to typical automo-
tive latency requirements. This is because frame preemption in
IEEE 802.1Q reduces the lower-priority blocking for express
traffic to the technical minimum (Eq. (3)). This improvement
vanishes, if long frames, e.g. from CAM traffic in e432p1, are
introduced to the express MAC interface. Furthermore, the
worst-case latency guarantees of GCT and CAM traffic under
IEEE 802.1Qbv are worse than under IEEE 802.1Q.

Without frame preemption, similar (low) lower-priority
blocking times could be achieved by permanently limiting the
length of lower-priority frames. This, however, would entail
a large overhead as more Ethernet frames are required and
each additional frame requires 42 bytes of protocol overhead
(each frame must include preamble, SFD, DA, SA, Q-Tag, ET,
FCS, and IFG, see Figure 2). Frame preemption, in contrast,
only splits frames into shorter fragments when required. As
the periods of control traffic (CDT and GCT) are typically
larger than those of CAM traffic (see Table I), not all CAM
frames will be preempted. This can be observed in Figure 6a,
where the average CDT and GCT improvement for experi-
ments e4p321 and e43p21 is larger than the average CAM
degradation. E.g. for e43p21, the latency guarantees of CDT
and GCT traffic are reduced (improved) by 56 % and 33 %
(respectively), while the latency guarantees of CAM traffic
only increase (worsen) by 7 %.

Consequently, with IEEE 802.3br frame preemption, stan-
dard Ethernet can achieve comparable worst-case performance
for control traffic as Ethernet TSN. This is a very useful result,
as, in comparison to IEEE 802.1Qbv, IEEE 802.1Q is less com-
plex to setup. It only requires the mapping of traffic streams
to priorities, whereas IEEE 802.1Qbv additionally requires
the computation of schedules for the time-triggered slots at
each switch (port). Additionally, IEEE 802.1Qbv requires tight
network-wide time synchronization to enforce its schedules.

VIII. CONCLUSION

IEEE 802.3br introduces frame preemption to Ethernet. It
is designed to integrate seamlessly with other Ethernet stan-
dards, such as standard Ethernet (IEEE 802.1Q) and Ethernet
TSN. IEEE 802.3br only allows one level of preemption by
specifying an express (non-preemptable) and a preemptable
MAC interface. In this paper we presented a formal timing
analysis for frame preemption under IEEE 802.3br. We eval-
uated the effect of preemption on the worst-case end-to-end
latency guarantees of standard Ethernet and Ethernet TSN. Our

experiments show that, in a typical automotive setup, the la-
tency guarantees of non-preemptable express traffic show large
improvements, while, at the same time, preemptable traffic
does not degrade much. Interestingly, with frame preemption,
standard Ethernet’s latency guarantees for express traffic are
very close to those of Ethernet TSN, due to reduced blocking
from preemptable lower-priority traffic. This makes standard
Ethernet an interesting alternative to TSN even for latency-
critical traffic, as it is less complex to setup, e.g. no forwarding
schedules and no tight time synchronization are required.
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