
Real-Time Communication Analysis for
Networks-on-Chip with Backpressure

Sebastian Tobuschat and Rolf Ernst
Institute of Computer and Network Engineering
Technische Universität Braunschweig, Germany

{tobuschat, ernst}@ida.ing.tu-bs.de

Abstract—Networks-on-Chip (NoCs) for safety-critical do-
mains require formal guarantees for the worst-case behavior
of all real-time senders. The majority of existing analysis ap-
proaches is capable of providing such guarantees only under
the assumption that the queues in the routers never overflow,
i.e., that no backpressure occurs. This leads to overly pessimistic
guarantees or unfulfilled design requirements in many setups
using commercially available NoCs where buffer space is lim-
ited. Therefore, we propose an alternative analysis methodology
providing formal timing guarantees for packet latencies also in a
NoC where backpressure occurs. The analysis allows exploiting
the behavior of individual traffic streams to determine safe upper
bounds on the latency of individual packets. The correctness of
the analysis is evaluated experimentally through comparison with
simulation results.

I. INTRODUCTION

Networks-on-Chip (NoCs) become increasingly interesting
for safety-critical domains due to their performance, power,
and size benefits [1]. In such systems, it is necessary to pro-
vide formal guarantees that all safety-relevant functions meet
their worst-case timing requirements [2]. However, sharing of
NoC resources, such as output ports, between concurrently
running senders couples their behavior and challenges safety.
Therefore, it is crucial to provide methods for the analysis of
the worst-case behavior of these systems, which is a known
outstanding research problem in NoC design [3].

In this work we focus on approaches based on composi-
tional performance analysis (CPA) [4]. It uses event models
to capture and exploit the dynamics of data streams, enabling
tight bounds on worst-case latencies. However, existing CPA
analysis for NoCs can not handle backpressure [5]. That is,
they assume there is always enough free buffer space in the
queues of network nodes to accept arriving flits. For this to
hold, the approaches calculate the maximum possible backlog
of the network and use it as a design input defining the size
of the buffers. Alternatively, they allow to iteratively reduce
the injected traffic through traffic shaping until the maximum
backlog satisfies the available queue size. Unfortunately, in
the majority of commercial setups the buffer size can not be
changed. Additionally, limiting the injected traffic drastically
reduces the platform performance. This is due to the fact, that
the shaping bounds provided by the analysis are usually con-
servative, i.e., adjusted to the worst-case behavior. This raises
a need for an CPA analysis capable of handling finite buffer
space. To the best of our knowledge, no compositional real-
time communication time analysis method has been proposed

for best-effort NoCs with a single shared channel and back-
pressure.

Contribution: In this work, we present a formal worst-case
analysis for providing an upper bound on transmission laten-
cies in NoCs with backpressure. We assume a basic NoC with-
out special quality of service mechanisms similar to existing,
commercially available architectures [6]–[8]. Nonetheless, our
approach can be easily extended to account for architectures
with QoS support and virtual channels [5].

The remainder of the paper is structured as follows. In
Section II we provide an overview on related work. This is
followed by a brief introduction to the CPA approach in Sec-
tion III. Section IV then provides the new backpressure aware
analysis. In Section V we experimentally evaluate our analysis
and conclude in Section VI.

II. RELATED WORK

There exist various methodologies for the analysis of
networks-on-chip. For example, [9]–[12] provide techniques
for timing analysis of priority-based wormhole switching
NoCs. In [9] the authors formulate a contention tree that cap-
tures interference in the network. Similarly, [10] defines two
different delay components: direct interference and indirect
interference. Based on these, a worst-case network latency
analysis is presented. However, all these schemes do not ac-
count for the effects of pipelining and parallel transmission of
data. This is tackled in [11], by refining the communication
resource and its associated communication task model.

Still, the mentioned approaches assume global and unique
priorities with unique virtual channel assignment for each pri-
ority. Such implementation policy typically results in high
buffer cost and energy overhead. Hence, in many commercially
available NoCs the foreseen number of (virtual) channels is
usually lower than the number of tasks or priority levels. To
address this problem, [12] allows shared priorities in a priority-
based NoCs.

In [5], [13]–[15] the authors present worst-case latency anal-
ysis approaches for networks without special QoS support and
round-robin arbitration. For this, [13], [15] use a recursive
calculus to obtain an upper bound on the traversal time of a
packet. However, they do not take the individual behavior of
streams (e.g. inter-arrival time and periods of packets) into
account, resulting in overly pessimistic results. This is ad-
dressed in [14], where the authors extend the existing model
by integrating the characteristics of the tasks that generate

the packets. Another approach is presented in [5], which uses
a compositional performance analysis approach to analyze a
NoC with iSLIP arbitration and shared virtual channels.

However, the aforementioned approaches assume that net-
work nodes and routers are equipped with sufficient buffer
space to prevent backpressure. For this, the network must be
adopted to the particular application set, which is hard or even
impossible, or the traffic injection-rate must be limited. As the
rate limiting must be done according to the worst-case behav-
ior, this can lead to a decrease in system performance as the
network can not fully be utilized. To overcome these draw-
backs, resent research focused on analysis supporting back-
pressure [16], [17].

In [16] the authors present an analysis for latency bounds
in wormhole networks with finite sized buffers. The approach
is based on network calculus [18] and computes global end-
to-end service curves for each stream. Based on these per-
formance parameters, as the maximum latency and minimum
throughput, can be derived. In [17] the authors present an ex-
tension of SLA [11] accounting for backpressure for priority
based NoCs. However, the analysis assumes unique priorities
for each stream with individual virtual channels for each prior-
ity level and focuses on simple periodic activation models. On
the contrary, our approach allows arbitrary activation models
and sharing of the same (virtual) channel between different
applications, as common for commercially available NoC ar-
chitectures.

III. COMPOSITIONAL PERFORMANCE ANALYSIS

This section provides an overview on the compositional
performance analysis (CPA) [4]. The CPA approach uses a
similar composition and event models as Real-Time Calculus
(RTC) [19], but differs in the used local analysis for the links
and routers. For this, the network-on-chip (NoC) domain is
translated to the processor resource model known from real-
time scheduling [20].

The CPA model uses a multicore processor to represent
the NoC [5]. In the model, processing resources represent the
output ports of a router and shared resources with mutually
exclusive access the input ports. The exclusive access models
the limitation of an input port to send only one flit at a time to
an output port. A traffic stream is modeled as a chain of tasks
mapped to the resources based on its path in the network. An
exemplary mapping of a router with four streams is shown in
Fig. 1. In the example, streams 2 and 3, represented by tasks
τ2 and τ3, share the same input port and thus access the same
shared resource InS. Stream 3 additionally shares the same
output port with stream 4.

In this model, the arrival of a flit is a task activation at the
processing resource and the transmission of a flit at an output
port is the execution of that task. Each task τi is assigned a
best- and worst-case execution time C−i and C+

i for each task
activation. The activations of a task can be triggered by an ex-
ternal source (network interface) or other tasks (routers). These
activation events are modeled by minimum and maximum ar-
rival curves η

−
i (∆t) and η

+
i (∆t), defining the minimum and

maximum number of events for task τi that can arrive within
any half-open time window [t, t +∆t). These functions have

Output N

Output E

τ
3

τ
4

Output S

In N

In E

In S

In WOutput W

η
in,3

η
in,4

η
in,2

ηout,2ηout,1
η

in,1

ηout,3

ηout,4

τ
1

τ
2

Fig. 1. Four-port router with four traffic streams as a multiprocessor with
four processing resources (Out) and mutually exclusive shared resources (In)

pseudo-inverse counterparts, the so-called distance functions
δ+(n) and δ−(n), which define respectively the maximum and
minimum time interval between the first and the last event of
any sequence of n consecutive event arrivals. Such an event
model covers all possible event arrivals of a task and is not
just a specific trace of events.

In CPA, system-level analysis is performed iteratively using
individual resource-level analysis steps to obtain the worst-
case timing information. For this, CPA performs a local busy
window analysis for each resource to compute worst-case tim-
ings and output event models for each task. The local resource-
level analysis uses a critical instant scenario that assumes the
worst-case arrival of all interfering tasks to obtain the maxi-
mum delay for the task under consideration. The output event
models from the local analysis are then forwarded as input
models for all dependent tasks and resources. With the new
input models these tasks are then analyzed again. The local
analysis and propagation are iteratively applied until all output
event models remain stable [4].

IV. ANALYSIS

In this section we describe analysis of a network-on-chip
with backpressure using CPA. To improve readability, we re-
strict the explanations to a NoC with a single buffer queue
per input port (i.e. no virtual channels) shared by multiple
streams, round-robin arbitration and the same packet size of
n flits for all streams. This is a common setup for existing
NoCs [6]–[8]. However, the analysis also directly applies to a
system with output buffering, which provides for each input
port a buffer queue at the output port, as for example the
Kalray MPPA-256 [6]. Additionally, it can be easily extended
to handle multiple virtual channels at the input port and dif-
ferent sized packets by adding the new blocking terms and
propagated models for backpressure to the analysis in [5]. For
the analysis we derive the corresponding worst-case multiple
activation processing time of a stream. Based on this, we then
derive metrics for a single router and for a complete network
(e.g. path latency).

Definition 1. The worst-case multiple activation processing
time B+

i (q,a
q
i) of a stream i denotes the maximum time the

resource is busy processing q flits of stream i, given that all
but the first flit arrive before their respective predecessor has
been transferred and the q-th flit arrives at time instant aq

i .

To conservatively capture all possible worst-case scenarios,
we break down the multiple activation processing time into a
sum of different terms addressing different blocking factors.
For a router with a single channel per input port, round-robin
arbitration on the outputs, and backpressure, the processing
time is influenced by:
• Flit transfer time C: the time to transfer a flit in a router

excluding any kind of blocking. For the sake of simplicity
and since it is the usual case in NoCs, we consider that
all flits have the same constant transfer time of 1 cycle.

• Packet size n: the length of a packet in flits.
• Buffer size Qb: the size of the buffer in the number of

flits that can be stored. Without loss of generality, we
assume all buffers to have the same size.

• Output blocking Bout
i : the time streams from other inputs

than i use the same output port.
• FIFO blocking Bfifo

i : the time required to transmit other
flits in the FIFO queue preceding the q-th flit of stream i.

• Backpressure blocking Bbp
p : the blocking resulting from

lack of free buffer space at the downstream router using
port p.

To upper bound the multiple activation processing time
B+

i (q,a
q
i), i.e., the longest time required to transfer q flits of

stream i, we maximize all blocking effects and sum them up:

B+
i (q,a

q
i)≤q ·C+Bout

i (B+
i (q,a

q
i)−C,q)

+Bfifo
i (B+

i (q,a
q
i),q,a

q
i)+Bbp

P(i)(q), (1)

where P(i) denotes the output port of stream i. The equation
forms an integer fixed point problem, which is typical for busy-
time based scheduling analysis. It can be resolved iteratively
starting with B+

i (q,a
q
i) = q ·C.

Next, we derive upper bounds for the individual blocking
factors from Eq. 1. For this we first define two auxiliary func-
tions:

Definition 2. Let ρ
+
i (∆t) be the maximum number of flits that

can arrive in any time interval ∆t at a stream i considering
whole packets:

ρ
+
i (∆t) =

⌈
η
+
i (∆t)

n

⌉
·n (2)

Definition 3. Let Θk denote the set of all possible mappings
of k packets to available output ports (i.e. all but the input
port from which these k packets are coming). Then θ ,θ ∈Θk

defines a specific mapping for k packets, such that θ denotes
for each of the k packets the destined output port. Note, that for
an output buffered switch, all packets in a buffer are destined
for the same port.

With these definitions, we can now derive the individual
blocking terms.

Lemma 1. The output blocking Bout
i that a stream i observes

is bounded by:

Bout
i (∆t,q) = ∑

j∈Outi

C ·χ +Bbp
P(i)(χ)

with χ = min
{⌈q

n

⌉
·n,ρ+

j (∆t)
}
, (3)

where Outi denotes the set of other input ports that are mapped
to the same output port as i. Hence, j, j ∈ Outi denotes the
cumulative interference input port j induces to stream i.

Proof. Due to wormhole switching, once the scheduler grants
access to an output port, no other input port can access this port
until the port is released, i.e., the packet is fully transmitted.
This is captured by ρ

+
i , which considers that after a head flit

from j arrives within the time interval ∆t, the whole packet
will be served before i. Additionally, due to the round-robin
arbitration, each head flit belonging to stream i may only be
blocked once by each other input port. This is addressed with
the min-function, where

⌈ q
n

⌉
is an upper bound on the number

of head flits. Each of these head flits can be blocked at most
for n flits from each other input port. Moreover, each of the
interfering flits then will block stream i for the flit transfer time
C and the backpressure blocking these flits experience.

Lemma 2. The FIFO blocking Bfifo
i that a stream i observes

is bounded by:

Bfifo
i (∆t,q,aq

i) = m ·C+ max
θ∈Θk
{Aθ}+ max

θ∈Θ1

{
Bbp

P(θ)(m− k ·n)
}

with m = min

{
Qb−1, ∑

j∈Buf i

{
ρ
+
j (a

q
i)
}}

Aθ = ∑
j∈θ

{
Bout

j (∆t−C,n)+Bbp
P(j)(n)

}
, (4)

where Buf i denotes the set of all streams sharing the buffer of
stream i (including i itself); and k denotes the maximum num-
ber of whole packets (and hence head flits) of other streams
given by k = bm

n c.

Proof. The blocking caused by other streams in the same
buffer consists of the number of flits that will be transmitted
before i and the interference those flits observe. The first term
accounts for the transmission of these flits.

Due to backpressure, new flits can only arrive when there
is free space. Hence, when the q-th flit of i arrives, there can
be at most Qb− 1 flits in the buffer. Additionally, only flits
that arrived before the arrival of the q-th flit can be in the
buffer, covered by the min-term. Thus, m provides the maxi-
mum number of flits of other packets that can be before the
q-th flit of stream i in the buffer.

The interfering flits can be grouped into flits of whole pack-
ets as well as a packet partially transmitted at the front of the
queue. The second term accounts for the worst-case blocking
whole packets can observe. It considers for the k packets all
possible mappings to output ports and takes the maximum
blocking. This blocking consists of the output and backpres-
sure blocking each packet will experience. The third term ac-
counts for the blocking of an partial packet. As the header of
this packet has already been sent, we only need to account for
backpressure blocking.

Definition 4. The backpressure blocking Bbp
p that a stream i

observes on its path through output p in router k is bounded
by:

Bbp
p (q) = B̂+

p,k+1(q), (5)

where B̂+
p,k+1 is the worst-case waiting time at the downstream

router (k+1) until the q-th flit can be received. Note that this
accounts for the propagation of the new event model for back-
pressure in CPA.

Lemma 3. The worst-case waiting time B̂+
p (q) of a port (i.e.

buffer) p denotes the time until the port is ready to receive the
q-th flit. For a router it can be bounded by:

B̂+
p (q) =

{
q ·C+max

θ∈Θk {Aθ} , if bp > Qb

0, otherwise

with Aθ = ∑
j∈θ

{
Bout

j (B̂+
p (q)−Ci,n)+Bbp

P(j)(n)
}
, (6)

where bp denotes the worst-case backlog of the port and k is
a bound on the number of packets q flits form (k = d q

ne). For
router ports connected to a resource, the worst-case waiting
time can directly be derived from service curve of the resource.
This enables to use rate-limited resources that do not allow
consuming a flit each cycle.

Proof. Backpressure (and hence waiting) can only occur, if
the worst-case backlog of the port exceeds the buffer size (i.e.
bp > Qb). If backpressure occurs, the port is conservatively
assumed to be fully backlogged (i.e. buffer full). Hence, to
receive q flits, the port must transmit q flits to any output.
For these flits we must account for their transmission time
(q ·C) and the worst-case interference they suffer. For this, the
term max

θ∈Θl {Aθ} obtains the worst-case blocking from each
possible mapping of flits to output ports. For this only output
and backpressure blocking must be taken into account.

With lemmas 1 to 3, we have fully derived the inequality in
Eq. 1 for the local analysis step. For the iterative approach, we
now define derived metrics that are propagated between the
routers and can be used for performance and schedulability
characterization.

A. Derived Metrics
With the worst-case multiple activation processing time, we

now derive the worst-case latency of a single router. The worst-
case single hop latency R+

i of a stream i denotes the maximum
time between the arrival time aq

i of the q-th activation and the
processing of q activations B+

i (q,a
q
i) [21]:

R+
i = max

q∈Qi
{Ri(q)} with

Ri(q) = max
aq

i ∈Aq
i

{
B+

i (q,a
q
i)−aq

i

}
+Or, (7)

where Or denotes the router’s overhead, such as the time re-
quired by the router to determine and acquire the output port,
and Ri(q) is the worst-case response time of the q-th activation.

This equation considers for each number of q activations
within a busy-period all possible arriving times aq

i of the q-th
event. This is necessary, as a later arrival time might increase
the interference in the FIFO queues. Additionally, a delayed
arrival reduces the response time. However, in [5], [21] the
authors proved that the number of possible candidates for aq

i
is finite. The authors showed, that it is sufficient to consider

only candidates that coincide with activations of the interfering
workload. Hence, we can define the set of candidates as:

Aq
i =

⋃
j∈I(i)

{
δ
−
j (k) | δ

−
i (q)≤ δ

−
j (k)< δ

−
i

(⌈q
n

⌉
·n+1

)}
k≥1

(8)

where I(i) defines the set of all interfering streams for stream
i using the same queue in the router. Additionally, we need
to consider all scenarios where an activation arrives within
the busy-period of the previous activation when defining the
number of activations q. Thus, we have to find all q≥ 1 that
are smaller than the maximum number of events q+i forming
one busy-period [21]:

Qi = {1,2, . . . ,q+i } with

q+i = min
{

q ∈ N+ | δ−i (q+1)≥ max
aq

i ∈Aq
i

{
B+

i (q,a
q
i)
}}

. (9)

Based on the multiple activation processing time, we can
also derive the worst-case backlog in each buffer. The worst-
case backlog of a port bp of a router can be defined as:

bp = ∑
i∈Buf p

{
max
q∈Qi

{
max
aq

i ∈Aq
i

{
η
+
i (B+

i (q,a
q
i))−q+1

}}}
, (10)

where Buf p denotes the set of streams sharing the buffer p.
This equation examines all numbers of activations q which ar-
rive during the processing time of their predecessor. For each,
B+

i (q,a
q
i) yields the completion time of the q-th activation. At

this instance of time, at most η
+
i (B+

i (q,a
q
i)) activations may

have arrived since the start of the busy window, of which q−1
have already been processed. Hence, the difference yields the
amount of backlogged activations, of which we have to de-
termine the maximum for all q ∈ Qi providing the worst-case
backlog of a stream. The sum of the worst-case backlogs of
all streams sharing a buffer then returns the worst-case buffer
backlog. However, due to the backpressure, this backlog only
describes an analysis artifact used to estimate whether back-
pressure occurs. The number of backlogged flits inside a router
can never exceed the buffer size.

B. Metrics for the Network
With the analysis of a single router, we can now analyze the

whole network using the compositional approach from Sec-
tion III. For this we iteratively perform a local analysis of
the routers and propagate the event models (including back-
pressure) to neighboring routers. Based on the local analysis,
we can define the output events models for each stream that
become the input event models of the subsequent routers ac-
cording to [5] as:

δ
−
i,out(q) = max

{
(q−1) ·C,δ−i,in(q)− (R+

i − (C+Or))
}

(11)

where (q−1) ·C denotes the best-case execution time, δ
−
i,in(q)

the input event model, and (R+
i − (C +Or)) denotes the re-

sponse time jitter (i.e. the difference between worst and best
case execution times of a flit).

With the input models of all routers, we can limit the worst-
case end-to-end latency l+p (q) for transmitting q flits on a

Fig. 2. Setup with four different streams, each sending from source Sx to
destination Dx

path p for each stream. It consists of the worst-case response
time for each hop on the path p, the time to inject the q flits,
and the packetization overhead:

l+p (q)≤max
{

δ
−
First(p)(q),B

bp
1 (q+bi−Qb)

}
+Op + ∑

j∈Tasks(p)
R+

j , (12)

where First(p) defines the first task of the chain (i.e. net-
work path); Tasks(p) the set of all tasks of path p (i.e. one
per hop); Op the constant de/packetization overhead; R+

j the
worst-case single hop latency; δ

−
First(p)(q) denotes the time the

sender needs to inject q flits (assuming no contention); and
Bbp

1 (q+bi−Qb) the overhead induced by backpressure until
the q-th flit and all backlogged flits of previous transmissions
can be injected to the first router. Basically the equation com-
putes the time interval required by a stream to inject q flits
when the sender is fully backlogged and then assumes the
last one of these to experience the worst-case blocking on
all intermediate routers. Due to the in-order delivery of the
network, all previous flits will have arrived at the destination
before the last one. And the delay previous flits may observe
is included as interference in the worst-case blocking of the
last flit.

V. EVALUATION

In this section we evaluate and compare our analysis with
simulation results. The results were obtained using the OM-
NeT++ framework [22] and the HNOCS library [23]. We fo-
cus on the simple system shown in Fig. 2, which is compact
enough to be comprehensively displayed but shows all relevant
effects of the analysis. It consists of four streams periodically
injecting traffic from source Sx to destination Dx with a packet
size of 4 flits. Each router induces a 4-cycle routing overhead
(Or) to the flits and has buffer space for 2 packets. This size is
similar to the Kalray MPPA-256 [6] that provides two distinct
networks with a buffer size of 8 and 401 flits (i.e. approx. 2.67
and 12.15 packets with a packet size of 3 and 33 flits in the
default configuration).

For the first experiment we varied the requested bandwidth
of each sender, where all senders request for the same band-
width. Fig. 3 shows for this, for each of the streams, the an-
alyzed and simulated worst-case flit end-to-end latency. The
analysis for all streams for a single configuration took in aver-
age 908 ms. As can be seen, the analysis always delivers con-

2.
50

5.
00

7.
55

10
.0

0

12
.5

0

14
.8

1

17
.3

9

20
.0

0

22
.2

2

25
.0

0
26

.6
7

30
.7

7

33
.3

3

36
.3

6

40
.0

0

requested link bandwidth per sender (%)

102

103

en
d-

to
-e

nd
 la

te
nc

y
(c

yc
le

s)

simulation S1
analysis S1

simulation S2
analysis S2

simulation S3
analysis S3

simulation S4
analysis S4

Fig. 3. Flit worst-case latency over requested bandwidth (per sender) with a
buffer depth of 8 flits and a packet size of 4 flits

2.
50

5.
00

7.
55

10
.0

0

12
.5

0

14
.8

1

17
.3

9

20
.0

0

22
.2

2

25
.0

0
26

.6
7

30
.7

7

33
.3

3

36
.3

6

40
.0

0

requested link bandwidth per sender (%)

0

10

20

30

40

re
ce

iv
ed

 li
nk

 b
an

dw
id

th
 (%

)

simulation S1
analysis S1

simulation S2
analysis S2

simulation S3
analysis S3

simulation S4
analysis S4

Fig. 4. Received versus requested bandwidth (per sender) for a buffer depth
of 8 flits and a packet size of 4 flits

servative results. For low bandwidths (up to 10% per sender)
the results from analysis are comparatively accurate w.r.t. sim-
ulation. For higher loads, the influence of backpressure and
head-of-line blocking lead to a higher over-approximation for
stream 1 and 2. For streams 3 and 4 the analytic results are
much tighter, as these streams compete for a lower number
of links, thus experience lower interference. Due to the over-
approximation of blocking, the analysis reaches earlier the sat-
uration point. This is the bandwidth at which the backlog at
the sender, and hence latency, go to infinity due to the NoC
load.

For the same setup, Fig. 4 compares the requested and ob-
tained bandwidth per sender. As long as the analysis provides
results for the latency (i.e. before saturation), the analyzed load
is similar to the simulated. As soon as the saturation point (for
a stream) is reached, the analyzed throughput diverges from
the simulation and remains on nearly constant level. Along
with the increasing load, the simulated bandwidths start to de-
crease and converge to the analyzed values, especially visible
for streams 1 and 2. This shows, that for systems with a shared
channel, the complex blocking scenarios hinder tight latency
bounds but nonetheless permit accurate bandwidth estimations.

In Fig. 5 we vary the buffer depth and compare the simu-
lated latency against our analysis and the basic iSLIP analysis
from [5] that assumes infinite buffers. For this experiment we
used a packet size of 4 flits and requested load of 12.5% for
each sender. For small buffer sizes, our analysis delivers an
high over-approximation of the latency. This is because for
small buffers the head-of-line blocking and backpressure occur
more likely and propagate faster through the system. For larger
buffer sizes, the results of the analysis become tighter, as back-
pressure is lower or even disappears, diminishing the negative

1 2 3 8 32 64
buffer depth (in packets)

50
100
150
200
250
300

en
d-

to
-e

nd
la

te
nc

y
(c

yc
le

s)

simulation analysis basic iSLIP CPA

Fig. 5. Flit worst-case latency for stream S1 for different buffer depths and
12.5% requested bandwidth per sender

effect of blocking propagation. Indeed, for buffer sizes greater
than 8 packets, our analysis delivers results as tight as the one
from [5]. However, note that the results of [5] are not proved
to be safe for this setup, as backpressure can occur. Recall,
that approach from [5] is only valid for systems where the
backlog is smaller than the buffer size.

The evaluation shows, that our analysis provides safe upper
bounds on the worst-case flit latency for a NoC with back-
pressure. However, it also shows, that backpressure can lead
to overly pessimistic guarantees for a system, especially for
CPA approaches. This has two reasons. First, the analysis is
pessimistic when accounting for the interference. It does not
consider correlations or the pay bursts only once [18] phe-
nomenon, but applies an over-approximation. This leads to an
analytical worst-case that can never happen in the real system.
For instance, when sending a flit, the analysis assumes the
worst-case backlog to occur during injection (i.e. backlogged
sender) followed by the worst-case end-to-end latency for the
flit transmission. However, this assumes the worst-case inter-
ference to happen twice: when building the backlog and when
the flit flows through the NoC.

Second, backpressure constitutes a significant problem in
systems with a shared channel. Analyses typically introduce
pessimism which will be increased when accounting for back-
pressure. Hence, for real-time systems, the concurrent access
to a shared channel between multiple real-time senders must
be avoided (e.g. through a control layer) or the injection rate
must be limited. This permits limiting the interference and
improve the analysis results as shown in Fig. 3.

VI. CONCLUSION
In this work, we introduced a real-time communication anal-

ysis for best-effort networks-on-chip with finite sized buffers
and backpressure. The analysis provides worst-case latency
guarantees for individual streams that share a (virtual) channel.
In our experimental evaluation we validated the analysis results
against simulation. We showed that the CPA framework can be
applied for real-world systems where buffer space is limited,
such as the Kalray MPPA-256. However, the evaluation also
demonstrated that backpressure and blocking propagation can
lead to overly pessimistic results, especially for systems with
shared buffers. Hence, for future work, we plan to extend the
analysis to account for correlations between different block-
ing terms and the pay bursts only once phenomenon to safely
reduce the pessimism.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, pp. 70–78, Jan 2002.

[2] A. Burns and R. Davis, “Mixed criticality systems-a review (7-th ed),”
Department of Computer Science, University of York, Tech. Rep, January
2016.

[3] R. Marculescu, U. Y. Ogras, L. S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in NoC design: System, microarchitec-
ture, and circuit perspectives,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, pp. 3–21, Jan. 2009.

[4] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proceedings -, vol. 152, pp. 148–166, Mar.
2005.

[5] E. A. Rambo and R. Ernst, “Worst-case communication time analysis of
networks-on-chip with shared virtual channels,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE ’15, (San Jose, CA, USA), pp. 537–542, EDA Consortium, 2015.

[6] M. Harrand and Y. Durand, “Network on chip with quality of service,”
Dec. 31 2013. US Patent 8,619,622.

[7] Adapteva Inc., Epiphany Architecture Reference, Mar 2014.
[8] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,

M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
pp. 15–31, Sept. 2007.

[9] Z. Lu, A. Jantsch, and I. Sander, “Feasibility analysis of messages for on-
chip networks using wormhole routing,” in Proceedings of the ASP-DAC
2005. Asia and South Pacific Design Automation Conference, 2005.,
vol. 2, pp. 960–964 Vol. 2, Jan 2005.

[10] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in Networks-on-Chip, 2008. NoCS
2008. Second ACM/IEEE International Symposium on, pp. 161–170,
Apr. 2008.

[11] H. Kashif, S. Gholamian, and H. Patel, “SLA: A stage-level latency anal-
ysisfor real-time communicationin a pipelined resource model,” IEEE
Transactions on Computers, vol. 64, pp. 1177–1190, April 2015.

[12] Z. Shi and A. Burns, “Improvement of schedulability analysis with a
priority share policy in on-chip networks,” in 17th International Con-
ference on Real-Time and Network Systems, pp. 75–84, 2009.

[13] T. Ferrandiz, F. Frances, and C. Fraboul, “A sensitivity analysis of two
worst-case delay computation methods for spacewire networks,” in 2012
24th Euromicro Conference on Real-Time Systems, pp. 47–56, July 2012.

[14] D. Dasari, B. Nikoli’c, V. N’elis, and S. M. Petters, “NoC contention
analysis using a branch-and-prune algorithm,” ACM Trans. Embed. Com-
put. Syst., vol. 13, pp. 113:1–113:26, Mar. 2014.

[15] D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. D. Micheli, and
H. Sarbazi-Azad, “A method for calculating hard qos guarantees for
networks-on-chip,” in 2009 IEEE/ACM International Conference on
Computer-Aided Design - Digest of Technical Papers, pp. 579–586, Nov
2009.

[16] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
best-effort communication in wormhole networks on chip,” in Networks-
on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International Symposium on,
pp. 44–53, May 2009.

[17] H. Kashif and H. Patel, “Buffer space allocation for real-time priority-
aware networks,” in 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pp. 1–12, April 2016.

[18] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Berlin, Heidelberg: Springer-
Verlag, 2001.

[19] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Circuits and Systems, 2000. Pro-
ceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium
on, vol. 4, pp. 101–1044, 2000.

[20] K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible approach
for analyzing fixed priority hard real-time tasks,” Real-Time Syst., vol. 6,
pp. 133–151, Mar. 1994.

[21] J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing analysis of
Ethernet topologies with strict-priority and AVB switching,” in Industrial
Embedded Systems (SIES), 2012 7th IEEE International Symposium on,
pp. 1–10, June 2012.

[22] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, Simutools ’08, (ICST, Brussels, Belgium, Bel-
gium), pp. 60:1–60:10, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2008.

[23] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny, “Hnocs: Modular
open-source simulator for heterogeneous NoCs,” in Embedded Computer
Systems (SAMOS), 2012 International Conference on, pp. 51–57, July
2012.

