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* many-core systems are reaching safety-critical
real-time systems

 sensor fusion and recognition in
highly automated driving

* avionics, space

* complexity increases
* integrate previously distributed functions
* implement new functionality

* safety standards require predictable timing L Py e
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* networks-on-chip (NoCs) offer high-performance, scalability and

flexibility —
* allow integration of many components

e different transmissions share NoC
resources

Memory

N: Network Node
R: Router

* limited resources
* e.g. buffers are shared by different streams | ¢ | o Interface

Peripherals
* backpressure can occur
—>timing analysis for NoCs taking backpressure and shared buffers into
account
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Router Architecture

* input-buffered routers
* FIFO scheduling inside
S1

* if buffer full, signal backpressure =

upstream Input 1
S2

=

\ 4

utput 2

=
. ﬁtput 3

\ 4

* wormhole switching
» packets are composed of flits

Input 2

\ 4

* stream is a sequence of packets of same
size (number of flits)

Input 3

* round-robin arbitration at each output
port (packet based)
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State of the Art — NoC Timing Analysis

* unique priorities and virtual channels:
* Lu2005, Shi2008, Kashif2015

* shared channels:
* Shi20(Q

- only fo

This work extends Rambo2015 to account for

finite sizes buffers and backpressure
» with backpressure, unique priorities and virtual channels
* Qian2009, Kashif2016, Indrusiak2016

= no channel sharing, optimistic in some cases
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e Motivation

* Compositional Performance Analysis (CPA)
* Backpressure in CPA

* Experiments

e Conclusion
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CPA Approach

 analysis performed iteratively Environment Model
* step 1: local analysis (at each router) J
* compute worst-case response time of flits TIAEEN A oy
based on critical instant (busy window) !
. . Local
derive output event models Scheduling Analysis
* step 2: global analysis l
* propagate event models downstream ST
 go to step 1 if any event model has changed !
* otherwise, terminate Convergence or No
. . Non-Schedulability ?
* fixed point problem v
Terminate
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CPA Approach

» worst-case end-to-end latency relies on
response times R* from local analyses

* for each stream

* analyze routers along its path and propagate
event models downstream

» formally analyze routers iteratively

Sink 1
e}
R+ R+
ﬁ MNin,s1 | w\out,ﬁ -'_',_l:rr r
Source » Router 1 » Router 2 » Sink 2
) Nin,s2 mut,sz = En >
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Mapping NoC Domain to Processor Resource Model

s1 o) > +
* output ports = processing resources Sl i ER TS
* input ports = shared resources with —> > S oo J1>
. Input 2
mutually exclusive access & ol
'o,.l—? ﬁJtputS IEd
* traffic stream = chain of tasks mapped to it -
resources
* flit transmission -> task execution <'—T_14\' N ,
n./< T3 out,§2
. . . . Nin 53
[ J y
fllt.arrlval -> task activation Ve > s
* input and output event models
Out 3

nin,Sl
Out 2

I" Tfout,Sl

29 March 2017 Sebastian Tobuschat, TU Braunschweig 9




e Motivation

* Compositional Performance Analysis (CPA)
* Backpressure in CPA

* Experiments

* Conclusion
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Local Router Analysis

» worst-case multiple activation processing time for a stream Bzr
* maximum time resource (router) is busy processing q flits of a stream
* used to derive worst-case latency R; of a single hop

* break down into sum of different terms addressing different blocking
factors

* doing this for routers without virtual channels, round-robin
arbitration and arbitrary but finite input buffer size
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Blocking factors

* flit transfer
 output blocking

* FIFO blocking :; > Ig
* backpressure blocking
52 .9|. . .gutput 2 >
B:-(q’ a?) = q * C Input 2
+B?ut(B:-(qr a?) - Cr CI) ;I:E -
fifo . utpu >
+B[°(B} (g,a7), 4,a) z

bp
+Bp(i) Q)
q : number of flits
a/ : arrival time of event g

) , N For details and equations look into the paper
C : single flit transmission time
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Output blocking

* interference from other input ports
which use the same output port

e due to round-robin: s1

« each other input might send a full 53
packet before each packet of the stream .,
under analysis

* account for their transmission
* and backpressure they might experience

utput 2

g v
v

Input 2

\

Input 3
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FIFO blocking

 time required to transmit other flits in
the FIFO queue preceding the stream

under analysis o

» account for their transmission s3

* their output blocking

S2 o - 5
* backpressure they might experience g g tput 2
* due to limited buffer space: |
 assume the worst candidate to be in T IZ:

the FIFO
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Backpressure blocking

* resulting from lack of free buffer space
at the downstream router

* worst-case waiting time at downstream N 1s
router until the flits can be received 53
* if downstream buffer can overflow: < @ R
* wait until enough flits are transmitted o3
(at downstream router) .
* these experience: s 9

* transmission time, output blocking,
backpressure (downstream)
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Backpressure blocking

* backpressure depends on downstream router
* propagate blocking time of a buffer upstream,

if backlog can exceed buffer size Ninsi Mout.s1
—> additional output event model Router k

* influences event model propagation of interfering

streams and blocking of task under analysis ﬂ,
* takes part in all other blocking factors Hinsg) Nouts
. Router k
* CPA can already handle upstream propagation <_§+ Bf+
D,k pk+1

* but: need to avoid cyclic dependencies
- be conservative
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Network Latency

* derive single hop latency R* based on
* multiple activation busy time

 router’s overhead (e.g. time to determine
and acquire output port)

* network latency [*: I (@) = InjectionTime(q)
« sum of single hop latencies on path +PacketizationOverhead
+ injection time (including backpressure + z R
at source) J €Tasks ()

+ de-/packetization overhead
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 Motivation

* Compositional Performance Analysis (CPA)
* Backpressure in CPA

* Experiments

* Conclusion
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e simulation in OMNeT++

* four streams periodically injecting traffic
* from S, to D,
» packet size: 4 flits
* 4 cycle routing overhead
* buffer size 2 packets / 8 flits
* injection jitter: 25% of period

* varied requested throughput
(decrease of period)
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Flit Worst-case Latency

end-to-end latency (cycles)

requested link bandwidth per sender (%)
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Requested and Received Bandwidth
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Flit Latency for Stream S1

12.5% requested bandwidth per sender

backpressure blocking
starts to propagate upstream

(8]
wn O
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¥
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T

end-to-end
latency (cycles)

N & s ¢ . . :
1 2 3 8 32 64

buffer depth (in packets)
—=o simulation  ** this work = +— Rambo2015
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 Motivation

* Compositional Performance Analysis (CPA)
* Backpressure in CPA

* Experiments

* Conclusion
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Conclusion

» extended CPA to handle backpressure in NoCs

 analysis provides upper bounds on flit level
 e.g. end-to-end latency, max backlog at each router, received throughput

» with backpressure, analysis results gets more pessimistic
* load/saturation point can be estimated more accurately than latency

* further improvements needed:
* correlations between different blocking terms (and routers)
 correlations between streams

Thank you for your attention.
Questions?
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Backup
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Output Blocking - Comparison

b
* our: B?ut(At; qQ = ZjeOuti C+x+ Bpl(,i) 00
backpressure
* Rambo2015: B"'(At, q) = ZjEOuti C * p]-'_ (At) blocking for
packets from other
transmission of Inputs

packets from

* with other inputs
« x= min{[%] H (At)}
+ n; (At) . . .
* pj (At) = —|*n (max number of flits that arrive in At assuming whole packets)

r1j+ (At) maximum number of flits that arrive in At
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FIFO Blocking - Comparison

¢ our.
fifo qy _ { }
B;"°(At,q,al) =m=C + (grel:%)é{Ae} +max{Bp() (m — k *n)
transmission, output backpressure
e Rambo2015: blocking and backpressure blocking for
of preceding packets preceding packets
fifor _q\ _ +,.9 + out (s— ( ~+( 49
BI"°(af) = ) {Cxpf@} + > {cxpfa0)+ B2 (55 (o} (a])) - C)}
JEOV; JEIN;
" with: transmission of —
» m=min{Qy — 1, Xjepur,{pf (@)} preceding overlapping tr"‘t‘"s:“t'js'olg andf
output blocking o
. out streams
A0 = Ljeo {B (8¢ = C,m) + By Y )(n)} preceding packets
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Backpressure Blocking - Comparison

. sz (q) = l’?;;,kﬂ(q), max waiting time at downstream router (k+1)

for g flits
N * C + max{Ap}, if b, > Q
B;(q) = {CI ek 0 / p b
Yw"ise
transmission, output
blocking and
. with backpressure of flits
out (o at port p
+ Ao = Yjeo{B"(Bj(q) - C.n) + BLY, ()}

* b, as worst-case backlog of port p, @}, as the buffer size, n packet size in flits

k = [%], max number of packets q flits form
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Complex Activation Patterns

e variety of activation patterns used in &(n)
practice —
e.g. periodic + spontaneous, dual 20ms
cyclic, on change

* timing verification can consider them 1o

through use of minimum distance 5ms
functions >
. ope . . . 2 3 4 5 \6 n
* i.e. specification of the minimum
distance between any n consecutive any 5 events are
events separated by at least
 derived from specification or rate- 20 ms
.« . 2 events may come at
limiter once ‘
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Interference!
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Networks-on-Chip (NoCs) offer a high-performance, scalability and flexibility
allow integration of many components
result = different transmissions share NoC resources
* links and buffers
standards require separation in case of shared resources

* functional independence
* timing independence

e

NZ t DRAM

V%

N G S shared link

Main Challenge = QoS guarantees + high performance
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Rambo2015 - Calculating the Interference

= Direct In pUt ! Pl = S [{of @ - | FIFO
) BPT(At, q) = Z C' - min {q, Z f};"(At)} : ' ' ettt A
J csvu Rouncflggbin ||+ BPOG; (o} (ah) — C) + BIC(6; (o) (1)) — O) }
i : Head of line blocking
[
L.
" OVGHapplng Interference fromj =~
[Diemer11] + interference suffered by j :
W?ver!ap(q) < Wi(q)+ 'EOZ; . Wj(n;'._ (w?ver.’ap (q/)\* C)) :
J verlap(i) e«\e‘\\ |
N
[Rambo2015 ot :
BV (At) = > | nfay-C I
I

ceV (i) jeOverlap?

Interference from j

i: stream under analysis; j, k: interfering stream
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