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• many-core systems are reaching safety-critical 
real-time systems 
• sensor fusion and recognition in  

highly automated driving  

• avionics, space   

• complexity increases 
• integrate previously distributed functions 

• implement new functionality 

• safety standards require predictable timing 

Motivation 
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• networks-on-chip (NoCs) offer high-performance, scalability and 
flexibility 

• allow integration of many components 

• different transmissions share NoC 
resources 

• limited resources 
• e.g. buffers are shared by different streams 

• backpressure can occur 

timing analysis for NoCs taking backpressure and shared buffers into 
account 

 

 

Motivation 
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• input-buffered routers 
• FIFO scheduling inside 

• if buffer full, signal backpressure 
upstream 

• wormhole switching 
• packets are composed of flits 

• stream is a sequence of packets of same 
size (number of flits)  

• round-robin arbitration at each output 
port (packet based) 

Router Architecture 
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State of the Art – NoC Timing Analysis 
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• unique priorities and virtual channels: 
• Lu2005, Shi2008, Kashif2015  

• shared channels: 
• Shi2009, Ferrandiz2012, Dasari2014, Rahmati2009, Rambo2015  

 only for sufficiently sized buffers (no backpressure) 

• with backpressure, unique priorities and virtual channels 
• Qian2009, Kashif2016, Indrusiak2016 

 no channel sharing, optimistic in some cases 

 

This work extends Rambo2015 to account for 
finite sizes buffers and backpressure 



• Motivation 

• Compositional Performance Analysis (CPA) 

• Backpressure in CPA 

• Experiments 

• Conclusion 

Outline 
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• analysis performed iteratively 
• step 1: local analysis (at each router) 

• compute worst-case response time of flits 
based on critical instant (busy window) 

• derive output event models 

• step 2: global analysis 

• propagate event models downstream 

• go to step 1 if any event model has changed 

• otherwise, terminate 

• fixed point problem 

CPA Approach 
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• worst-case end-to-end latency relies on 
response times 𝑹+ from local analyses 

• for each stream 
• analyze routers along its path and propagate 

event models downstream 

• formally analyze routers iteratively 

 

CPA Approach 
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Mapping NoC Domain to Processor Resource Model 
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• output ports  processing resources 

• input ports  shared resources with 
mutually exclusive access 

• traffic stream  chain of tasks mapped to 
resources 

• flit transmission  task execution 

• flit arrival  task activation 
• input and output event models 
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• Compositional Performance Analysis (CPA) 

• Backpressure in CPA 

• Experiments 

• Conclusion 

Outline 
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• worst-case multiple activation processing time for a stream 𝑩𝒊
+ 

• maximum time resource (router) is busy processing q flits of a stream  

• used to derive worst-case latency 𝑹𝒊
+ of a single hop 

• break down into sum of different terms addressing different blocking 
factors 

 

• doing this for routers without virtual channels, round-robin 
arbitration and arbitrary but finite input buffer size 

Local Router Analysis 
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• flit transfer 

• output blocking 

• FIFO blocking 

• backpressure blocking 

 

Blocking factors 
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For details and equations look into the paper 

𝑞 : number of flits 

𝑎𝑖
𝑞

 : arrival time of event q 

C : single flit transmission time 
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• interference from other input ports 
which use the same output port 

• due to round-robin: 
• each other input might send a full 

packet before each packet of the stream 
under analysis 

• account for their transmission 

• and backpressure they might experience 

Output blocking 
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• time required to transmit other flits in 
the FIFO queue preceding the stream 
under analysis 
• account for their transmission 

• their output blocking 

• backpressure they might experience 

• due to limited buffer space: 
• assume the worst candidate to be in 

the FIFO 

FIFO blocking 
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• resulting from lack of free buffer space 
at the downstream router 
• worst-case waiting time at downstream 

router until the flits can be received 

• if downstream buffer can overflow:  
• wait until enough flits are transmitted 

(at downstream router) 

• these experience: 

• transmission time, output blocking,  
backpressure (downstream) 

Backpressure blocking 
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• backpressure depends on downstream router 
• propagate blocking time of a buffer upstream, 

if backlog can exceed buffer size 

    additional output event model 

• influences event model propagation of interfering 
streams and blocking of task under analysis 

• takes part in all other blocking factors 

• CPA can already handle upstream propagation  
• but: need to avoid cyclic dependencies  

     be conservative 

Backpressure blocking 
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• derive single hop latency 𝑹+ based on 
• multiple activation busy time 

• router’s overhead (e.g. time to determine 
and acquire output port) 

• network latency 𝒍+:  
• sum of single hop latencies on path 

   + injection time (including backpressure 
      at source) 

   + de-/packetization overhead 

 

Network Latency 
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𝑙𝑖
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               +  𝑅𝑗
+
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• simulation in OMNeT++ 

• four streams periodically injecting traffic 
• from  Sx to Dx 

• packet size: 4 flits 

• 4 cycle routing overhead 

• buffer size 2 packets / 8 flits 

• injection jitter: 25% of period 

• varied requested throughput 
(decrease of period) 

 

 

Experiments 
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Flit Worst-case Latency 
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analysis  
≈2x simulation 



 

Requested and Received Bandwidth 
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12.5% requested bandwidth per sender 

 

Flit Latency for Stream S1 

29 March 2017 Sebastian Tobuschat, TU Braunschweig 22 

backpressure blocking 
starts to propagate upstream 
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• Backpressure in CPA 
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• Conclusion 

Outline 
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• extended CPA to handle backpressure in NoCs 

• analysis provides upper bounds on flit level 
• e.g. end-to-end latency, max backlog at each router, received throughput 

• with backpressure, analysis results gets more pessimistic 
• load/saturation point can be estimated more accurately than latency 

• further improvements needed: 
• correlations between different blocking terms (and routers) 

• correlations between streams 

 

Conclusion 
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Thank you for your attention. 
Questions? 
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Backup 
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• our:   𝑩𝒊
𝒐𝒖𝒕 Δ𝒕, 𝒒 =  𝑪 ∗ χ + 𝑩𝑷 𝒊

𝒃𝒑
(χ)𝒋∈𝑶𝒖𝒕𝒊

 

 

• Rambo2015: 𝑩𝒊
𝒐𝒖𝒕 Δ𝒕, 𝒒 =  𝑪 ∗ ρ𝒋

+(Δ𝒕)𝒋∈𝑶𝒖𝒕𝒊
 

 

 
• with 

•  χ = 𝒎𝒊𝒏  
𝒒

𝒏
∗ 𝒏, ρ𝒋

+(Δ𝒕)  

• ρ𝒋
+ Δ𝒕 =

ƞ𝒋
+(Δ𝒕)

𝒏
∗ 𝒏 (max number of flits that arrive in Δ𝒕 assuming whole packets) 

• ƞ𝒋
+(Δ𝒕) maximum number of flits that arrive in Δ𝒕 

Output Blocking - Comparison 
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• our: 

𝑩𝒊
𝒇𝒊𝒇𝒐

Δ𝒕, 𝒒, 𝒂𝒊
𝒒

= 𝒎 ∗ 𝑪 + max
θ∈Θ𝑘

 𝑨θ + max
θ∈Θ𝑙

 𝑩𝑷 θ
𝒃𝒑

(𝒎 − 𝒌 ∗ 𝒏)  

 

• Rambo2015: 
 

𝑩𝒊
𝒇𝒊𝒇𝒐

𝒂𝒊
𝒒

=   𝑪 ∗ ρ𝒋
+(𝒂𝒊

𝒒
) 

𝒋∈𝑶𝒗𝒊

 +    𝑪 ∗ ρ𝒋
+ Δ𝒕 + 𝑩𝒊

𝒐𝒖𝒕 δ𝒋
− ρ𝒋

+ 𝒂𝒊
𝒒

− 𝑪  

𝒋∈𝑰𝒏𝒊

 

 

• with: 

• 𝒎 = 𝒎𝒊𝒏 𝑸𝒃 − 𝟏,  ρ𝒋
+(𝒂𝒊

𝒒
) 𝒋∈𝑩𝒖𝒇𝒊
  

• 𝑨θ =   𝑩𝒋
𝒐𝒖𝒕 Δ𝒕 − 𝑪, 𝒏 + 𝑩𝑷 𝑗

𝒃𝒑
(𝒏) 𝑗∈θ  

FIFO Blocking - Comparison 
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• 𝑩𝒑
𝒃𝒑

𝒒 = 𝑩 𝒑,𝒌+𝟏
+ 𝒒 , max waiting time at downstream router (k+1) 

for q flits 

  𝑩 𝒑
+ 𝒒 =  

𝒒 ∗ 𝑪 + max
θ∈Θ𝑘

 𝑨θ , 𝒊𝒇 𝒃𝒑 > 𝑸𝒃

 𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

 
 

 

• with 

• 𝑨θ =   𝑩𝒋
𝒐𝒖𝒕 𝑩 𝒑

+ 𝒒 − 𝑪, 𝒏 + 𝑩𝑷 𝑗
𝒃𝒑

(𝒏) 𝑗∈θ  

• 𝒃𝒑 as worst-case backlog of port p, 𝑸𝒃 as the buffer size, n packet size in flits 

• 𝒌 =
𝒒

𝒏
, max number of packets q flits form 

 

Backpressure Blocking - Comparison 
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• variety of activation patterns used in 
practice 
e.g. periodic + spontaneous, dual 
cyclic, on change 

• timing verification can consider them 
through use of minimum distance 
functions 
• i.e. specification of the minimum 

distance between any n consecutive 
events 

• derived from specification or rate-
limiter 

 

Complex Activation Patterns 
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• Networks-on-Chip (NoCs) offer a high-performance, scalability and flexibility 

• allow integration of many components 

• result  different transmissions share NoC resources 

• links and buffers 

• standards require separation in case of shared resources 

• functional independence 

• timing independence 
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i: stream under analysis;  j, k: interfering stream 

Rambo2015 - Calculating the Interference 
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