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Abstract—Networks-on-Chip (NoCs) for future mixed-
criticality systems must handle a growing variety of traffic
requirements, ranging from safety-critical real-time traffic to
bursty latency-sensitive best-effort traffic. Additionally, safety
standards (e.g. ISO 26262) require sufficient independence
among different criticality levels or a full system certification
according to the highest applicable safety level. Hence, a NoC
must provide performance isolation for safety-critical traffic,
while sustaining low latency for best-effort traffic. This paper
presents a run-time configurable NoC design enabling latency
guarantees for safety-critical traffic with reduced adverse
impact on the performance of best-effort traffic. In contrast to
existing approaches, we prioritize best-effort over safety-critical
traffic and only switch priorities when required. Doing this, we
exploit the latency slack of safety-critical applications, while
providing sufficient independence among different criticality
levels w.r.t. timing properties. We present a formal analysis
and an experimental evaluation, showing that the approach
provides performance isolation for safety-critical applications,
while reducing the adverse effects through strict prioritization
on best-effort applications.

I. INTRODUCTION

Multicore systems become increasingly interesting for
safety-critical domains due to their performance, power, and
size benefits. The use of multiprocessor system on chips (MP-
SoCs) allows integration and concurrent execution of multiple
functions, which previously had been distributed and isolated
by external buses. Consequently, MPSoCs must frequently
accommodate heterogeneous workloads with different timing
and safety requirements, forming mixed-criticality multicore
systems [1], [2]. The challenge in integrating mixed-critical
applications comes from the multicore inherent architecture.
Shared resources, such as the communication infrastructure or
memories, couple the execution behavior across cores. This
impacts non-functional system properties like timing, which
are of particular interest in safety-critical environments. Safety
standards explicitly address this problem and require sufficient
independence between functions of different criticalities (e.g.
IEC 61508 [3]).

Networks-on-Chip (NoC), as a scalable and modular in-
terconnect, are used as a promising solution for MPSoCs,
due to their performance, power, and size benefits [4]. In a
NoC resources, such as output ports in routers, are typically
shared among different functions and safety-classes. Hence,
applications of different safety levels will inevitably compete

for resources in a NoC. One approach to tackle this problem
is to develop all functions to the highest relevant safety level.
However, this leads to higher development costs and lower
system utilization. Therefore, it is crucial to provide methods
guaranteeing sufficient independence in a NoC.

Most of today’s NoC designs achieve the independence
through static (over) provisioning (e.g. TDMA) or static
prioritization of safety critical traffic. This typically leads to
a degradation of the performance, especially for non-safety
critical applications. But for most safety-critical applications,
it is sufficient to arrive shortly before or by their deadline and
an early arrival provides no benefits [5]. On the other hand, a
low latency for best-effort (BE) traffic can drastically increase
the performance of BE applications [6], [7].

Contribution: In this paper we introduce a run-time con-
figurable NoC design enabling latency guarantees for critical
senders with reduced impact on the performance of best-
effort traffic. We prioritize best-effort over guaranteed-latency
traffic in NoC routers and only switch priorities when required,
based on the actual blocking. For this we derive the allowed
additional blocking time (slack) of a stream through timing
analysis and store it in the packet header. This value is then
adapted and evaluated in the routers to monitor the remaining
slack time. This allows exploiting the latency slack of critical
applications, while providing sufficient independence among
different criticality levels w.r.t. timing properties. We present a
formal analysis and an experimental evaluation, showing that
the approach provides sufficient isolation for safety-critical
applications, while reducing the adverse effects through the
common used strict prioritization [8], [9] on best-effort appli-
cations.

The rest of the paper is structured as follows. After an
overview of related work in Section II, we provide the descrip-
tion of our approach in Section III. In Section IV we introduce
the analysis framework, which we then use in Section V to
validate the sufficient isolation by providing latency bounds for
guaranteed latency traffic. This is followed by an experimental
evaluation in Section VI and the conclusion in Section VII.

II. RELATED WORK

There exist various packet-switched networks-on-chip pro-
viding quality-of-service (QoS) for mixed criticality systems
that can be categorized by how they enforce service guaran-
tees. One group uses time-division multiple-access (TDMA)978-1-5090-5269-1/17/$31.00 c©2017 IEEE



to limit the interference between applications, e.g., [10]–[12].
These rely on a pre-allocation of time-slots in the network.
Through assigning different safety classes to different time-
slots, they provide strong isolation. The Nostrum [10] archi-
tecture uses looped containers that are continuously routed
through the network. Applications are statically mapped to cer-
tain containers to isolate them. Aetheral [11] defines schedule
tables in each node and router. These are used to define a
static schedule for the whole communication in the NoC. The
DPSIN [13] network combines rate control and TDMA. For
providing guaranteed service (GS), a virtual channel (VC) in
every switch is reserved for GS traffic as a TDMA channel.
In this TDMA channel, guaranteed service is obtained by
allocating time slots to the streams.

The fixed allocation of time-slots often leads to inflex-
ibility and a high static overhead, as each packet might
wait for its slot at multiple network nodes, even when other
slots are empty. This inflexibility makes these architectures
not suitable for high performance mixed-criticality systems.
PhaseNoC [12] tackles this problem by defining scheduling in
form of waves through the network. Through aligning the time-
slots of all routers on a path, packets can travel with a reduced
latency through the NoC. Another approach is the concept
of channel-trees [14]. In this scheme, time slots are shared
between a selected set of applications, enabling to utilize
otherwise unused time slots. However, as these approaches
rely on static timing schedules and slot assignments, they still
introduce some inflexibility.

To relax the conservatism and timing overhead introduced
by TDM, more flexible approaches were proposed. These
are based on the idea of combining interface-based design
and system analysis [15], [16]. Components and applications
provide well defined interfaces and therefore introduce a
bounded interference to the system. With this, more dynamic
and work-conserving QoS mechanisms can be constructed
based on rate controlling and dynamic scheduling as for
example in [8], [17]–[19]. In [8] the authors propose the
QNoC architecture. It uses four traffic classes and a fixed
priority scheme in the switches to arbitrate between packets of
the different classes. To isolate critical traffic from best-effort
traffic, the critical traffic has a higher priority. In the Mango
NoC [17] switches consist of two parts, a best-effort (BE)
and a guaranteed service (GS) switch, and implement virtual
channels. The GS streams are prioritized over BE streams and
a fair-sharing arbitration is used between multiple GS streams.
The latency of a message is bounded and mainly depends
on the number of VCs sharing a particular connection and
the selected arbitration policy. The Kilo-NoC [9] focuses on
reducing the overhead of QoS mechanisms. While using a
priority based QoS approach, it tries to reduce the overhead
by a topology aware QoS design. Kilo-NoC only provides QoS
mechanisms in the parts of the network where needed and uses
simple routers for the remainder.

The authors of [18] present WPMC, a protocol for priority-
preemptive VC arbitration, guaranteeing that all (critical)
packets will arrive by their deadlines. It uses runtime mon-

itoring at the network interfaces (NI) to check whether critical
traffic stays within a predefined behavior (i.e. message sizes
and inter-arrival time). If an injecting NI detects a deviation
from this behavior, routers on the desired path switch to a
critical state, in which all best-effort traffic is dropped by a
router to favor the critical packets. This scheme is improved
in [19] to not drop best-effort traffic but allow it to use idling
ports of a router even in the critical state. These schemes are
similar to our approach, as they allow prioritizing best-effort
traffic over critical traffic, while monitoring is used to change
the priority during run-time. The main difference is the mon-
itored behavior. In [18], [19] the behavior of critical senders
at the NI is monitored (i.e. message sizes and inter-arrival
times), while our approach monitors the interference packets
of critical senders experience in the network. Additionally, the
monitoring at the injecting NI in [18], [19] only allows to differ
between critical packets, that are transmitted either with low
or with high priority on the whole path. And after switching to
the critical state, the routers remain in this state and henceforth
prioritize critical traffic. Hence, the exploitation of the slack
of critical applications, to increase the performance of best-
effort traffic, is limited in the current design of [18], [19].
However, as these approaches monitor a different part of the
NoC, they can be combined with ours to further exploit a
system through monitoring the behavior of critical tasks as
well as the interference induced by non-critical ones.

In summary, most of today’s NoC architectures do not
meet the requirements on isolation, flexibility, and high system
utilization at the same time. TDM based architectures intro-
duce static overhead due to the static time schedule, reducing
the performance in most cases. Most of the dynamic QoS
approaches favor safety-critical over best-effort (BE) traffic
(e.g. strict prioritization), thus reducing the BE performance.
However, as the behavior of the safety-critical applications
is well known and they do not benefit from finishing earlier
than their deadline [5], this degradation of BE performance is
typically unnecessary. To tackle these problems, our approach
exploits the slack of safety-critical applications, thus increas-
ing the BE performance compared to other approaches, while
still providing sufficient isolation.

III. PROPOSED ARCHITECTURE

In this section we describe the new approach providing
latency guarantees while reducing the adverse effects of state-
of-the-art QoS mechanisms on best-effort applications. The
goal is to exploit the latency slack of critical applications to
increase the performance for best-effort traffic. In this work,
the slack denotes the time budget between the worst-case
latency of a packet and its deadline at the destination, i.e., the
time a packet can be additionally delayed without violating its
deadline in the worst-case. Safety-critical applications do not
benefit from finishing before its deadline and thus the slack
can safely be used to schedule other traffic [5], [7].

Although the proposed mechanism is not specific to a
certain network architecture, we restrict the explanations to
a baseline architecture as used in [20]. We assume a mesh



network, where every router is connected to up to four
neighboring routers and one client (e.g. processing element or
memory). The routers use wormhole flow control, i.e., buffer
management is performed on equally sized flits, and have a
four-stage pipeline. The inputs provide multiple separate vir-
tual channels (VC) to prevent head-of-line blocking between
certain traffic streams. To reduce the size of the crossbar, each
input can only send a flit from a single VC at a time over
the crossbar and the routers use a two-stage arbitration, while
other implementations are possible.

A. Baseline Architecture

The baseline implementation of our approach divides the
traffic in two different QoS classes, where each class uses a
dedicated set of virtual channels and is assigned a distinct
priority level: guaranteed latency (GL) and best effort (BE).
We use the GL channels for safety-critical traffic, while best-
effort only contains non-critical traffic. If distinct priorities
between different safety-critical applications are needed, more
GL channels with different priorities can be used, similar as
for standard priority based NoCs.

To enable the exploitation of the latency slack, we extend
the packet header (for GL) with an additional field, which
holds the slack information: the blocking counter (BC). This
value is decremented in each router, based on the actual
blocking experienced by the packet, and evaluated to monitor
the remaining slack time. In the baseline version, this counter
can be on flit or packet level. Each time a GL packet is blocked
by a higher priority stream, the counter is decremented by one.
For a packet level counter this leads to some conservatism, as
it is also decremented, if GL is only blocked by a partial packet
(e.g. the tail flit of a packet). If the network only supports a
single packet size for all streams and this size is only a few
flits, the packet level counter can be used to reduce the induced
overhead, as less bits are needed in the header. For networks
with different packet sizes and long BE packets, it can be
adverse for GL to be delayed by a full BE packet. Hence, the
flit level counter enables a more fine granular capturing of the
interference.

The use of the slack information in the header enables
to freely distribute the allowed additional blocking over the
network, allowing to account for dynamics in the network that
typically leads to temporarily local traffic hot-spots. Addition-
ally, this offers the ability to adapt the allowed blocking at the
traffic source during runtime and use different values for appli-
cations sharing a VC or even packets of the same application.
Thus, it also offers to integrate local monitoring information
of the network interface [19], or global information [21] in the
allowed blocking to handle uncertainties of the system load.

The initial value of the blocking counter is set in the network
interface based on the results of a performance analysis. As
the analysis used (cf. Section V) assumes that backpressure
does not occur, we do the same in this work. This can be
ensured through the use of source rate limiters or sufficiently
sized buffers in the router. The parameters for these can
be obtained using the performance analysis. To extend the

approach to a network with backpressure, a backpressure
aware analysis [22], [23] must be used. Additionally, the
routers must provide a mechanism to forward a priority signal
if the slack is depleted but the downstream router has no
free buffer space available. Otherwise the backpressure of
the downstream router would repeal the local priority signal
obtained from the blocking counter.

B. Dynamic Prioritization

The arbitration logic in the routers selects the next request
(i.e. VC) based on the priority of the VC. In our approach,
the priority relation of the BE and GL class can be adapted
dynamically by the routers. We distinguish for each GL
channel two different states in each router. In the normal state,
the BE class has a higher priority than the GL channel. In
the critical state, the GL channel obtains a higher priority
than the BE class (and other GL channels in the normal
state). With these priority levels and state definitions, the
blocking counter (slack) of a GL packet in the normal state
is decremented, each time the packet is blocked by a BE or a
GL stream in the critical state. To determine the state of the
VCs, a monitor checks the remaining slack time of the GL
packets. If there is any GL packet in a queue which has no
more slack available, the state of the queue is set to critical
until only packets with slack available remain. Even though
this scheme has the drawback of prioritizing flits, that still
allow more blocking (i.e. another packet at the queue head
might still allow blocking, while the last packet requests for
prioritization), it allows an easy implementation with a low
hardware overhead. Other possibilities are to move the packets
that reached the maximum blocking to another queue (bypass)
or to order the whole queue according to the remaining
allowed blocking. This leads to a tradeoff between increased
BE performance and induced overhead when deciding whether
a bypass, reordering mechanism or simple queue prioritization
should be used.

The arbitration of streams is packet based to increase the
average performance of the system. Packet based arbitration
also guarantees that the head and body flits of a packet
experience the same additional blocking (e.g. the body flits
can not experience additional blocking through BE after the
header has been transmitted). Hence the blocking counter must
only be stored in the header flit. To prevent additional priority
inversion after the slack is depleted, GL packets can preempt
BE packets on flit level when being in the critical state.

C. Arbitration Logic

This section introduces an exemplary extension of the
arbitration stage in the routers to implement our mechanism.
In the arbitration stage, requests from all virtual channels and
input ports must be processed along with their traffic class
and a priority signal, denoting if the slack of a packet is used
up. As we change the priority of the GL traffic according to
the actual blocking in the network, we need an arbiter that
can switch between different priorities for certain requests. A
solution for multi-priority arbiter is presented in [24].



Fig. 1. Simplified output port arbitration logic

Figure 1 shows a simplified diagram of our arbitration
stage of an output port. It consists of a request multiplexer
that assigns incoming requests from n input ports to the
different class arbiters based on their class identifier. In the
baseline implementation, all classes use a round-robin arbiter,
while other arbitration policies are also possible. For the
guaranteed latency class, we use two arbiters. One for the
normal state (GL norm) and one for the critical state (GL
crit). The two GL arbiters are needed to individually keep
track of the most recent sender on both priority levels, while
other implementations, such as a single arbiter using two
different states, are possible. If a GL request is raised, the
request multiplexer sends it to the corresponding GL arbiters.
A small qualifier logic then only allows requests that reached
maximum blocking (BC=0) to be assigned to the arbiter of
critical GL requests. Next to the individual class arbiters, we
have a strict priority arbiter, sending out the highest priority
grant to the requesting input ports.

Comparing the design with the arbitration logic of basic
routers, only small changes are needed. A simple router, using
two different priorities for the virtual channels and round-robin
arbitration between requests of the same priority, requires
all blocks but the qualifier and the additional (low priority)
GL arbiter (state) [24]. Hence, our approach only extends
an additional round-robin arbiter (or state) and the qualifier
logic, which is mainly composed of and-gates forwarding only
requests for which the slack is used up.

IV. COMPOSITIONAL PERFORMANCE ANALYSIS

This section provides an overview on the compositional
performance analysis (CPA) [25] used for the analysis. Note
that any other NoC analysis can be used too, if it allows
the extension for the additional allowed blocking of our
mechanism. The CPA approach uses a similar composition and
event models as Real-Time Calculus (RTC) [26], but differs
in the local analysis for the links and routers. For this, the
network-on-chip (NoC) domain is translated to the processor
resource model known from real-time scheduling [27].

CPA uses a multicore processor model to represent the
NoC [20]. In the model, processing resources represent the
output ports of a router and shared resources with mutually
exclusive access the input ports. The exclusive access models
the limitation of an input port to send only one flit at a time to
an output port. A traffic stream is modeled as a chain of tasks
mapped to the resources according to its network path. An
exemplary mapping of a router with four streams is shown in
Fig. 2. In the example, streams 2 and 3, represented by tasks
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Fig. 2. Four-port router with four traffic streams as a multiprocessor with
four processing resources (Out) and mutually exclusive shared resources (In)

τ2 and τ3, share the same input port and thus access the same
shared resource InS. Stream 3 additionally shares the same
output port with stream 4.

In CPA, the arrival of a flit is a task activation at the
processing resource and the transmission of a flit at an output
port is the execution of that task. Each task τi is assigned
a best- and worst-case execution time C−i and C+

i for each
task activation. The activations of a task can be triggered by
an external source (network interface) or other tasks (routers).
Activation events are modeled by minimum and maximum
arrival curves η

−
i (∆t) and η

+
i (∆t), defining the minimum and

maximum number of events for task τi that can arrive within
any half-open time window [t, t +∆t). These functions have
pseudo-inverse counterparts, the so-called distance functions
δ+(n) and δ−(n), which define respectively the maximum and
minimum time interval between the first and the last event of
any sequence of n consecutive event arrivals.

System-level analysis is performed iteratively using indi-
vidual resource-level analysis steps to obtain the worst-case
timing information. For this, CPA performs a local busy
window analysis for each resource to obtain worst-case timings
and output event models for each task. The local resource-level
analysis uses a critical instant scenario, assuming the worst-
case arrival of all interfering tasks to obtain the maximum
delay for the task under analysis. The output event models
from the local analysis are then forwarded as input models for
all dependent tasks and resources, which are analyzed again
if their input models have changed. The local analysis and
propagation are iteratively applied until all output event models
remain stable [25].

V. WORST-CASE ANALYSIS

In this section we present an analysis for the upper latency
of GL traffic using CPA for our mechanism, proving sufficient
independence. To improve readability, we restrict the analysis
to the case where all GL streams share a single VC. However,
it can easily be extended to handle multiple virtual channels
and additional priority levels [20]. For the analysis according
to CPA, we need to derive the corresponding worst-case
multiple activation processing time B+

i (q,a
q
i ) of a stream in

a router. It denotes the maximum time required to transfer
q flits of a stream i, given that all but the first flit arrive
before their respective predecessor has been transferred and



the q-th flit arrives at time instant aq
i . Based on this, we then

derive metrics (e.g. path latency) for a single router and for a
complete network.

To conservatively capture all possible worst-case scenarios,
we break down the multiple activation processing time into a
sum of different terms addressing different blocking factors.
For a router as described in Section III the processing time is
influenced by:
• Flit transfer time C: the time to transfer a flit in a router

excluding any kind of blocking. For the sake of simplicity
and since it is the usual case in NoCs, we consider that
all flits have the same constant transfer time of 1 cycle.

• Output blocking Bout
i : the amount of time that stream i

is blocked by any stream j from other inputs that use the
same output.

• Input blocking Bin
i : the amount of time that stream i

is blocked by any stream j that use the same input and
precedes the q-th flit of stream i.

• Low priority blocking BLP
i,q : the (remaining) amount of

time stream i is blocked being in the normal state.
To upper bound the longest time B+

i (q,a
q
i ) required to

transfer q flits of stream i at a router, we maximize all blocking
effects and sum them up:

B+
i (q,a

q
i )≤ q ·C+BLP

i,q (B
+
i (q,a

q
i )−C)

+Bout
i
(
B+

i (q,a
q
i )−C,q

)
+Bin

i
(
B+

i (q,a
q
i )−C,aq

i

)
(1)

For the worst-case, we assume full blocking while being in
the normal state (BLP), followed by the maximum blocking
from other GL streams on the router (Bout +Bin). To derive
the multiple activation processing time on a single router, we
now derive the individual sources of blocking. For this we first
define an auxiliary function:

Definition 1. Let ρ
+
i (∆t) denote the maximum number of flits

arriving in any time interval ∆t at a stream i considering whole
packets:

ρ
+
i (∆t) =

⌈
η
+
i (∆t)

size(i)

⌉
· size(i), (2)

where size(i) is the packet size of stream i in flits.

Theorem 1. The output blocking Bout
i that a GL stream i

observes in any time window consists of the blocking through
other GL streams from other input ports. It can be bounded
by:

Bout
i (∆t,q)≤

∑
p∈P(i)

C ·min
{
(

⌈
q

size(i)

⌉
+1) · n̂, ∑

j∈Outp
GL(i)

ρ
+
j (∆t)

}
(3)

where n̂ is the maximum packet size of GL streams, P(i) is the
set of other input ports, and Outp

GL(i) denotes all GL streams
on input p that share the same output port with stream i.

Proof. As we already accounted for the full blocking being in
the normal state in Equation 1 (BLP

i,q ), we only need to account
for GL streams from other input ports. Due to wormhole

switching, once the scheduler grants access to an output port,
no other input port can access this port until the packet is fully
transmitted. This is captured by ρ

+
j , which considers that after

a head flit from j arrives within the time interval ∆t, the whole
packet will be served before i. Additionally, due to the round-
robin arbitration, each head flit belonging to stream i may only
be blocked once by each other input port. But as the state of
the GL sender, and hence also the arbiter state, might have
changed, an additional round-robin cycle can occur. This is
addressed with the min-function, where

⌈
q

size(i)

⌉
is an upper

bound on the number of head flits. Each of these head flits
can be blocked at most for n̂ flits from each other input port.
And each of the interfering flits then blocks stream i for the
flit transfer time C.

Theorem 2. The input blocking Bin
i of a GL stream i in any

time window consists of the blocking of other GL streams that
share the same input port. It can be bounded by:

BDI
i (∆t,aq

i )≤ ∑
j∈InGL(i)

{
C ·ρ+

j (a
q
i )+Bout

j

(
∆t−C,ρ+

j (a
q
i )
)}

,

(4)

where InGL(i) denotes the set of all GL streams that share the
same input port with stream i and aq

i the arrival time of the
q-th flit.

Proof. The blocking caused by other streams at the same input
consists of the transmission time of the flits that arrived before
the q-th flit of stream i and the interference those flits observe.
In the sum the first part accounts for all whole packets that
can arrive before the q-th flit (ρ+) and their transmission time
(C ·ρ+). The second part then accounts for the output blocking
these flits can experience. However, we only need to account
the flits that can arrive before the arrival time of the q-th flit
of stream i (aq

i ) considering whole packets.
As i and j share the same interferer set at the input port, all

input blocking of j is accounted for in the input blocking of i
and must not be accounted here again.

Theorem 3. The blocking while being in the normal (i.e.
low priority) state BLP

i,q of the q-th flit of a stream i can be
derived from the blocking counter (BC) in the flit header. This
LP blocking can be denoted as:

BLP
i,q (∆t)≤C ·min

{
∑

j∈hp(i)
η
+
j (∆t),κi(∆t)

}

with κi =

{
BCq

i · n̂, if BC counts packets
BCq

i , otherwise
(5)

where BCq
i denotes the current blocking counter value of the

q-th flit and hp(i) the set of all interfering streams for stream
i that might have a higher priority (i.e. BE and critical GL)
at the router under analysis.

Proof. From Section III we know, that the flit only is in
the normal state as long as the blocking counter has slack
available. Depending on the implemented granularity (packet



or flit based counter) it is decremented for each packet or
flit with an higher priority (BE or critical GL) that blocks
stream i. When the counter reacher zero, no more blocking is
allowed. Hence, only BCq

i packets or flits of be can interfere
with the q-th flit of i. Additionally, we only have to account
for interfering flits that can arrive during the time the q-th flit
is waiting at the router, covered by the min-function and the
sum of arrivals of all interfering streams (η+

j ).

With all sources of blocking defined, the multiple activation
processing time from Equation 1 for a single router is fully
defined. Based on this we now derive an upper limit for the
worst-case single hop latency and then extend this to obtain
end-to-end metrics for the whole network.

A. Derived Metrics

With the multiple activation processing time we can derive
the worst-case single hop latency R+

i of a stream i. It denotes
the maximum time between the arrival time aq

i of the q-th
activation and the processing of q activations B+

i (q,a
a
i ) [28]:

R+
i = max

q∈Qi

{
max
aq

i ∈Aq
i

{
B+

i (q,a
a
i )−aq

i

}
+Or

}
, (6)

where Or denotes the static router overhead, such as the time
a router requires to determine the output port and virtual
channel.

This equation considers for all numbers of activations q
within a busy-period all possible arriving times aq

i of the q-th
event. This is necessary, as a later arrival time might increase
the interference in input queues. Additionally, a later arrival
reduces the response time. However, in [28] the authors proved
that the number of possible candidates for aq

i is finite. The
authors showed, that it is sufficient to consider only candidates
that coincide with activations of the interfering workload.
Hence, we can define the set of candidates as:

Aq
i =

⋃
j∈I(i)

{
δ
−
j (k) |

δ
−
i (q)≤ δ

−
j (k)< δ

−
i

(⌈
q

size(i)

⌉
· size(i)+1

)}
k≥1

(7)

where I(i) defines the set of all interfering streams for stream
i using the same queue (i.e. virtual channel) on the same input
channel in the router.

Additionally, we need to consider all scenarios where an
activation arrives within the busy-period of the previous acti-
vation when defining the number of activations q. Thus, we
have to find all q ≥ 1 that are smaller than the maximum
number of events q+i forming one busy-period:

Qi = {1,2, . . . ,q+i } with

q+i = min
{

q ∈ N+ | δ−i (q+1)≥ max
aq

i ∈Aq
i

{
B+

i (q,a
q
i )
}}

. (8)

Based on the multiple activation processing time, we can
also derive the worst-case backlog in each buffer. The worst-
case backlog of a buffer b of a router can be defined as:

bp = ∑
i∈Buf

{
max
q∈Qi

{
max
aq

i ∈Aq
i

{
η
+
i (B+

i (q,a
q
i ))−q+1

}}}
, (9)

where Buf denotes the set of streams sharing the buffer. This
equation examines all numbers of activations q which arrive
during the processing time of their predecessor. For each,
B+

i (q,a
q
i ) yields the completion time of the q-th activation.

At this instance of time, at most η
+
i (B+

i (q,a
q
i )) activations

may have arrived since the start of the busy window, of which
q−1 have already been processed. Hence, the difference yields
the number of backlogged activations, of which we have to
determine the maximum for all q∈Qi providing the worst-case
backlog of a stream. The sum of the worst-case backlogs of
all streams sharing a buffer then derives the worst-case buffer
backlog. Note that the analysis assumes that backpressure does
not occur, which can be validated during design phase using
this (backlog) analysis.

B. Derived Metrics for the Network

With the analysis of a single router, we can analyze the
whole network using the CPA approach. For this we iteratively
perform a local analysis of the routers and propagate the event
models to the subsequent routers. Based on the local analysis,
we can define the output events models that become the input
event models of the subsequent routers according to [29] as:

δ
−
i,out(n) =max

{
(n−1) ·C,

min
j∈Qi
{δ−i,in(n+ j−1)−B+

i ( j)}+C)
}
, (10)

where (n−1) ·C denotes the best-case execution time and the
second term accounts for the influence of the busy-times on
the model propagation.

Besides the event models, we need the maximum LP
blocking that a GL packet allows in each router on its path
(i.e. the current value of BC). A naive approach is to assume
the initial value in all routers, which leads to pessimistic (but
valid) results. The pessimism can be reduced, if we can assume
a certain minimum and maximum load from the interfering
workload, such that there is always some or no LP blocking
for a stream i in the normal state and derive more accurate
propagation models for possible values. If there is a minimum
load through BE on a router, some of the LP blocking will
always occur. And if there is an upper bound on the interfering
load, not more than this can occur. These information can be
used to reduce the set of possible combinations. For example,
if we can assume the full initial blocking value for the first
router on a path, we know, that there will be no additional LP
blocking on the subsequent routers as the stream switched to
the critical state. To optimize the analysis results, we have to
analyze all possible distributions of the blocking counter on
the path p of a stream i and derive the maximum end-to-end
latency l+p (q) for transmitting q flits from all distributions. It



consists of the worst-case response time for each hop on the
path p, the time to inject the q flits, and the packetization
overhead:

l+p (q)≤ δ
−
First(p)(q)+Op + max

d∈Dist

{
∑

j∈Tasks(p)
R+

j,d

}
, (11)

where First(p) defines the first task of the chain (i.e. network
path), Tasks(p) the set of all tasks of path p (i.e. one per hop),
Op the constant de/packetization overhead, R+

j,d the worst-
case single hop latency assuming a distribution d of the LP
blocking, and Dist the set of all possible distributions of the
LP blocking for the stream p. Basically the equation computes
how long it takes a stream to inject q flits and then assumes
the last one of these to experience the worst-case blocking on
all intermediate routers. Due to the in-order delivery of the
network, all previous flits will have arrived at the destination
before the last one. And the delay previous flits may observe
is included as interference in the worst-case blocking of the
last flit.

The analysis also provides a framework to find admissible
values for the allowed LP blocking (i.e. initial blocking counter
value) for a GL stream to exploit its slack. For this, we can
define an iterative approach that compares the worst-case end-
to-end latency against the deadline of a stream to derive its
slack. First, we analyze the system, assuming all blocking
counters to be zero (i.e. classic prioritization of GL) and the
system to be schedulable. Then we identify the GL streams
that have slack by comparing their derived worst-case latency
with their deadline. If any stream has slack, we can increase
the initial BC value of this stream and reanalyze the system
to check whether all deadlines are still met. Doing this, we
can find feasible initial values of LP blocking for all streams.
Besides this simple approach, more complex strategies for
defining initial BC values are possible. For example, the
approach from [19] can be used to define BC values for
different sender states based on the core- or NI-local behavior
(e.g. message size and inter-arrival times).

VI. EVALUATION

In this section, we evaluate the performance of our mecha-
nism and compare it to the classic and widely used prioritiza-
tion scheme, as for example [8], [9]. We divide the evaluation
in two parts. In the first part, we use synthetic workloads
to evaluate the basic functioning and certain properties of
our mechanism, such as isolation between BE and GL and
the correctness of the analysis. In the second part, we use
memory access and communication traces of general purpose
applications, to investigate the performance of the mechanism
on realistic workloads. All experiments were carried out
with the OMNeT++ simulation framework and the HNOCS
library [30] using routers with a four-stage pipeline, buffers
to store 6 packets in each virtual channel of each input port,
and a packet size of four flits.

Fig. 3. Simple communication scenario

A. Synthetic Workloads

The first set of experiments uses synthetic workloads, gen-
erated based on average link loads, and the simple system
shown in Figure 3. It comprises a simple line topology to
maximize the overlap between traffic streams. In the example,
we have five traffic streams, each periodically injecting packets
with a jitter of 25% of the period. There is a guaranteed
latency (GL) communication from task τ1 on the first node
to τ7 on the last node. In between there are four best-
effort (BE) communications, where the BE tasks send data
to their direct neighbor. This example is compact enough to
be comprehensively displayed but shows all relevant effects
of the analysis. Especially, the synthetic workload allows to
more easily approach the worst-case behavior than using an
application trace.

In a first experiment, we set the GL task to generate an
average network load of 10% and increase the load of the BE
tasks (i.e. reduce the period between packets), to measure their
interference on GL. For GL, we evaluate four different values
for the allowed LP blocking (BC) on flit level granularity.
Figure 4 shows the end-to-end latency of full packets for the
GL sender in this experiment. In the figure solid lines show
the measured maximum latency and dashed lines the results of
the worst-case analysis for GL assuming maximum BE load.
If we allow zero LP blocking (BC=0), GL traffic always has
a higher priority than BE traffic, which corresponds to classic
prioritization of GL. In this case, an increasing BE load does
not influence GL traffic.

With the allowance of LP blocking (BC>0), BE can interfere
with GL traffic, where a higher BC value leads to a higher pos-
sible interference. However, the interference is upper bounded
and thus from a certain BE load onwards, the GL latency is
not further increasing. In all cases, the observed upper bound
is below the analysis results. We can also see, that for small
loads, the observed latency for GL is similar for different BC
values. This is due to the fact, that the possibility for GL
and BE flits to compete in a router for resources depends
on the load in the system. With a low load, the flits rarely
compete in the routers, and hence the worst-case might not
be observed in simulation. For high loads, however, the flits
compete more often, leading to a higher interference and thus
latency, especially for higher values of BC.

In a second experiment, we investigate the influence of GL
on BE traffic. For this, we compare the classic prioritization of
GL traffic against our approach for a BE load of 20%. Figure 5
shows the results of this experiment. For classic prioritization
of GL (denoted as HP), the latency for best-effort tasks τ2 and
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Fig. 4. Measured (solid) and analyzed (dashed) worst-case packet latency of
GL for synthetic BE loads and various blockage values
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Fig. 5. Average BE latency for synthetic GL loads

τ5 behaves the same. With an increasing GL load, the latency
increases, due to the higher priority of GL. The latency of BE
tasks thus depends significantly on the load of GL traffic. For
the new approach, the experiment shows a better performance
for BE tasks and loosens the dependency on GL load.

Additionally, we can see, that the value of the allowed
LP blocking and the distance to the GL sender influence the
performance benefit of BE tasks. Here the task τ2 has a better
performance than τ5. This results from the fact, that for τ2 the
allowed LP blocking of the GL flits is still at its initial value.
Thus, flits from τ2 can pass the router with a higher priority
than GL, even for increased loads. With an increasing distance,
the remaining allowed LP blocking tends to be lower. Thus,
the task τ5 has a higher probability to be blocked by GL flits
and to experience a higher latency.

With the allowance of blocking through BE, the GL packets
also stay longer in the router, which can increase the backlog.
Figure 6 shows the backlog derived from the analysis for the
different configurations for the same experiment. As can be
seen, the backlog depends on the GL load and BC value.
Especially for high loads and high values of BC the backlog
can increase drastically. To prevent this, rate limiters at the
source can be used, which exists in many existing NoCs, or a
backpressure aware analysis must be used (cf. Section III).

B. Benchmark Workloads

In the second set of experiments we use realistic workloads
to evaluate the performance of the proposed mechanism.
For the experiments we obtained traces from the CHStone
benchmark suite [31]. The traces were extracted using the
Gem5 simulator and an ARMv7-a core with a 32 kB L1 cache
and contained 100.000 accesses to the network, where each
access can be a direct memory access, communication or a
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Fig. 6. Worst-case backlog of GL from analysis

Fig. 7. Communication scenario for benchmark applications

cache access. The compilation was performed using standard
gcc compiler (ver. 4.7.3). For a simulation run, the different
traces were randomly assigned to nodes in a 4x4 mesh network
as shown in Figure 7 to obtain different traffic distributions,
while the nodes and the network were running with the same
clock frequency. In the network, we assign fixed QoS classes
to certain nodes. There are five nodes initiating GL traffic and
eleven nodes for BE traffic. Additionally, there is one memory
with a single interface to the network. For the routing policy
we use an XY-routing. Thus, when regarding the highlighted
BE node, all GL flits accessing the memory will compete
with flits of this node. This setup is compact enough to be
comprehensively displayed but shows all relevant effects of
the mechanism. Based on this setup, we conduct two series
of experiments. In the first series we use the memory as
a hot-module. That is, all traffic generated by the nodes is
sent to the memory, leading to higher interference on links
near the memory. In the second series we use pseudo random
destinations for the traffic of all nodes.

The results of the first experiment, with the memory as
the hot-module, are presented in Figure 8. It shows a box
plot of the measured latencies for eight different applications
mapped to the highlighted node. For each run, the box covers
50% of the latencies, with its lower and upper borders giving
the 25% and 75% quartiles, respectively. The whiskers indi-
cate the measured minimum and maximum observed latency.
The median and average among the measured latencies are
respectively marked by a black bar and a black dot. For
each of these applications, we generated 1000 different sets
of interfering workloads for the other nodes. The results are
presented for three different prioritization approaches of the
GL nodes: the classic prioritization (HP) and the new approach
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Fig. 8. Performance of CHStone benchmarks as BE traffic with memory as
hot-module

with two different values for the allowed LP blocking on flit
level (BC=4) and BC=8).

As we can see, the new approach reduces the average
latency for both configurations compared to classic priori-
tization by up to 36% for a blockage value of four and
up to 43% for eight. The minimum and maximum latencies
are similar for all schemes. For a single hot-module, the
different GL flits experience high interference on the way to
the hot-module. Hence, it is likely that the maximum allowed
blocking can be consumed, leading to a worst-case blocking
for BE. On the other hand, the dynamic behavior of the
applications also leads to cases, where flits pass the network
with nearly no interference, leading to the best-case latency.
In this experiment, our approach increased the backlog of GL
from 16 flits using classic prioritization to up to 20 flits with
BC = 8. Compared to the synthetic workloads, the backlog of
GL is higher even for classic prioritization, as multiple GL
senders now share a virtual channel.

Figure 9 shows the normalized latencies as box plots for
the system using pseudo random destinations for the traffic.
We generated for each listed benchmark 1000 different sets of
interfering workloads (i.e. random assignment of application to
nodes) and a random destination for each sender. We selected
the destinations such that a traffic stream has to pass at least
three routers (i.e. no traffic to direct neighbors). For the figure,
we normalized for each run the latency to the average latency
when using classic prioritization for GL (HP).

As we can see, our approach leads to a performance increase
for the BE applications compared to classic prioritization of
GL traffic. If we allow four blockages through the best-effort
class, we can reduce the average BE latency by up to 30%.
And when we increase the allowed blockage to eight, we
can reach a latency reduction by up to 45%. However, the
achievable reduction of the latency depends on the application
behavior. At the same time, the approach also increases the
variability in the occurring latencies and backlog. With an
allowed blockage of BC = 8 the backlog increases from 11
to 14 flits compared to classic prioritization. This increase is
smaller as for the case of the hot module, as with random
traffic less GL senders compete for the same buffer.

C. Synthesis Results

In this section we briefly present synthesis results for our
approach. For this we implemented and synthesized a 2x2
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Fig. 9. Performance of CHStone benchmarks as BE traffic for random
destinations normalized to average latency at classic prioritization

TABLE I
SYNTHESIS RESULTS ON VIRTEX-6 LX760 FPGA

Unit Baseline FP DP BC
#Registers 9365 9395 9389 9740

#LUTs 12149 12205 12199 12688
Frequency (MHz) 210 210 210 210

NoC on a Virtex-6 LX760 FPGA using Xilinx ISE 14.6 with
default optimization setting and no special optimizations for
the VHDL implementation. The device utilization data were
collected from the Module Level Utilization Summary Report
produced by ISE. Note that, as this NoC is not fully connected,
each of the four routers has only three input ports fully
instantiated. The results for the whole NoC are summarized
in Table I. The table compares the used registers, LUTs, and
achievable clock frequency for four different implementations.
The baseline implementation corresponds to a basic round-
robin router with 5 virtual channels (VCs) and a buffer depth
of 6 packets for each VC. This was extended in FP to provide
one prioritized VC, e.g. VC0. In the DP design the priority of
VC0 can be changed via a configuration flag from the highest
to the lowest priority during run-time. And finally, the BC
implementation denotes our approach, where the priority of
VC0 is dynamically changed by the router based on the current
blocking counter value in the flit header

We used 4 bits to store the blocking counter in the header
that were previously unused. Note that if no spare bits are
available in the header, the header, and possibly the signal
width between the routers, must also be extended, resulting
in additional overhead. The synthesis shows, that the new
approach introduces less than 5% overhead for the used 2x2
NoC. This corresponds to an approximately increase of 1.67%
of a router per instantiated port. However note that, if no
source rate limiters are used, our approach can increase the
worst-case backlog (e.g. from 11 to 14 flits in the benchmark
example) and hence might require bigger input buffers (if no
backpressure aware analysis is used) and further increasing
the overhead. The achievable clock frequency was the same
for all designs, showing that the extensions did not influence
the critical timing path. The frequency was restricted by the
minimum achievable period, caused by a data path delay of
4,75ns, consisting of 1,31ns for logic and 3,44ns route delay.



VII. CONCLUSION

In this paper we presented a novel arbitration scheme
for NoC routers in mixed-criticality systems. Unlike many
other existing approaches, we prioritize best-effort over safety-
critical guaranteed-latency traffic whenever possible. To limit
the interference, we online monitor the blocking experienced
by the safety-critical traffic and based on this increase its
priority only when necessary. Doing this, we can exploit the
latency slack of critical applications. This leads to an improved
performance for general purpose functions in mixed-criticality
systems.

Our experimental evaluation showed that the approach can
improve the latency of best-effort traffic by up to 45% com-
pared to a standard prioritization scheme when the safety-
critical traffic provides sufficient latency slack. At the same
time, the approach provides latency-guarantees to safety-
critical real-time functions and thus sufficient isolation as
requested by safety standards. However, the approach also
increases the hardware overhead of the network routers by up
to 5% for a network with four routers, leading to a trade-off
between performance and complexity.
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