
1

Response Time Analysis for Sporadic Server based Budget
Scheduling in Real Time Virtualization Environments

MATTHIAS BECKERT, Institute of Computer and Network Engineering
ROLF ERNST, Institute of Computer and Network Engineering

Virtualization techniques for embedded real-time systems typically employ TDMA scheduling to achieve
temporal isolation among different virtualized applications. Recent work already introduced sporadic server
based solutions relying on budgets instead of a fixed TDMA schedule. While providing better average-case
response times for IRQs and tasks, a formal response time analysis for the worst-case is still missing. In order to
confirm the advantage of a sporadic server based budget scheduling, this paper provides a worst-case response
time analysis. To improve the sporadic server based budget scheduling even more, we provide a background
scheduling implementation which will also be covered by the formal analysis. We show correctness of the
analysis approach and compare it against TDMA based systems. In addition to that, we provide response time
measurements from a working hypervisor implementation on an ARM based development board.

CCS Concepts: •Computer systems organization→Real-time systems;Real-time operating systems;
Real-time system architecture;

Additional Key Words and Phrases: RTOS, Virtualization, Hypervisor, Sporadic Server, Formal Analysis

1 INTRODUCTION
The size of modern embedded systems is growing rapidly. Not only the size of the software on a
single unit increases in size, but also the number of units in a connected environment like cars or
airplanes. The more and more complex architecture of such systems requires a step forward when
considering the performance of single units. As an example, modern cars include more than 50
embedded electronic control units (ECUs). These ECUs host the software for more or less each
function inside a car. The ECUs are connected among themselves with different interconnects like
CAN and/or FlexRay. In many cases those interconnects have become the systems bottle neck over
time. But as the performance of modern CPU architectures for embedded systems increases, a more
centralized approach relaxing interconnect loads might be a solution. With a higher computation
power per unit, the overall number of ECUs might decrease. The migration from a distributed to a
more centralized system is challenging. Safety standards like the IEC61508 [13] or the automotive
ISO26262 [14] require a sufficient independence of different applications running on the same
hardware.
To achieve this sufficient independence, a first idea might be a multi-core setup where each

application is executed on its own core. But again even this is not straight forward, as often
arbitration methods to shared resources do not provide any isolation. Another method would be

Authors’ addresses: Matthias Beckert and Rolf Ernst, Institute of Computer and Network Engineering, TU Braun-
schweig, Hans-Sommer Str. 66, 38106 Braunschweig, Germany.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1539-9087/2017/10-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Matthias Beckert and Rolf Ernst

Interconnect

S
ys

t e
m

 M
o

d
e

U
se

r
M

o
d

e

Application
Partition 1

Hypervisor

Application
Partition 2

Hardware Platform

Middleware

Hardware Driver

Fig. 1. Hypervisor Architecture

to combine different applications with strong data dependencies on the same core. This way it
would minimize the access to shared resources which are often used for communication. But again,
combining former distributed applications on the same hardware does only work with a piece of
trusted hardware or software in between, which is able to guarantee a sufficient independence. A
possible method to provide such sufficient independence is a certified run-time environment (RTE)
that provides a temporal and spatial isolation. Such an RTE based on a virtualizing micro kernel is
often called hypervisor. Commercial virtualization environments such as PikeOS [15] or OKL4 [11],
are already available hypervisor implementations and provide real-time capabilities to virtualized
applications. The usual approach is a partitioned RTE with one instance per core. In addition to
that a management instance on another core for configuration and runtime control is possible.
Although its origin laid in the general purpose computing and server domain, virtualization based
systems are already present in the real-time domains. As an example, the IMA architecture of the
ARINC653 standard [19] defines usage of virtualization techniques in the avionic domain.

An example for a simple hypervisor setup with one processor core is shown in Fig. 1. Two
applications are executed on the same hardware and each is isolated in a so called Partition. Usually
the provided isolation for such a system is achieved with hardware and software support. Therefore
the applications are executed within the processor’s user mode, isolated via a memory management
or protection unit. This way a spatial isolation is achieved. The communication between both
applications is realized with a middleware controlled by the hypervisor. In order to provide a perfect
temporal isolation ARINC653 uses a time-division-multiple-access (TDMA) based time-partitioning.
For better resource utilization, an additional static priority preemptive (SPP) scheduling is used
inside time-partitions. While providing a perfect isolation, those systems are often not suitable for
event- or interrupt-driven systems. This problem has already been addressed in previous work
[2, 4] in regards to TDMA-based scheduling. Nevertheless, for systems that are mainly driven by
interrupts like communication stacks, TDMA is still not the perfect solution. The authors in [3],
addressed this issue and realized a sporadic-server [24] (SPS) based system in order to provide more
flexibility. In addition to that, the SPS enables an additional layer for background scheduling on the
hypervisor level. But while providing an idea and an implementation, [3] does neither provide a
response-time analysis nor implemented a background scheduling. Therefore we will cover both in
this paper.
The remainder of the paper is structured as followed, we will first give an overview over the

related work and then introduce our system model. This is followed by a response-time analysis for

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:3

SPS-based systems with and without background scheduling. Next we will give a short overview
for the background scheduling implementation based on a modified implementation of the µC/OS
hypervisor (µC/OS-MMU) [7]. Analysis and implementation are then evaluated and followed by
the papers conclusion.

2 RELATEDWORK
The issue about response-times in such TDMA-based systems was already discussed [4]. The paper
used a monitoring from [18] to weaken the TDMA schedule without causing deadline misses. In
general the paper tried to use idle times in time-partitions to provide better response-times for
IRQs. This was then reused in [2], which proposes a time-partitions design method. Output of the
proposed method are time-partition sizes, which are longer than actual needed. The included slack
in this schedule was intended for IRQ handling in foreign time-partitions, bounded by the proposed
monitoring from [18]. Based on the idea of larger time-partitions with additional slack, the SPS
based budget scheduling [3] was designed. As the budget scheduling from [3] performs best if a
larger amount of slack is available, we will later evaluate it based on generated settings from [2].
In general the SPS was first proposed in [24] and had later become a part of the IEEE Portable

Operating System Interface (POSIX) [25] as a scheduling policy. The specified POSIX standard
defines also the use of a priority based background scheduling. Those priorities are used whenever
the budget of a task is depleted. An analysis for tasks scheduled under a SPS policy has been
proposed in [1, 21]. Nevertheless, the provided analysis did neither cover background scheduling
nor is it applicable for a hierarchical scheduling with SPP. There was not a lot of work considering
the SPS mechanism in the last years. A major reason for this is, that the implementation of an SPS
based system with several servers and different replenishment periods can be very complex. The
benefit compared to other server based scheduling solutions might be moderate [5]. In contrast to
this a simplified solution with only a single SPS and one replenishment time as used in [3] can be
implemented with minor effort and overhead.

3 SYSTEMMODEL
We will now describe the used system model. In general we use the methods defined in the context
of the compositional performance analysis (CPA) [12]. As an existing implementation we use the
PyCPA [6] framework. In CPA each system consists of a set of resources, which provide service.
Such resources might be a CPU, an interconnect or also an interface to a shared memory. To
consume the provided service, a set of tasks is mapped to the resources. Within the context of
this paper, we consider only processor cores as resources. CPA usually maps a single task-set to
one resource. In order to implement an analysis for partitioned scheduling used in ARINC653 and
[2–4], we slightly modified the existing CPA model. In our model a task-set Γp with multiple tasks
is mapped to a partition p and a partition-set ΓHYP with multiple partitions is then mapped to a core.
Based on the used scheduling for partitions, there is either a TDMA slot size Tp or an execution
budget bp,max for SPS based scheduling. In summary there is for each p:

Γp : Task-set
Tp : Slot length for TDMA scheduling

bp,max : Initial execution budget for SPS scheduling
For the different scheduling approaches, two additional system parameters per core are needed.

First, for the TDMA based scheduling, a cycle TTDMA must be defined. This is given based on the
different slot lengths as:

TTDMA =
∑

p∈ΓHYP

Tp (1)

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:4 Matthias Beckert and Rolf Ernst

Second, for the SPS based scheduling a replenishment period TR is needed. As described in [3], this
period is equal for all partitions. The initial idea in [3] was to provide a new scheduling technique
based on TDMA parameters, therefore the replenishment period is equal to TTDMA. Considering
the initial execution budgets, those must be equal to the corresponding TDMA slot length in order
to provide a TDMA-like service. This gives us:

TTDMA = TR =
∑

p∈ΓHYP

bp,max

One might think, that a separation of TDMA based and SPS based parameters does not make sense
as those are equal for systems described in [3]. But keep in mind, this is only the case if the SPS is
configured to provide an TDMA-like service and interference bound. In contrast to this, it is only
mandatory for the provided SPS analysis in this paper that all partitions use the same replenishment
period. Therefore the analysis also works for SPS based systems whose configuration has not been
derived from a TDMA based system.
To analyze a given task τp,i inside a partition p, the analysis requires several task specific

parameters in order to calculate the worst-case response time Rp,i . First we need the worst-case
execution times Cp,i and its activation pattern η+p,i/δ

−
p,i . The maximum arrival function η+p,i (∆t)

returns the maximum number of events that can arrive within any time windows of size ∆t . A dual
representation of the maximum arrival function is theminimum distance function [20] δ−p,i (q) which
returns the minimum distance between the first and the q′th event on any sequence of events. This
way we are able to cover not only periodic activation patterns for tasks, but also more complex
ones like burst or sporadic activation. Also each task defines a relative deadline Dp,i . In summary
for each task τp,i ∈ Γp we define the following parameters:

i: Index/Priority for partition internal scheduling
p: Corresponding partition
j: Index of an interfering partition

Cp,i : Worst-case execution time (WCET)
Rp,i : Worst-case response time (WCRT)
Dp,i : Relative task deadline

η+p,i/δ
−
p,i : Bounds of the task activation pattern

In order to calculate worst-case response-times, PyCPA implements the concept of busy-window
analysis [17, 22], which is well known in the embedded real-time domain. The busy-window analysis
determines an upper bound on the amount of time a resource requires to service q activations
of task τp,i . To describe not only periodic activations, we use the multiple-event busy-window
(or multiple-event busy time) defined by [22], based on η+p,i/δ

−
p,i as task activation pattern. To

achieve a conservative response time the multiple-event busy-window is initiated with the critical
instant, where all tasks are released simultaneously and thus create the highest load possible. The
multiple-event busy-window is given through the following iterative formula, which is evaluated
until convergence to a fixed-point

wp,i (q) = q ·Cp,i + Bp,i (wp,i (q)) (2)

where Bp,i is a generic term including interference from either other tasks in the same partition or
entire other partitions. (2) does not contain the activation pattern directly, instead we will reveal a
more detailed description for Bp,i (∆t) in Sec. 4.

To determine the worst-case response time Rp,i of τp,i , the first Qp,i activations of τp,i have to be
considered, where

Qp,i = max
(
n : ∀q ∈ N+,q ≤ n : δ−p,i (q) ≤ wp,i (q − 1)

)
(3)

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:5

The worst-case response time is then given as

Rp,i = max
q∈[1,Qp,i]

(
wp,i (q) − δ

−
p,i (q)

)
(4)

4 RESPONSE TIME ANALYSIS
For the response time analysis, we will provide different definitions for the blocking term Bp,i (∆t)
from (4). The different blocking terms will be named according to their scheduling techniques, we
therefore get:

BTSPPp,i (∆t): Partition-level TDMA, Task-level SPP
BSSPPp,i (∆t): Partition-level SPS, Task-level SPP

BSBSPPp,i (∆t): Partition-level SPS + background scheduling, Task-level SPP
In addition to this three terms we introduce several new notations used in the corresponding
response time analysis. In order to provide a better overview and improve readability, we added a
notation lookup table Tab. 2 at the end of Sec. 4.3.

4.1 TDMA with SPP
First of all we start with the simplest scheduling mechanism, which is a standard TDMA-based
partition scheduling with a distinct SPP scheduling inside each partition. An analysis for this
scheduling was already provided in [2] and used as basis for the proposed optimization algorithm.
As we use this scheduling for comparison, we will shortly introduce the used analysis. In general,
BTSPPp,i (∆t) consists of two parts. A first one BSPPp,i which models the partition internal blocking time
based on SPP scheduling and a second one BTDMA

p based on the TDMA scheduling. For general
SPP interference, we define

BSPPp,i (∆t) =
∑

k ∈hp (τp,i)

η+p,k (∆t) ·Cp,k (5)

where hp (τp,i) is the set of tasks inside partition p with a higher or equal priority as the considered
task τp,i . The TDMA based blocking BTDMA

p (∆t) is simply constructed based on the corresponding
slot size Tp and the overall TDMA cycle length TTDMA.

BTDMA
p (∆t) = (TTDMA −Tp) · ⌈∆t/TTDMA⌉ (6)

Based on BTDMA
p (∆t) it is assumed that for the critical instant a task will be activated right after the

time slot of the corresponding partition was finished. Therefore a task τp,i will always see at least a
blocking time of (TTDMA −Tp) right at the beginning even if it has the highest priority inside its
partition. The overall blocking time BTSPPp,i (∆t) for τp,i is now given as:

BTSPPp,i (∆t) = BTDMA
p (∆t) + BSPPp,i (∆t) (7)

For more information about the construction of this blocking term, we refer to [2].

4.2 SPS with SPP
In order to construct a response time analysis for an SPS based budget scheduling, we will first give
a short overview of the SPS budget replenishment and the scheduler’s functionality. The existing
implementation from [3] divides the scheduling subsystem into two parts. First the SPS, which
provides service to partitions, enforces budged usage and is in charge for context switching. And
second the scheduler, which performs dispatch decisions in order to determine which partition is
scheduled next. The connection between both parts is formed by a set of callback functions.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:6 Matthias Beckert and Rolf Ernst

Fig. 2 shows the budget replenishment according to the original SPS definition from [24]. In
general, the execution budget of a task is only replenished if it was used before. Executing a task
and therefore consuming budget is marked with a downwards slope in Fig. 2. In the given example,
a task consumes its budget b1 in between t0 and t1, as well as between t2 and t3. The point in time,
where a budget is replenished depends on the start of the execution section and the replenishment
period TR . A budget of the size t1 − t0 will therefore be available again at t0 + TR . This leads to
the fact, that in each window of size ∆t = TR a task can never use more budget than its defined
maximum bp,max (e.g. b1,max in Fig. 2).

Fig. 3 shows the original partition-state graph from [3] without background scheduling for the
proposed budget scheduler. On a core there is such a state machine for each scheduled partition
and only one partition is scheduled at a time (indicated by the state Run). Based on different events
the SPS executes one of the scheduler’s callback functions. Those callback functions do then return
the partition which should be dispatched next. Each callback function might change the scheduler’s
internal partition-states. The most relevant callback functions are:

Empty (p): Partition p depleted its budget. This event is generated by the SPS
Re f ill (p): Budget for partition p was replenished. This event is generated by the

SPS
Idle (p): Partition p is idle. This event is generated by the calling partition, when

there are no outstanding activations inside p
Resume (p): A task inside partition p was activated, this event can be generated by

either a timetick or any other kind of IRQ source
In general the proposed budget scheduler from [3] is constructed around two prioritized first-in-

first-out ordered queues. A higher priority queue QRun containing partitions preempted during
execution and a lower priority queue QResume containing recently reactivated partitions with
a budget greater than zero. Both queues are drained based on a PopQ command issued by the
scheduler for several reasons. Tab. 1 shows the scheduling decisions for the above mentioned
callback functions. PopQ takes the next partitions from one of both queues. If both queues are
empty, the system is idle (SPS .idle). CurrentPart does not interrupt the current running partition
and p schedules the partition next which was assigned to the callback. A partition can only be stored
in one of both queues. Therefore the maximum length of a queue, and in combination with the
SPS also the caused interference from all partitions stored in those queues, is limited. If a partition
is stored in QRun , it can also be scheduled based on a Re f ill (p) callback. When this happens, the
entry inside QRun is removed. As the queues are based on double linked lists, this can be done with
constant overhead.

t0
t1 t2 t3

t

 Budget b
1

Δt = TR

b
1
= b

1
+ (t

1
-t

0
)

t0+TR

b
1,

m
a

x

ε ε

Fig. 2. Budget replenishment defined by a SPS

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:7

Resume(p)
&&

Buget > 0

Resume(p)
&&

Buget == 0

Refill(p)

PopQ
||

Refill(p)

PopQ

Empty(p)

Refill(p)

Idle(p)

Preempt

Q
Run

Run

Empty

Wait

Q
Resume

Idle

Activation delay Provide TDMA-like service

Fig. 3. Partition-state graph for budget scheduler

Table 1. Callback based scheduling decisions for SPS and SPS with background scheduling

Callback
SPS SPS with background scheduling

Condition
Next

Partition Condition
Next

Partition

Empty(p) PopQ

QRun .len == 0
&& QEmpty .len == 0 PopQEmpty

!(QRun .len == 0
&& QEmpty .len == 0) PopQ

Refill(p)

p.in(QRun) | |p.in(Empty) p
p.in(QRun) | |p.in(QEmpty)
| | p.in(RunBS)

p

!(p.in(QRun) | |p.in(Empty))
&& !SPS .idle

Current
Partition

!(p.in(QRun) | |p.in(QEmpty)
| | p.in(RunBS))&&!SPS .idle

Current
Partition

!(p.in(QRun) | |p.in(Empty))
&& SPS .idle

PopQ !(p.in(QRun) | |p.in(QEmpty)
| | p.in(RunBS))&&SPS .idle PopQ

Idle(p) PopQ

QRun .len == 0
&& QEmpty .len == 0 PopQEmpty

!(QRun .len == 0
&& QEmpty .len == 0) PopQ

Resume(p)
SPS .idle PopQ SPS .idle PopQ

!SPS .idle Current
Partition !SPS .idle Current

Partition
p.in(X): True, if p is in state X
Q .len: Number of entries in queue Q

SPS .idle: SPS is idle, no partition scheduled at the moment
!,&&, | |: C-style boolean logic

Based on its design, the presented scheduler enforces two different things. First, an initial
activation delay after leaving the Idle state and second a constant service allocation during execution.
When a partition leaves its Idle state based on a task activation, it is either pushed directly to a
queue or delayed until budget is available and then pushed afterwards. At this point the initial
activation delay is limited, as the interference from other partitions within any time window of size

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:8 Matthias Beckert and Rolf Ernst

∆t = TR is upper bounded by the SPS to (TR − bp,max). According to a TDMA-like configuration
as used in [3], this upper bound is also equal to (TTDMA −Tp). After this initial activation delay, a
partition enters the Run state until its budget is exhausted.

Based onTR this budget will be refilled and the partition is scheduled again.Without a background
scheduling, a partition only executes if its execution budget is greater than zero. This is repeated
until the partition switches back to the Idle state. A more detailed explanation of Fig. 3 is given in
[3].

With the previous introduction we will now construct the response time analysis for the proposed
budget scheduler. Fig. 4 shows the general interference a task can observe after activation during
execution. Again the interference is split into two parts, one based on higher priority activation
(HP) inside the same partition and second the budget provision based on the SPS. Like in TDMA
this leads us to:

BSSPPp,i (∆t) = BSPSp (∆t) + BSPPp,i (∆t) (8)

The example in Fig. 4 considers a lower priority task (LP) in partition p that is activated at t0. The
SPP based blocking is demonstrated with two HP activations of a task in the same partition at t2
and t6. The blocking time based on the SPS can be seen from t0 − t1 and t3 − t5. At this point the
drawback of a hard SPS based budget limiting without background scheduling can be seen at t4.
Although outstanding workload does not exist in other partitions at that point in time, p is still
delayed until t5 because of a missing budget.
The critical instant for a response time analysis can be constructed with the two following

constraints. First, we assume that all higher priority tasks inside the partition are activated at the
same time. As a result we can reuse the SPP blocking from (5). Second, we consider the activation
of the task under analysis right at the point where the entire budget of the corresponding partition
has just been used in one block before. As long as we have not finished the execution of the
corresponding task, we will always see (TR − bp,max) as interference repetitively. Therefore we get

BSPSp (∆t) = (TR − bp,max) · ⌈∆t/TR⌉ (9)

as interference based on the SPS. Comparing (9) with (6) show, that the SPS mechanism introduces
the same amount of interference compared to a TDMA based system. Therefore, we observe the
same worst-case response time for a task in both systems, if the SPS configuration is derived from
a working TDMA configuration. Nevertheless, [3] observed a better average case performance
for an SPS based system, if the configuration includes some slack time. The reason for this is the
self-suspend mechanism which is used if a partition enters its Idle state. For a configuration with

t

Prio Task
Activation

p p

HP
LP

HP

t
0

t
1
t
2

t
5
t
6

t
7

t
3

T
R
 – b

p,max

t
4

T
R
 – b

p,max

B
p
BSPS B

p
BSPP

Fig. 4. SPS and SPP based interference

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:9

slack this results in a fragmentation of the budget usage, which leads to a lower initial blocking
time in the average case.

4.3 SPS with Background Scheduling and SPP
Analysing the SPS with background scheduling starts the same way, as before. First we divide
BSBSPPp,i (∆t) into two parts, given as:

BSBSPPp,i (∆t) = BSPSBSp (∆t) + BSPPp,i (∆t) (10)

BSPPp,i (∆t) is the well-known internal SPP based blocking and BSPSBSp (∆t) describes blocking based
on the SPS with background scheduling. When analyzing a system with background scheduling,
the interference caused by this mechanism must be considered separately. An example for this is
given in Fig. 5. Like in Fig. 4, at t0 a lower priority task inside partition p is activated. As critical
instant we assume, that p just replenished its budget and all other partitions (e.g. P1, P2 & P3) have
their entire budget left and outstanding workload. Therefore all other partitions are scheduled
before p is scheduled at t1. Again, like in Fig. 4 higher priority interference inside of p is shown at
t2 and also later at t7. At t3 partition p is preempted based on an empty budget. Due to P1’s budget
replenishment (marked with TR starting at t0), it immediately starts execution. Same happens for
P2, when the budget is replenished. At t4 both, P1 and P2 don’t have any outstanding workload and
stop execution. Both partitions served their workload request only while having a budget available.
The interference from those partitions on p based on usual budget replenishment is marked as
B̃SPSp in Fig. 5. P3 and p still have work to do at t4 but both partitions do not have a budget as their
replenishment lays in the future. At this point the standard SPS would delay both partitions until
budget is available. With background scheduling the SPS still executes a partition without having
budget. P3 is executed first and therefore causes additional interference to p, which is not included
in B̃SPSp . This interference is marked as B̃BSp and depends on how the background scheduling is
implemented. A possible implementation could be a priority or queue based background scheduling.
Partition p starts executing again at t5 and finishes the considered activation at t6. Compared to
Fig. 4 the higher priority activation at t7 would not cause any interference to the considered lower
priority task. Due to the SPS budget enforcement, B̃SPSp and B̃BSp can in combination never cause
more interference than the standard SPS interference without background scheduling from (9).

t

Prio

P1 P3P2 P1 P3P2

Task
Activation

p

HP
LP

HP

t
0

t
1

t
2

t
5
t
6

t
7

t
3

t
4

p

T
R

 T
R

T
R

t
0,P2

t
0,P3

p

T
R

B
p
BSPSBS B

p
BSPP

B̃SPS B̃
p
 B̃BS B̃

p
 B̃SPS B̃

p

Fig. 5. SPS and SPP based interference

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:10 Matthias Beckert and Rolf Ernst

This leads to:
BSPSBSp (∆t) = min

{
B̃SPSp (∆t) + B̃BSp (∆t), BSPSp (∆t))

}
(11)

B̃SPSp can be constructed based on the interference from all other partitions, which is limited with
the SPS’s replenishment mechanism. This gives us:

B̃SPSp (∆t) =
∑

j ∈{ΓHYP \p }

B̃SPSp,j (∆t) (12)

In general B̃BSp includes interference caused from other partitions during the background scheduling.
As already mentioned this interference highly depends on the scheduling technique used for the
background scheduling. For a general description we use the term I (ΓHYP \ p) to define a set of
partitions, that might interfere with partition p during background scheduling. As an example,
for a priority based background scheduling a background priority is assigned to each partition.
I (ΓHYP \ p) then contains all partitions with higher or equal priority compared to p. The sum over
this set gives us the interference for the background scheduling:

B̃BSp (∆t) =
∑

j ∈I (ΓHYP \p)

B̃BSp,j (∆t) (13)

Calculating the accumulated interference is straight forward, more challenging instead is the
determination of B̃SPSp,j (∆t) and B̃BSp,j (∆t) for each interferer. This can be done based on the order of
the interfering partitions, before the considered partition p is scheduled first. Within the remainder
of this paper we will label the considered order as α⃗p,y . Fig. 5 shows this for the particular order
α⃗p,y = (P1 P2 P3 p). Based on the order, the interfering partitions might start with an offset relative
to t0. In Fig. 5 this is shown for P2 and P3 with t0,P2 and t0,P3. Those offsets are important, as the
budget replenishment is always relative to the budget consumption. Resulting from this, a partition
j with a larger t0,j will be replenished later. In order to construct the budget based blocking within a
time window ∆t of j to the considered partition p, the minimum of requested workload and granted
budget under consideration of an offset t0,j is needed. This leads to

B̃SPSp,j (∆t) = min
{
βj (∆t), max

{
0,
⌈
∆t − t0,j

TR

⌉
· bj,max

}}
(14)

with βj (∆t) representing the accumulated requested workload of all tasks in partition j (represented
as taskset Γj) during ∆t .

βj (∆t) =
∑
k ∈Γj

η+j,k (∆t) ·Cj,k (15)

The initial offset t0,j of a partition j is calculated based on the partitions which lay in front of j in
the considered order α⃗p,y . For the offset calculation we define two look-up functions:

fF ,p,α⃗p,y (j): Delivers position of partition j for partition order α⃗p,y when analysing
a task in partition p

fB,p,α⃗p,y (n): Delivers partition of position n for partition order α⃗p,y when analysing
a task in partition p

The calculation is then performed based on a fix point iteration. The first partition in the order will
have an offset equal 0, the next partition offset is based on the previous offset and the requested
workload of the previous partition upper bounded with its maximum budget. This way the offsets
are given as:

t0,j =



0, n = 0
t0,m +max

{
min

{
βm (t0,j), bm,max

}
,ϵ
}
, n > 0

(16)

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:11

n = fF ,p,α⃗p,y (j) m = fB,p,α⃗p,y (n − 1) (17)
For the casen = 1, the previous offset would be t0,m = 0. The fix point iteration would therefore start
with βm (0) which returns based on (5) always 0. To enforce this the maximum in comparison to an
infinitesimal small ϵ is used. This way the fix point iteration for n = 1 would not stop immediately.
The residual workload of a partition j that might interfere during background scheduling can

easily be determined if the partial workload covered by B̃SPSp,j is known. B̃BSp,j (∆t) is then given as
difference between requested workload and granted budget included in B̃SPSp,j .

B̃BSp,j (∆t) =



0, ∆t ≤ t0,j

βj (∆t) − B̃
SPS
p,j (∆t), ∆t > t0,j

(18)

According to (14) and (18) a partition j does not generate any blocking time for ∆t ≤ t0,j . This
might be confusing at first glance, but due to the fix point iteration of the busy-window technique
and the additional q ·Cp,i in (2) the calculation would not stop at ∆t = t0,j .

We already introduced the vector α⃗p,y to define the order in which the partitions get scheduled.
α⃗p,y is also used to perform the forward and backward look-ups fF ,p,α⃗p,y and fB,p,α⃗p,y . A fixed part
here is that the last partition in this order is always partition p which contains the task for the
considered busy window. The overall number of partitions in the system is given as the cardinality
of the hypervisor task-set |ΓHYP |. Therefore the number of partitions interfering with p is given
as |ΓHYP | − 1. Resulting from this the number of possible permutations for the order is given as
(|ΓHYP | − 1)!. Those permutation can be constructed with several algorithms as shown in [10, 23].
Based on the permutations we define for each partition p a Y × X matrix Ap with X = |ΓHYP | and
Y = (|ΓHYP | − 1)!. Each row of Ap would then contain a possible partition order, indexing those
rows for α⃗p,y is done via y. For the example from Fig. 5 this would result in:

Ap =



P1 P2 P3 p
P1 P3 P2 p
P2 P1 P3 p
P2 P3 P1 p
P3 P1 P2 p
P3 P2 P1 p



α⃗p,1 = (P1 P2 P3 p)

A more generic definition for α⃗p,y is then given as:

α⃗p,y = (ay1 ay2 . . . ay (X−1) p) (19)

Due to the design of the SPS based budget scheduling, the order in which partitions might get
scheduled is in contrast to TDMA not fixed. Therefore all possible combinations included in Ap
must be checked for tasks located in partition p. As a result, for each task in the system the response
time analysis from Sec. 3 is performed Y -times with (10) as blocking term Bp,i . Each analysis is
performed with a different α⃗p,y , which might result in a different offset t0,j and a different load
distribution between B̃SPSp and B̃BSp for each interfering partition. In the end this might lead to
different worst case response times for different offset vectors. The worst case response time is
then given as:

Rp,i = max
y=1...Y

{
Rp,i,α⃗p,y

}
(20)

For systems where dependencies are known (e.g. based on action chains), impossible partition
orders in Ap can be removed and don’t need to be considered. Finding those dependencies in
existing software is an own complex and still relevant topic. Due to the high complexity we did not
address this topic directly in our analysis.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:12 Matthias Beckert and Rolf Ernst

4.4 Simplified WCRT calculation method
The simplest way of background scheduling is an additional first-in first-out (FIFO) based queue,
which contains partitions without budget but outstanding workload. An entry is read from the
queue if the system would be idle otherwise. For such a system not only the implementation is
straight forward, but also the analysis can be simplified. For the worst case behavior of a queue
we assume that all other partitions with load for background scheduling get scheduled before the
considered partition. This way I (ΓHYP \ p) would include all other partitions from the system.
At this point the partition order does not matter anymore, as we do not exclude an interfering
partition in B̃BSp (∆t). It is sufficient to take the minimum of the accumulated workload of all other
partitions and the maximum SPS interference BSPSp (∆t)).

BSPSBSp (∆t) = min{
∑

j ∈(ΓHYP \p)

βj (∆t), B
SPS
p (∆t))} (21)

(21) does not include any separation of replenishment based blocking and background scheduling.
For a queue based background scheduling this is not needed anymore as it doesn’t matter if another
partition interferes during normal or background scheduling. In both cases it is assumed that our
considered partition p always suffers from interference. The sum over the requested workload from

Table 2. Notation summary

Term Eq. Description

BTSPPp,i (∆t) (7) Blocking of task τp,i for partition-level TDMA and task-level SPP

BSSPPp,i (∆t) (8) Blocking of task τp,i for partition-level SPS, Task-level SPP

BSBSPPp,i (∆t) (10) Blocking of task τp,i for partition-level SPS + background scheduling, task-
level SPP

BSPPp,i (∆t) (5) Internal SPP based blocking in partition p, generated by hp (τp,i)

BTDMA
p (∆t) (6) TDMA based blocking caused on partition p

BSPSp (∆t) (9) Maximum SPS based blocking caused on partition p

BSPSBSp (∆t) (11) SPS based blocking caused on partition p with background scheduling

B̃SPSp (∆t) (12) Accumulated blocking from other partitions to p during SPS enforced sched-
uling w/ budget

B̃BSp (∆t) (13) Accumulated blocking from other partitions to p during background sched-
uling w/o budget

B̃SPSp,j (∆t) (14) Partial blocking from j to p during SPS enforced scheduling w/ budget

B̃BSp,j (∆t) (18) Partial blocking from j to p during background scheduling w/o budget

βj (∆t) (15) Requested workload of interfering partition j

Ap (19) Matrix with all possible orders of preceding partitions considering p

α⃗p,y (19) Currently considered order of preceding partitions

t0,j (16) Offset of partition j based on current order α⃗p,y

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:13

all other partitions indirectly includes the background scheduling. As the overall interference is
only bounded by the maximum SPS based interference BSPSp (∆t), a single partition j might request
more workload than its own budget allows. Including this interference implies that the outstanding
workload of partition j is then served via background scheduling. Resulting in a execution delay
for the considered partition p. Without the need of testing each possible permutation for partition
orders, (21) provides an efficient upper bound in regards to the analysis run time. Also, as a
queue provides a conservative worst-case behavior, (21) can be used as an upper bound for other
background scheduling algorithms like fixed priority.

5 EVALUATION
We will evaluate the proposed methods in different ways. First we provide a comparison of the
calculated response times for different scheduling mechanisms. Second we evaluate the algorithm
runtime of the proposedmethods from Sec. 4. Third we provide an overview of the implemented bud-
get scheduling with queue based background scheduling and evaluate the different implementations
in a working hypervisor implementation.

5.1 Response Time
In order to evaluate the response time we used a set of synthetic task-sets and compared the
calculated response times to a TDMA+SPP based scheduling. The evaluation is based on the PyCPA
framework and therefore mainly written in Python. For task-set generation we used a script from
Paul Emberson[8], which is based on Roger Staffords randfixedsum algorithm and conveniently
available as a python implementation. The provided script generates a set of periodic tasks for a
given number, with randomly distributed periods over a defined range. In order to achieve a more
arbitrary task behavior an additional a random jitter, minimum distance and relative deadline is
generated for each task. The priorities are assigned in a rate-monotonic manner, according to the
task periods.
For the analysis evaluation we used two different scenarios, both with an overall number of

four partitions, where one partition is reserved for the hypervisor itself. In a real implementation,
this reserved partition is often used for housekeeping and can be characterized with a single task.
For evaluation we fixed the utilization of the hypervisor partition to 4%. The three remaining
application partitions got each a synthetic task-set assigned with a random utilization between
15% . . . 20%, generated by the previously mentioned script from Emberson et. al. For each task
inside a partition an activation jitter was assigned randomly limited to 50% of the tasks period.
Same was done for deadlines, which are defined randomly at generation between 75% . . . 125% of
the corresponding tasks period.
For the first scenario we generated 60 setups with a varying number of tasks from two to four

inside the application partitions. For each setup we first run the TDMA slot optimization from [2].
The optimization provides a set of possible TDMA configurations for the hypervisor scheduling.
From this set of configurations we picked all configurations with 0%,5%,10%,15% or 20% slack.
For each configuration we performed for each task in the system three response time analysis.
The first analysis is based on the standard TDMA busy-window from (7). Without the usage of
any background scheduling, the calculated worst-case response times for an SPS based system are
equal to the TDMA values. Therefore we do not calculate them separately. Second the response
times are calculated for an SPS system with queue based background scheduling, according to the
conservative equation (21). Third we do the same for an SPS system with priority based background
scheduling, according to the extensive method proposed in Sec. 4.3. This is repeated for all tasks in
the system and all picked configurations. In the end the three analysis methods where calculated
for ∼ 870000 configurations from 60 different task setups.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:14 Matthias Beckert and Rolf Ernst

Q P Q P Q P Q P Q P
SPS0 SPS5 SPS10 SPS15 SPS20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

W
C

R
T

(S
P

S
/

T
D

M
A

)

(a) Merged representation of calculated SPS based WCRTs relative to TDMA

Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P
τ1,1 τ2,1 τ2,2 τ2,3 τ2,4 τ3,1 τ3,2 τ3,3 τ3,4 τ4,1 τ4,2 τ4,3 τ4,4

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

W
C

R
T

(S
P

S
/

T
D

M
A

)

(b) Comparison of queue and priority based background scheduling with 0% slack in the TDMA schedule

Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P Q P
τ1,1 τ2,1 τ2,2 τ2,3 τ2,4 τ3,1 τ3,2 τ3,3 τ3,4 τ4,1 τ4,2 τ4,3 τ4,4

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

W
C

R
T

(S
P

S
/

T
D

M
A

)

(c) Comparison of queue and priority based background scheduling with 20% slack in the TDMA schedule

Fig. 6. Response time distribution

The results for the first scenario are shown in Fig. 6a. Because of the varying number of tasks
in a system setup, we tried to provide a compact representation based on box plots. The boxes
denote the range between 25% → 75%, the black dot indicates the average and the red bar the
median of all calculated values. In general we calculated for each task WCRT a normalized value
relative to the corresponding TDMA based WCRT for the same configuration. Therefore a value
equal 1.0 in this plot means, that the SPS based scheduling for the considered task and the current
configuration does not provide a better WCRT compared to TDMA. Values < 1.0 do therefore
represent an improvement compared to TDMA. This way we are able to compare the calculated
WCRTs for all task in a single graph. As an example, the box plotQ from SPS0 contains the WCRTs
of all generated task under SPS based scheduling with queue based background scheduling, for all
evaluated configurations with 0% slack in the corresponding TDMA schedule. In contrast to this,
P from SPS0 contains the WCRTs from the exact same configurations with 0% slack, but with a
priority based background scheduling. The collected results show that for all calculated WCRTs
both SPS based methods with background scheduling, do provide at least the same WCRT bound
but often a way better value compared to TDMA. None of the calculated WCRTs for both methods,

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:15

were greater than the corresponding TDMAWCRT considering the same configuration. The results
do also show that for some tasks and some configurations an SPS based system does not provide
better WCRTs (as all box plots reach up to 1.0). This has several reasons.

First of all, the box plots include the results for all tasks of each generated setup. Therefore, also
task are included which would never see any benefit, based on its task parameters (e.g. priority and
period). Second, although we used also a priority based background scheduling the box plots in
Fig. 6a do not show this directly. Based on the priority for background scheduling, some partitions
might see better response times, some might not. Therefore, there are still tasks inside partition with
a low background priority that do only see minimum improvement. This is also the reason, why the
results for the queue based background scheduling show less improvement, as all partitions have
the same background priority. The calculated interference is therefore always the worst possible.
In order to highlight those effects, we did a second evaluation. We used the same parameter

setup with 60 task-sets as well as identical generation parameters for utilization, period, priorities,
jitter and deadlines. Also, a distinct hypervisor partition was included in each task-set, leaving
room for three additional application partitions. The major difference is, that we fixed the number
of possible tasks for each application task-set to four. This way we are able to show the WCRT
distribution for each task. Like before, we evaluated the system for TDMA configurations with
0%,5%,10%,15% or 20% slack, which resulted in ∼ 990000 evaluated WCRT calculations for each
task. As the results in Fig. 6b and Fig. 6c do list every task in the system individually, the influence
of a priority based background scheduling can be seen. In general the tasks are described as τp,i
with p indicating the partition and i a task inside this partition. The priority inside partitions is
ordered in reverse, resulting in i = 1 as highest task priority. For the priority based background
scheduling, we define partition p = 4 to be the highest priority and do the repeat in a descending
order. This results in the lowest background priority for the hypervisor partition with p = 1.
The WCRT distribution is shown for all settings with 0% slack in Fig. 6b and for 20% slack in

Fig. 6c. Due to the lack of space, we omit the box plots for 5%,10% and 15%, as the results for
those do fit between the measurement for 0% and 20%. The results show two different things.
First, a task with a high priority inside a partition might see much lesser improvement, especially
for configurations where the amount of slack is small. A high priority task inside a partition is
scheduled first, when the corresponding partition is dispatched by the hypervisor. This also means,
that the busy-period of such a task might not contain any background scheduling, resulting in
the same WCRT compared to TDMA. In contrast to this, a lower priority task inside a partition
sees more interference, leading to a longer busy-period which therefor might contain background
scheduling. Second, the benefit of a priority based background scheduling can be seen for tasks
inside partitions 4 and 3. Comparing a queue based background scheduling (Q) with a priority
based one (P) shows a significant improvement for tasks in partitions with a higher background
priority. This is especially the case for configurations with more slack (e.g. Fig. 6c). Here the tasks
inside a partition (τ4,1 . . . τ4,4) with a high background priority achieve significant better calculated
WCRTs for all tested configurations with 20% slack.

5.2 Analysis Runtime
Analyzing the runtime of fixed-point iterations is always a challenge. We will therefore give only
a short overview about the runtime complexity. In general, calculating the results in Fig. 6 for
∼ 1860000 configurations took ∼ 7 hours on an Intel Xeon E5645@2.40GHz. As an execution frame-
work we used PyCPA, in combination with the PyPy interpreter and a multi-threaded execution
on 4 cores. At this point the calculation time could have been improved, as the implementations
parallelism was not at its limit.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:16 Matthias Beckert and Rolf Ernst

Resume(p)
&&

Buget > 0

Resume(p)
&&

Buget == 0

Refill(p)

PopQ
||

Refill(p)

PopQ

Empty(p)

Refill(p)

Idle(p)

Preempt

Q
Run

Wait

Q
Resume

Idle

Activation delay Provide service >= TDMA

Idle(p)

PopQEmpty

Preempt

Refill(p)

Run

Q
Empty

Run BS

Fig. 7. Partition-state graph for budget scheduler with background scheduling

For the queue based SPS scheduling, we used (21) which results in a more or less equal runtime
complexity compared to TDMA. Nevertheless, based on varying task activation patterns, different
equations might lead to different busy-window sizes. Therefore the overall complexity is hard to
evaluate. At least for the complex calculation method from Sec. 4.3, a comparison is possible. One
might see, that based on the different orders from (19), the entire busy-window iteration is executed
for each possible partition order. Therefore, the analysis runtime for such a system scales based on
the number of possible partition orders Y , which is given as:

Y = (|ΓHYP | − 1)! (22)

Due to this fact, the complex calculation method takes much more time for computation. Never-
theless, only the complex analysis method for SPS based systems is able to handle different types
of background scheduling. Instead, the simplified method from (21) can only handle queue based
systems. It is still a design-time problem, which is not relevant during runtime. Also, calculating
response times for a single configuration is comparatively fast on modern computers. What inflated
up our computation time, was the sweep over the entire design space based on several TDMA
configurations.

5.3 Implementation and Run Time Measurements
To test the background scheduling, we added it to an existing hypervisor setup with SPS based
budget scheduling. The used hypervisor is a modified version of µC/OS-MMU [7], running on an
ARM9 based LPC3250@200MHz. Inside each partition a µC/OS-II [16] with an SPP scheduling
is used as operating system. The modified partition-state graph is shown in Fig. 7. Each time a
partition depletes its budget and does still have outstanding workload, it is pushed to the end of a
queue called QEmpty . This queue is drained based on the PopQEmpty command as shown in Fig. 7
and Tab. 1. PopQEmpty is called each time, the system would be idle otherwise and switches the
partition from the queue to the RunBS state. The partition stays in this mode, as long as it does not
self-suspends itself (Idle(p)), is preempted by a partition with budget (Preempt) or receives a budget
replenishment (Refill(p)). When budget is replenished for a partition in QEmpty , the queue entry is
deleted and the partition is switched back to the usual Run state. Comparing the conditions for
partition callbacks in Tab. 1 shows that the decision which partition should be dispatched gets more
complex. As an additional state (RunBS) and an additional queue command (PopQEmpty) needs to

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:17

be considered. In order to keep Tab. 1 understandable, we did not include each implementation
specific detail for dispatch decisions. As an example, the implementation must consider the current
timer state and the distance to the next timer IRQ. Otherwise we might dispatch a new partition
while an Refill(p) callback is issued, which would overwrite the previously taken decision. Therefore
the implementation is more challenging as it might look at first glance, when only considering Fig. 3,
Fig. 7 and Tab. 1. Nevertheless, such a system can be implemented with a reasonable overhead.
For comparison we evaluated the SPS background scheduling implementation with the exact

same task-set (Tab. 3) from [2]. This task-set contains three application partitions and one additional
hypervisor partition for housekeeping. µC/OS-II supports up to 256 tasks, with one task per priority
where 0 denotes the highest possible priority inside the system. The application partitions consists
of a generic task-set implementation that generates the required number of tasks with the specified
parameters (Tab. 3). Each task is characterized as a periodic task with jitter and deadline, where
the jitter generation is based on a pseudo random rand() function. The corresponding time slots
T1 . . .T4 and TTDMA from the TDMA configuration were used for the SPS based scheduling as
budgets and replenishment period.

The presented implementation directly provides a queue based background scheduling. For other
background scheduling policies, the queue insertion must be adapted. As an example, for a priority
based background scheduling the position inside QEmpty is determined by its priority. The highest
priority is therefore always inserted at the head, the lowest at the tail and a medium somewhere
in between. Although the runtime of such an operation might be state dependent, it is often used
in real-time operating systems (e.g. ERIKA/OS[9]). This way the systems dispatch interface is the
same, as always the partition at the queues head is dispatched during background scheduling.
In order to provide measurements also for priority based background scheduling, we prioritized
Partition 1 over all other partitions. Adding Partition 1 always at the head of QEmpty instead of
the tail is therefore sufficient for our measurements. Nevertheless, this does not resemble a full
implementation for priority based background scheduling.
Fig. 8 shows the measured results for the tasks from application Partition 1. We collected the

measurements for four different scheduling configurations. Pure TDMA, SPS without background

Table 3. Evaluation task-set, all times are given in [ms]

Hypervisor (T1 = 2.8) Partition 1 (T2 = 11.4)
Prio P J C D Prio P J C D
1 100 0 4 100 1 50 5 2 50

2 100 5 4 100
3 200 5 6 100
4 400 5 10 200

Partition 2 (T3 = 18.0) Partition 3 (T4 = 16.1)
Prio P J C D Prio P J C D
1 50 5 3 50 1 100 5 4 75
2 75 5 6 75 2 150 5 6 85
3 150 5 7 150 3 200 5 8 150
4 175 5 10 175 4 250 5 12 175

TTDMA = T1 +T2 +T3 +T4 = 48.3

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

1:18 Matthias Beckert and Rolf Ernst

TDMA SPS SPSQ SPSP

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

R
es

po
ns

e
tim

e
in

[m
s]

(a) τ2,1

TDMA SPS SPSQ SPSP

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

R
es

po
ns

e
tim

e
in

[m
s]

(b) τ2,2

TDMA SPS SPSQ SPSP

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

R
es

po
ns

e
tim

e
in

[m
s]

(c) τ2,3

TDMA SPS SPSQ SPSP

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0

R
es

po
ns

e
tim

e
in

[m
s]

(d) τ2,4

Fig. 8. Response time measurements for Partition 1

scheduling, SPS with queue based and SPS with priority based background scheduling. The mea-
surements were collected over a period of 2.5 minutes, due to a limited trace buffer size. The ∇
symbols inside Fig. 8 denotes the calculated WCRT for the corresponding task and scheduling
configurations. The results show, that due to the SPS based budget scheduling, better response time
can be achieved. Especially for tasks with a low priority inside a partition, the response times can
be improved analytically when using background scheduling. This also the case for the measured
average case response times. In contrast to the calculated WCRTs, the measured response times
for all and not only low priority tasks show significant improvements when using the SPS based
budget scheduling. During the entire evaluation on physical hardware, no deadline was missed.
Comparing the code overhead for an implementation w/ and w/o background scheduling results in
∼ 0.1% for an overall codesize of ∼ 120kByte for the hypervisor core binary (compiled with size
optimization). Additional RAM usage is less than 0.1%. For both background scheduling techniques
the execution time per scheduler callback was at ∼ 10µs .

6 CONCLUSION
In this paper we provided a method to calculated task WCRTs for SPS based budget scheduling.
While the analysis without background scheduling is straight forward, it does not provide a
improvement for WCRT. Therefore we introduced an analysis methods for priority and queue based
background scheduling, in order to improve WCRT estimations. For this purpose we provided two
methods. A complex one enabling different types for background scheduling, and a simple one

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

Response Time Analysis for Sporadic Server based Budget Scheduling 1:19

only for queue based systems. The evaluation results show, that the background scheduling can
lead to a massive WCRT improvements. Especially the priority based background scheduling can
provide much better WCRTs, when assigning a high background priority to a single partition. This
way it is also possible to schedule event or IRQ based applications inside a partition, while still
preserving an upper bounded interference comparable to TDMA. The measurement results from a
physical implementation on an ARM based development board validate the calculated WCRTs and
show also an improved average case for response times.

REFERENCES
[1] Luis Almeida and Paulo Pedreiras. 2004. Scheduling Within Temporal Partitions: Response-time Analysis and Server

Design. In Proceedings of the 4th ACM International Conference on Embedded Software (EMSOFT ’04). ACM, New York,
NY, USA, 95–103. DOI:http://dx.doi.org/10.1145/1017753.1017772

[2] Matthias Beckert and Rolf Ernst. 2015. Designing time partitions for real-time hypervisor with sufficient temporal
independence. In Proc. of 52st Annual Design Automation Conference (DAC). ACM.

[3] Matthias Beckert, Kai Björn Gemlau, and Rolf Ernst. 2017. Exploiting Sporadic Servers to provide Budget Scheduling
for ARINC653 based Real-Time Virtualization Environments. In Proc. of Design Automation and Test in Europe (DATE).
Lausanne, Switzerland.

[4] Matthias Beckert, Moritz Neukirchner, Rolf Ernst, and Stefan M Petters. 2014. Sufficient Temporal Independence and
Improved Interrupt Latencies in a Real-Time Hypervisor. In Proc. of 51st Annual Design Automation Conference (DAC).
ACM.

[5] Robert I Davis and Alan Burns. 2005. Hierarchical fixed priority pre-emptive scheduling. In Real-Time Systems
Symposium, 2005. RTSS 2005. 26th IEEE International. IEEE, 10–pp.

[6] Jonas Diemer, Philip Axer, and Rolf Ernst. 2012. Compositional performance analysis in python with PyCPA. Proc. of
WATERS (2012).

[7] Embedded Office. 2017. µC/OS-MMU. (2017). https://www.embedded-office.com/en/partitioning-system.html
[8] Paul Emberson, Roger Stafford, and Robert I Davis. 2010. Techniques for the synthesis of multiprocessor tasksets.

In proceedings 1st International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS 2010). 6–11.

[9] Paolo Gai. 2002. ERIKA Enterprise, Open-source OSEK/VDX-certified RTOS. (2002). http://erika.tuxfamily.org
[10] BR Heap. 1963. Permutations by interchanges. Comput. J. 6, 3 (1963), 293–298.
[11] Gernot Heiser and Ben Leslie. 2010. The OKL4 Microvisor: Convergence point of microkernels and hypervisors. In

Proc. of 1st asia-pacific workshop on Workshop on systems. ACM.
[12] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. 2005. System Level Performance Analysis–the

SymTA/S Approach. IEEE Proceedings-Computers and Digital Techniques 152, 2 (2005), 148–166.
[13] International Electrotechnical Commission. 2008. IEC61508 Ed.2 - Functional Safety of Electri-

cal/Electronic/Programmable Safety-related Systems. (2008).
[14] International Standardization Organization. 2011. ISO26262 - Road Vehicles. Functional Safety. (2011).
[15] Robert Kaiser and Stephan Wagner. 2007. Evolution of the PikeOS Microkernel. In Proc. of 1st International Workshop

on Microkernels for Embedded Systems (MIKES).
[16] Jean J. Labrosse. 2002. µC/OS-II The Real Time Kernel. CMP Books.
[17] J.P. Lehoczky. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proc. of 11th Real-Time

Systems Symposium (RTSS). IEEE, 201–209.
[18] Moritz Neukirchner, Tobias Michaels, Philip Axer, Sophie Quinton, and Rolf Ernst. 2012. Monitoring arbitrary activation

patterns in real-time systems. In Proc. of 33rd Real-Time Systems Symposium (RTSS). IEEE.
[19] P.J. Prisaznuk. 2008. ARINC 653 role in Integrated Modular Avionics (IMA). In Proc. of Digital Avionics Systems

Conference (DASC).
[20] Kai Richter. 2004. Compositional Scheduling Analysis Using Standard Event Models. Ph.D. Dissertation. Technische

Universität Braunschweig.
[21] Saowanee Saewong, Ragunathan Rajkumar, John P Lehoczky, and Mark H Klein. 2002. Analysis of Hierar hical

Fixed-Priority Scheduling.. In ECRTS, Vol. 2. 173.
[22] Simon Schliecker, Jonas Rox, Matthias Ivers, and Rolf Ernst. 2008. Providing Accurate Event Models for the Analysis

of Heterogeneous Multiprocessor Systems. In Proc. of 6th International Conference on Hardware Software Codesign and
System Synthesis(CODES+ISSS).

[23] Robert Sedgewick. 1977. Permutation generation methods. ACM Computing Surveys (CSUR) 9, 2 (1977), 137–164.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

http://dx.doi.org/10.1145/1017753.1017772
https://www.embedded-office.com/en/partitioning-system.html
http://erika.tuxfamily.org

1:20 Matthias Beckert and Rolf Ernst

[24] Brinkley Sprunt, Lui Sha, and John Lehoczky. 1989. Aperiodic task scheduling for hard-real-time systems. Real-Time
Systems 1, 1 (1989).

[25] The IEEE and The Open Group. 2017. Base Specifications Issue 7, IEEE Std 1003. (2017). http://pubs.opengroup.org/
onlinepubs/9699919799/

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Response Time Analysis
	4.1 TDMA with SPP
	4.2 SPS with SPP
	4.3 SPS with Background Scheduling and SPP
	4.4 Simplified WCRT calculation method

	5 Evaluation
	5.1 Response Time
	5.2 Analysis Runtime
	5.3 Implementation and Run Time Measurements

	6 Conclusion
	References

