
Providing Throughput Guarantees in
Mixed-criticality Networks-on-Chip

Sebastian Tobuschat and Rolf Ernst
Institute of Computer and Network Engineering
Technische Universität Braunschweig, Germany

Email: {tobuschat, ernst}@ida.ing.tu-bs.de

Abstract—Future mixed-criticality systems must handle a
growing variety of traffic requirements, ranging from safety-
critical real-time traffic to bursty latency-sensitive best-effort
traffic. Additionally, safety standards (e.g. ISO 26262) require
sufficient independence among different criticality levels for
mixed-criticality systems. Networks-on-Chip (NoCs), as a scalable
and modular interconnect, are used as a promising solution for
such systems. Hence, a NoC must provide performance isolation
for safety-critical traffic and low latency for best-effort traffic
at the same time. This paper presents a run-time configurable
NoC design enabling throughput guarantees for selected traffic
streams with reduced adverse impact on the performance of
best-effort traffic. In contrast to existing approaches, we pri-
oritize best-effort over guaranteed throughput traffic and only
switch priorities when required, providing sufficient performance
isolation among different criticality levels. We show that the
overhead implementing our approach is affordable. And through
an experimental evaluation, we show that the approach reduces
the adverse effects through strict prioritization on best-effort
applications.

I. INTRODUCTION

Safety critical and dependable embedded systems play an
important role in our daily life. For example, modern vehicles
integrate over 100 electronic control units (ECUs). Due to
the ever increasing demand for high performance together
with low energy consumption and size, multicore systems, as
known from general-purpose computing, are adopted by the
safety-critical embedded market. The integration of multiple
cores in a chip to a multiprocessor system on chip (MPSoC)
offers the possibility to consolidate multiple functions or ECUs,
which previously had been distributed and isolated by external
buses. This consolidation of functions with different overall
importance leads to mixed-criticality multicore systems [1]. In
this context, a critical function is essential for the safety of
the system. Therefore, this function is developed with high
diligence and so the behaviour (i.e. timing) is well specified
and tested. For non-critical functions the confidence in the
characteristics is lower, i.e., the possibility that the function
deviates from the specification is higher.

Networks-on-Chip (NoC), as a modular interconnect, are
used as a promising solution for MPSoCs, due to their
scalability and performance. In a NoC resources, such as the
output ports of the routers, are shared among the different
functions and safety-classes. Hence, applications of different
safety levels will inevitably compete with each other in a NoC
for resources. This resource sharing couples the execution

behaviour across cores and, thus, impacts non-functional
properties like timing, which are of particular interest in
safety-critical environments. Safety standards explicitly mention
this problem in context of mixing different criticalities (e.g.
sufficient independence IEC 61508 [2]).

One approach to tackle the problem of mixed-criticality is to
develop all functions to the highest relevant safety level. This
leads to higher development costs and lower system utilization.
Another approach is to provide sufficient independence through
quality-of-service (QoS) mechanisms. The challenging part of
this approach is to efficiently utilize system resources while
providing a bounded and feasible interference. This typically
leads to a trade-off between providing real-time guarantees for
certain applications and performance for the others, as well as
the introduced overhead by the quality-of-service mechanisms.

Contribution: In this paper we present a novel, run-time
configurable NoC design enabling throughput guarantees with
reduced impact on latency for best-effort traffic. In contrast
to existing approaches, we prioritize best-effort (BE) over the
guaranteed throughput (GT) traffic in NoC routers and only
switch priorities when required. This enables us to exploit the
throughput and latency slack of critical applications, while
providing sufficient independence among different criticality
levels w.r.t. timing properties. Additionally, we allow virtual
channel sharing between concurrent GT streams to reduce the
number of needed (virtual) channels and hence buffer space.

The rest of the paper is structured as follows. In Section II
we provide an overview of related work. This is followed by
the description of our design in Section III. We then evaluate
the design in Section IV and conclude in Section V.

II. RELATED WORK

There exist various packet-switched networks-on-chip pro-
viding quality-of-service (QoS) for mixed criticality systems
that can be categorized by how they enforce service guarantees.
One group uses time-division multiple-access (TDMA) to limit
the interference between applications, e.g., [3]–[5]. These
rely on a pre-allocation of time-slots in the network and
provide strong isolation. However, the static timing schedules
and slot assignments typically lead to some inflexibility and
underutilized systems.

The second group uses more dynamic scheduling approaches,
to increase the flexibility and utilization of the system. For

978-1-5386-4034-0/17/$31.00 ©2017 IEEE 207



this, they combine interface-based design and system anal-
ysis [6], [7]. Traffic sources in the network provide well
defined interfaces and thus introduce a known and limited
interference to the system. Based on this idea more dynamic
and work-conserving QoS mechanisms can be constructed
based on source rate limiting and dynamic scheduling. In [8],
for example, the authors propose the QNoC architecture. It
uses four traffic classes and a fixed priority scheme to arbitrate
between packets of the different classes in the switches. The
critical traffic has a higher priority than best-effort, providing
isolation for the critical traffic. In the Mango NoC [9] switches
consist of two parts, a best-effort (BE) and a guaranteed service
(GS) switch, and implement virtual channels. The GS streams
are prioritized over BE and a fair-sharing arbitration is used
between multiple GS streams. The latency of a message is
bounded and mainly depends on the number of VCs sharing a
particular connection and the selected arbitration policy.

The authors of [10] introduce Globally-Synchronized Frames
(GSF), for providing guaranteed QoS in terms of throughput and
latency bounds. GSF coarsely divides the time into frames and
introduces a scheme similar to earliest deadline first scheduling
based on these frames. For this, each QoS packet from a source
is assigned a frame number indicating the desired delivery time.
Packets with an early delivery time are prioritized in the routers.

Besides the prioritization of GS traffic, some approaches
try to improve the performance of BE traffic. For this, BE
can have the same or even a higher priority than GS traffic.
To limit the interference, i.e., to still guarantee a minimum
throughout for GS, mechanisms to dynamically adapt the
priorities are introduced. The authors of [11] present a protocol
for priority-preemptive VC arbitration, guaranteeing that all
(critical) packets will arrive by their deadlines. It uses runtime
monitoring at the network interfaces (NI) to check whether
critical traffic stays within a predefined behaviour (i.e. message
sizes and inter-arrival time). If an injecting NI detects a
deviation from this behaviour, routers on the desired path
switch to a critical state, in which the priority of best-effort
traffic is lowered below all critical traffic and hence BE can
only use idling ports of a router. The authors of [12] introduce
backsuction, in which BE is prioritized over GS traffic. This
scheme uses rate limiters at the destinations nodes, which
return a control signal upstream along the transmission path.
If a router recognizes a too low throughput of critical traffic,
it increases the priority of the critical stream at the upstream
router. This check is based on a threshold value in the routers,
to denote when a buffer underflow occurs. As this approach
uses a rate limiter at the destination node, it relies on a (BE)
packet before the transmission to setup the path. Additionally, to
correctly route the control signal upstream, this scheme allows
only a single ongoing transmission in a (virtual) channel.

The authors of [13] introduce a fluid meter in each router,
which is used together with a (3 bit) header extension denoting
the throughput requirement of a packet/stream. Based on these
two values a router can dynamically de-/increase the priority of
the packet. When GS requirements are satisfied, less VCs must
be allocated to (multiple) GT streams (i.e. as they don’t have

to leave the router immediately). These VCs can be used by
BE, to not sacrifice performance of BE. However, the approach
increases the packet header and introduces an additional FSM
in each router.

In summary, most of today’s NoC architectures do not meet
the requirements on isolation, low hardware requirements,
and high system utilization at the same time. TDM based
architectures introduce static overhead due to the static time
schedule, reducing the performance in most cases. Most of
the dynamic QoS approaches favour safety-critical over best-
effort (BE) traffic (e.g. strict prioritization), thus reducing
the BE performance or introduce complex additional logic
in the routers. To tackle these problems, we propose a
method that only introduces a low overhead in the routers.
It exploits the slack of safety-critical applications to increase
the BE performance compared to other approaches, while still
providing sufficient isolation.

III. FORWARD PRESSURE

This section describes the new approach providing through-
put guarantees while reducing the buffer requirements and
adverse effects of state-of-the-art QoS mechanisms on non-
critical applications. The goal is to exploit the throughput
and latency slack of safety-critical guaranteed-throughput (GT)
traffic to increase the performance for best effort (BE) traffic.
Safety-critical applications do not benefit from receiving more
resources than needed and thus the slack can be used to
schedule other traffic [12], [14], [15]. For this, we give priority
to BE traffic for optimal latency and at the same time monitor
the progress of GT traffic, to change priorities if needed.

Although the proposed mechanism is not specific to a certain
network architecture, we assume a mesh network as a baseline,
where every router is connected to up to four neighbouring
routers and one client, such as processing elements or memory.
The routers use wormhole flow control, i.e., buffer management
is performed on equally sized flits, and have a four-stage
pipeline. Packets are composed of a head flit, multiple body
flits, and a tail flit. Every input port comprises multiple virtual
channels (VC) to isolate different criticalities, i.e., there is no
VC sharing between different criticalities. We use a ”winner-
takes-all” arbiter for requests of the same class, which is similar
to a round-robin arbiter, but maintains a grant until the end of
a packet. This improves average latency, as packets are sent in
one piece if possible [16].

The key idea of our approach is to prioritize BE traffic for
optimal latency and at the same time monitor the progress of
GT traffic, to change priorities if needed. For this, the proposed
mechanism comprises up to three elements:
1) a selective priority arbiter that uses a progress monitor for

GT (i.e. the current flit buffer levels) as a decision criterion
in the input stages of each network switch,

2) an entity at the source that tags the last packet of a GT
connection, and

3) a rate limiter at the source.
If a GT sender is guaranteed to behave as specified (e.g. through
the design process), the rate limiters for GT are not needed.

208



Fig. 1. Selective Priority Arbiter

A. Selective Priority Arbiter

The arbitration logic is located at each output port. It
processes the requests from all input ports according with
their class signal and the current state of GT. Figure 1 shows a
simplified block diagram of the arbitration logic. In the figure,
tn denotes whether an input port with GT traffic needs a higher
priority. Based on this signal, a request of a GT stream is
forwarded to the corresponding GT arbiter (i.e. critical when
above the threshold or norm when beneath). The class signal
decides, whether the request results from a BE or GT stream.
The static priority arbiter then selects the highest priority
signal that has requests pending. If tn is not asserted, the
arbiter prioritizes BE, while GT can use empty slots (i.e. not
used by BE).

The priority signal tn is derived from the buffer fill level or
the presence of a special tail flit, named end of transmission
(EoT) flit. For this, the routers have a (configurable) threshold
value. When the buffer fill level is above the threshold or the
EoT flit is in the buffer, the priority signal is asserted. Routers
typically already have a measure for the fill level for the buffers
for flow control. We only extend it by an additional threshold,
which is then used to construct a priority feedback signal. This
threshold might be configurable or static.

In summary, the proposed arbiter selects BE requests, as long
as all (requesting) GT channels are beneath their threshold, and
a GT request otherwise. If there are no requests of a specific
priority, requests from a lower priority are selected. This means
that GT is allowed to send if the link is otherwise idle, but
also enables BE traffic to use unused reserved GT throughput,
avoiding waste of over-allocated throughput.

Contrary to [12], this scheme allows multiple GT streams to
share the same VC, as the priority signal must not be forwarded
upstream, but is derived locally in each router. However note,
that this also allows for possible head of line blocking between
GT streams. Hence, only streams where the sink is known to
accept traffic should be allowed to share a VC, which can be
guaranteed by design or an online control layer [17].

B. Sender Extensions

Besides the selective priority arbiter, the senders must
be equipped with the possibility to tag the end of a GT
transmission with the EoT flit. Additionally, if the behaviour of
GT senders can not be guaranteed by design, rate limiters are
needed. Booth mechanisms can be implemented in software
or as hardware extensions in the network interface (NI). As
backpressure might occur at the injecting interface and router,

the source needs sufficiently sized buffers or a stateful rate-
limiter. This is needed to catch up a possible backlog at the
sender with a temporary higher rate than requested. A simple
example for a stateful rate-limit, in this sense, is a token bucket
shaper, where the bucket size covers the worst case backlog.
The bucket size then allows a burst, where the sender obtains
more throughput than initially requested, to catch up an initial
too low accepted throughput.

C. Throughput Guarantees

In this section we show that the approach can guarantee a
minimum accepted traffic rate for a sender. For this, we derive
a lower bound on the minimum service and an upper bound
on the backlog at the sender. In general, these values can be
obtained utilizing any analysis framework, such as [18]–[20].
In the following, we will utilize the approach of [18], as it can
handle backpressure for arbitrary sized buffers, to obtain the
minimum accepted throughput for a sender and its backlog.
As we only focus on the throughput property (and not latency)
and due to limited space, we use a simplified version of the
analysis. Note that, while this simplification is sufficient to
provide lower bounds on the minimum service, the results
become more pessimistic for certain streams. To obtain more
tight results, and also the latencies of the transmissions, the per
stream analysis from [18] can directly be used when extended
for an additional delay through BE blocking.

To derive the worst-case accepted traffic of a sender with the
approach from [18], we need to obtain the worst-case waiting
time B̂+

p , output blocking Bout
i , and buffer backlog bp.

Definition 1. Let Θk denote the set of all possible mappings
of k packets to available output ports. Then θ ,θ ∈Θk defines
a specific mapping for k packets, such that θ denotes for each
of the k packets the destined output port.

Definition 2. The worst-case waiting time B̂+
p (q) at a router

port p denotes the time until the port is ready to accept the
q-th incoming flit. It can be bounded by [18]:

B̂+
p (q) =

{
q ·C+max

θ∈Θk {Aθ} , if bp > Qb

0, otherwise

with Aθ = ∑
j∈θ

{
Bout

j (B̂+
p (q)−Ci,n)+ B̂+

P( j),k+1(n)
}
, (1)

where bp denotes the worst-case backlog of the port, Qb the
size of the buffer in flits, k is a limit on the number of packets
q flits form (k = d q

ne), Bout
j is the output blocking, and B̂+

P( j),k+1
is the waiting time at the next router. Note, that only ports
used by GT streams must be accounted for Θk.

This waiting time can only occur if the worst-case backlog
of the port exceeds the buffer size (bp > Qb). If it occurs, we
assume the port to be fully backlogged. Hence, to receive q
incoming flits, the port must first transmit q flits. For these flits
we must account for their transmission time (q ·C) and the worst-
case interference they suffer. For this, the term max

θ∈Θk {Aθ}
obtains the worst-case blocking from each possible mapping

209



of flits to output ports. These might then experience output
blocking and a waiting time at the next router.

Definition 3. The output blocking Bout
i that a stream i experi-

ences is bounded by:

Bout
i (∆t,q) = ψ + ∑

j∈Outi

C ·χ + B̂+
P( j),k+1(χ)

with χ = min

{⌈q
n

⌉
,

⌈
η
+
j (∆t)

n

⌉}
·n,

and ψ = min

∆t

∣∣∣∣∣∣ ∑
j∈BufP(i)

{
η
−
i (∆t)

}
≥ Qt

 (2)

where n denotes the maximum packet size in flits, Qt the
threshold, η

+
j (∆t) (η−j (∆t)) the maximum (minimum) number

of flits of stream j than can arrive in any time interval ∆t, BufP(i)
the set of streams sharing the same buffer with i including i,
and Outi denotes the set of other input ports with GT streams
that are mapped to the same output port as i. Hence, j, j ∈ Outi
denotes the cumulative interference of input port j.

In the worst-case, the stream waits until the threshold value
is reached (ψ) and then competes with other GT streams for
the router resources. Due to wormhole switching, once the
scheduler grants access to an output port, no other input port
can access this port until the port is released, i.e., the packet
is fully transmitted. This is captured by the second term in
the min-function, which considers that after a head flit from j
arrives within the time interval ∆t, the whole packet will be
served before i. Additionally, due to the round-robin arbitration,
each head flit belonging to stream i may only be blocked once
by each other input port, where

⌈ q
n

⌉
is an upper bound on the

number of head flits. Each of these head flits can be blocked at
most for n flits from each other input port. Moreover, each of
the interfering flits then will block stream i for the flit transfer
time C and the waiting time these flits experience at the next
router.

Based on the worst-case waiting time, we can then define
the minimum accepted throughput β̂−p at a router port as:

β̂
−
p (∆t) = min

{
∆t,max

{
n
∣∣B̂+

p (max(0,n−Qb))< ∆t
}}

with ∆t ∈ N+. (3)

For simplification we assume that the time ∆t is given in
multiple of the flit transfer time. The max-function selects the
highest number of events that can be accepted during a time
interval ∆t based on the waiting time. For this, only events
that can arrive before ∆t can be accepted. As the first Qb flits
can be accepted immediately, we only have to account for
the waiting time of n−Qb flits. Additionally, the port can
not accept more flits than time slots have passed, covered by
the first term of the min-function, which only accepts one flit
after one (flit) time unit has passed. The minimum accepted
traffic for a sender then corresponds to the minimum accepted
throughput at the first router port on the path of the sender.
And if this service is equal or higher the requested throughput
in the long term, the stream is schedulable.

With the known minimum service, we can also derive the
backlog bp at each port p and hence sender as:

bp = max

{
∑

i∈Bufp

{
η
+
i (∆t)

}
− β̂

−
p (∆t)

}
, (4)

where Bufp denotes the set of streams sharing port p. The
equation compares the minimum service of the port (β̂−p ) with
the requested service (η+

i ) of all streams. The difference then
shows the maximum number of flits that can have arrived but
not be transferred. This equation can be used to derive the size
of the buffer at the sender or the bucket size of the shaper, to
be able to recover from backlog. For this, the buffer or bucket
size must be at least the maximum possible backlog at the
sender.

IV. EVALUATION

In this section, we evaluate our mechanism and compare it
to the classic and widely used prioritization scheme (e.g. [8]),
and the backsuction scheme [12]. We divide the evaluation
in two parts. In the first part, we use synthetic workloads
to evaluate the basic functioning and certain properties of
our mechanism, such as isolation between BE and GT and
the influence of different transmission sizes. In the second
part, we use memory access and communication traces of
general purpose applications, to investigate the performance of
the mechanism on realistic workloads. All experiments were
carried out with the OMNeT++ simulation framework and the
HNOCS library [21] using routers with a four-stage pipeline,
four virtual channels (VCs), buffers to store 16 flits in each
VC of each input port, and a packet size of four flits.

As a test scenario, we use a 8x8 mesh NoC with XY-routing,
in which we denote the corner node on the north west as
node (0,0) and the corner node on the south east as node (7,7)
based on their XY coordinates. In the network we have two
GT streams, one from node (0,1) to (6,4) requiring 30% of
the link throughput and one from (0,2) to (5,4) requiring 20%.
Hence, both GT streams overlap with a total requirement of
50% of the link throughput on the shared links.

A. Performance

In the first set of experiments we use synthetic workloads,
generated based on average link loads. We use a BE stream
sending from node (0,3) to (4,4), hence its whole path is
overlapped by the GT streams. All other nodes inject BE
traffic to random destinations. We then investigate different
mechanisms: round-robin (RR), prioritization of GT (SP),
backsuction (BS) and our approach (FP). As backsuction allows
no channel sharing between GT, the stream from node (0,1)
uses VC0 and the one from node (0,2) VC1, leaving two VCs
for BE traffic. For the other mechanisms, both GT streams
share VC0. Here we additionally differentiate between the
case where we allow BE to use two or three VCs, denoted
respectively as FP2 and FP3 for FP. Note that in the former
case, only three VCs are used, which corresponds to a smaller
router design than in the case for BS that uses four VCs (cf.
Table I).

210



0 10 20 30 40 50 60 70

requested throughput per BE sender (%)

15

20

25

30
ac

hi
ev

ed
 th

ro
ug

hp
ut

 fo
r G

T1

0 10 20 30 40 50 60 70

requested throughput per BE sender (%)

15

20

25

30

ac
hi

ev
ed

 th
ro

ug
hp

ut
 fo

r G
T2

RR2 RR3 SP2 SP3 FP2 FP3 BS

Fig. 2. Achieved GT throughput - periodic packets with 4 flits

2.
50

5.
00

7.
55

10
.0

0
12

.5
0

14
.8

1
17

.3
9

20
.0

0
22

.2
2

25
.0

0
26

.6
7

30
.7

7

requested throughput per BE sender (%)

60
80

100
120
140
160

en
d-

to
-e

nd
la

te
nc

y 
(c

yc
le

s)

5.00
55

60

65

70
2.

50
5.

00
7.

55
10

.0
0

12
.5

0
14

.8
1

17
.3

9
20

.0
0

22
.2

2
25

.0
0

26
.6

7

30
.7

7
requested throughput per BE sender (%)

60
80

100
120
140
160

en
d-

to
-e

nd
la

te
nc

y 
(c

yc
le

s)

5.00
55
60
65
70
75

RR2 RR3 SP2 SP3 FP2 FP3 BS

Fig. 3. BE Latency - periodic burst of 1 (left) and 4 (right) packets

Figure 2 shows the received throughput for all approaches
over increasing BE load, where all nodes are periodically
injecting single packets. As can be seen, all QoS mechanism
provide the GT streams with the required throughput. Only
in the round-robin (RR) case (i.e. no QoS), the streams drop
below the required throughput when the BE load increases,
which states the RR approach unsuitable for safety-critical
designs.

For the same scenario, Figure 3 shows the latency for BE
node (0,3) to (4,4) when the GT streams are sending single
packets (left) and bursts of 4 packets (right). As expected, the
prioritization leads to a higher latency for BE compared to the
RR case. BS and our approach achieve similar latencies than
RR for low loads, and hence improve the latency for BE up to
17%. Along with this, the saturation point, at which the latency
for BE goes to infinity, can be shifted to higher workloads
enabling a higher system utilization, compared to SP. Here, BS
and FP2 achieve a similar performance (while FP2 needs only
three VCs). And FP3 (with the same number of VCs as BS)
achieves a better performance for BE than BS. Additionally,
with an increasing burst size, the latency of BE increases for
the simple prioritization. For BS and FP the latency increase
for BE is less. Hence, for increased burst sizes, BS and FP
can lead to a higher performance improvement for BE.

In the second set of experiments we use benchmark work-
loads to evaluate the performance of the proposed mechanism.
For the experiments we obtained traces from the CHStone
benchmark suite [22]. The traces were extracted using the
Gem5 simulator and an ARMv7-a core with a 32 kB L1 cache
and contained 100.000 accesses to the network, where each
access can be a direct memory access, communication, or a
cache access. The compilation was performed using standard

ad
pc

m ae
s

bl
ow

fis
h

df
ad

d

df
di

v

df
m

ul

df
si

n

gs
m

jp
eg

m
ip

s

m
ot

io
n

sh
a0.80

0.85

0.90

0.95

1.00

1.05

no
rm

. l
at

en
cy

FP3 FP2 BS SP3 SP2 RR3 RR2

Fig. 4. Normalized BE Latency for various benchmarks from node 3 to 36

gcc compiler (ver. 4.7.3). For a simulation run, we assigned one
benchmark to node (0,3) and then generated several random
mappings of the benchmarks to the other nodes with random
destinations for their traffic. We selected the destinations such
that a traffic stream has to pass at least three routers (i.e. no
traffic to direct neighbours).

Figure 4 shows the normalized latencies for this scenario.
We generated for each listed benchmark 25 different sets of
interfering workloads (i.e. random assignment of application
to nodes) and a random destination for each sender. We then
normalized the latency of the BE sender from node (0,3) to
(4,4) to the case of simple prioritization and two VCs for BE
(SP2). As can be seen, the results comply with the synthetic
results, showing that the dynamic prioritization of our approach
can improve the BE performance by up to 16%. Again, our
approach leads to similar performance improvements as BS
when using less virtual channels or better improvements when
using the same number of VCs. Additionally, we can see a
dependency on the BE traffic patterns. For example, in the case
of the motion benchmark, we can see higher improvements
than for the case of adpcm.

B. Synthesis Results

In this section we briefly present synthesis results for our
approach. We implemented and synthesized a 2x2 NoC on
a Virtex-6 LX760 FPGA using Xilinx ISE 14.6 with default
optimization settings and no special optimizations for the VHDL
implementation. The device utilization data were collected from
the Module Level Utilization Summary Report produced by
ISE. Note that, as this NoC is not fully connected, each of
the four routers has only three input ports fully instantiated.
The results for the whole NoC are summarized in Table I. The
table compares the used registers and LUTs for six different
implementations. The RR3 implementation corresponds to a
basic round-robin router with 4 virtual channels (i.e. three VCs
for BE and one for GT) and a buffer depth of 4 packets for
each VC. This was extended in SP3 to provide one prioritized
VC for GT, e.g. VC0. In the DP design the priority of VC0
can be changed via a configuration flag from the highest to the
lowest priority during run-time. This was extended in BS to
account for the backsuction signal. And finally, the FP3 and
FP2 implementations denote our approach, where the priority
of VC0 is dynamically changed by the router based on the

211



TABLE I
SYNTHESIS RESULTS FOR 2X2 NOC ON VIRTEX-6 LX760 FPGA

Unit RR3 SP3 DP BS FP3 FP2
#Registers 4368 4856 4868 4873 4875 3874

#LUTs 5720 6301 6322 6338 6346 5132

current fill level of the input buffer and the presence of a EoT
flit, with respectively four and three VCs.

The synthesis shows, that our approach introduces less than
10% overhead for the used 2x2 NoC compared to a baseline
(RR3) router and less than 0.5% compared to the SP3 design
when using the same number of VCs. Note that, if throughput
guarantees are required, the baseline approach can not be used.
Here, we need an additional round-robin arbiter at an output
port (one for BE and one for GT requests) when going from
RR3 to SP3, leading to a higher overhead. When extending
SP3 to dynamic priorities, only smaller changes are needed.
In comparison to BS, our approach enables to share VCs
between different GT streams and hence to lower the number
of needed VCs (e.g. FP2) while achieving the same performance
improvements (cf. Section IV-A) and thus also the overhead.

The achievable clock frequency was 210 MHz for all designs,
showing that the extensions did not influence the critical timing
path of a router. The frequency was restricted by the minimum
achievable period, caused by a data path delay of 4,75ns,
consisting of 1,31ns for logic and 3,44ns route delay.

V. CONCLUSION

In this paper we presented a novel arbitration scheme
for NoC routers in mixed-criticality systems. Unlike many
other existing approaches, we prioritize best-effort over safety-
critical guaranteed-throughput traffic whenever possible. To
limit the interference, we online monitor the buffer fill level
at each router and, based on this, increase its priority only
when necessary. Doing this, we can exploit the latency
and throughput slack of critical applications, leading to an
improved performance for general purpose applications in
mixed-criticality systems.

Our experimental evaluation showed that the approach can
improve the latency of best-effort traffic by up to 17% compared
to a standard prioritization scheme. At the same time, the
approach provides throughput guarantees to safety-critical real-
time functions and thus sufficient isolation as requested by
safety standards.

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE, 2010, pp. 13–22.

[2] IEC 61508: Functional Safety of Electrical/Electronic/Programmable
Electronic Safety Related Systems, Std., 1999.

[3] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed bandwidth
using looped containers in temporally disjoint networks within the
nostrum network on chip,” in Design, Automation and Test in Europe
Conference and Exhibition, 2004. Proceedings, vol. 2, Feb. 2004, pp.
890–8952.

[4] K. Goossens and A. Hansson, “The aethereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proceedings of the 47th

Design Automation Conference, ser. DAC ’10. New York, NY, USA:
ACM, 2010, pp. 306–311.

[5] A. Psarras, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos,
“PhaseNoC: TDM scheduling at the virtual-channel level for efficient
network traffic isolation,” in Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, ser. DATE ’15. San Jose,
CA, USA: EDA Consortium, 2015, pp. 1090–1095. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2755753.2757066

[6] E. Wandeler and L. Thiele, “Real-time interfaces for interface-based
design of real-time systems with fixed priority scheduling,” in Proceedings
of the 5th ACM International Conference on Embedded Software, ser.
EMSOFT ’05. New York, NY, USA: ACM, 2005, pp. 80–89.

[7] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Real-Time Systems Symposium (RTSS), 2011 IEEE
32nd, Nov. 2011, pp. 34–43.

[8] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” J. Syst. Archit.,
vol. 50, no. 2-3, pp. 105–128, Feb. 2004.

[9] T. Bjerregaard and J. Sparsoe, “Scheduling discipline for latency and band-
width guarantees in asynchronous network-on-chip,” in Asynchronous
Circuits and Systems, 2005. ASYNC 2005. Proceedings. 11th IEEE
International Symposium on, Mar. 2005, pp. 34–43.

[10] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-synchronized frames
for guaranteed quality-of-service in on-chip networks,” in Proceedings
of the 35th Annual International Symposium on Computer Architecture,
ser. ISCA ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 89–100.

[11] L. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case latency
improvements in mixed-criticality wormhole networks-on-chip,” in Real-
Time Systems (ECRTS), 2015 27th Euromicro Conference on, Jul. 2015,
pp. 47–56.

[12] J. Diemer and R. Ernst, “Back suction: Service guarantees for latency-
sensitive on-chip networks,” in Networks-on-Chip (NOCS), 2010 Fourth
ACM/IEEE International Symposium on, 2010, pp. 155–162.

[13] W. C. Tsai, H. E. Lin, Y. C. Lan, S. J. Chen, and Y. H. Hu, “A novel
flow fluidity meter for BiNoC bandwidth resource allocation,” in 2015
28th IEEE International System-on-Chip Conference (SOCC), Sept 2015,
pp. 281–286.

[14] J. A. Stankovic, K. Ramamritham, and M. Spuri, Deadline Scheduling
for Real-Time Systems: Edf and Related Algorithms. Norwell, MA,
USA: Kluwer Academic Publishers, 1998.

[15] S. Tobuschat, M. Neukirchner, L. Ecco, and R. Ernst, “Workload-aware
shaping of shared resource accesses in mixed-criticality systems,” in
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2014
International Conference on, Oct. 2014, pp. 1–10.

[16] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2003.

[17] A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst, “Dynamic admission
control for real-time networks-on-chips,” in 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), Jan. 2016, pp. 719–
724.

[18] S. Tobuschat and R. Ernst, “Real-time communication analysis for
Networks-on-Chip with backpressure,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, March 2017, pp. 590–595.

[19] H. Kashif and H. Patel, “Buffer space allocation for real-time priority-
aware networks,” in 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2016, pp. 1–12.

[20] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Berlin, Heidelberg:
Springer-Verlag, 2001.

[21] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny, “Hnocs: Modular
open-source simulator for heterogeneous NoCs,” in Embedded Computer
Systems (SAMOS), 2012 International Conference on, Jul. 2012, pp.
51–57.

[22] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and
quantitative analysis of the chstone benchmark program suite for practical
c-based high-level synthesis,” Journal of Information Processing., vol. 17,
pp. 242–254, 2009.

212


