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Networks-on-Chip (NoC)

= Networks-on-Chip are reaching
safety-critical embedded systems

Braunschweig

= transmissions of different safety level “ “
share NoC resources
>
= standards require isolation S| |m N
: - H—H
= e.g.|IEC 61508: =
“sufficient independence”
p “ N: Network Node
= consequences - Ri Router
] v e
» highest relevant safety level for all [ Peripherals | N Nework nterface
- expensive
= orimplement “sufficient independence”
- Quality of Service mechanisms (Qo0S)
» main Challenge: QoS guarantees + high performance
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Providing Quality of Service — Related Work

static partitioning (e.g. TDMA):
e.g. [Milberg2004], [Goossens2010], [Psarras2015]
= typically reduced utilization
prioritization:
e.g. [Bolotin2004], [Bjerregaard2005]
= “criticality as priority”: reduced performance for BE
dual priority:
e.g. [Burns2014], [Indrusiak2015]
= not accounting for NoC load; only for whole path
» reduced exploitation of latency slack
performance monitoring + dynamic prioritization, e.g.:
= fluid meter [Tsai1015]: increased header and increased router

» backsuction [Diemer2010]: no VC sharing, initial setup
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Providing Quality of Service — Related Work

Goal: minimize negative performance
Impact of QoS mechanisms
(on non-critical senders)

|ldea: prioritize BE to exploit (latency)
slack of critical applications
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Qutline

=  Motivation

= Providing Quality of Service

= Throughput Guarantees

= Experimental Results

= Conclusion
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ldea

=  slack: difference between worst-case transmission time and deadline

= safety critical applications do not benefit from finishing before
deadline or receiving more throughput than required

= but best effort applications benefit from low latency
* baseline approach:
= two traffic classes: guaranteed throughput (GT) and best effort (BE)

= prioritize BE over GT and limit interference BE induces to GT to
exploit slack of GT

N\

utiIity(Q

~

deadline — ¢ finishing time f

utility function of a firm/hard real-time task [Stankovic1998]
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Limit BE Interference (1)

= GT injects with desired rate

= monitor progress of GT (locally in each buffer/router)
If too slow - increase its priority (over BE)

State Arbitration
norm
x !
r9
Qt{ BE
LT
Outputl H>
Inputl GT
>Output n >
BE
Inputn GT
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Limit BE Interference (2)

monitor fill level via threshold

If threshold reached, GT obtains priority over BE
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% Universitit
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Sta_te Arbitration
crit
X \i
r9
Q: BE
L9
Inputl GT
9
BE
Inputn GT

9| Output 1

Outputn K
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Limit BE Interference (3)

= tag last flit of transmission
= to obtain priority for end of transmission

= needed as there might be no subsequent packets that fill up the
buffer

Sta_te Arbitration
crit
X !
P
I\ Qt{ BE
> N
i Outputl H>
Inputl GT

—> Outputn H>

BE
Inputn GT
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Limit BE Interference (4)

=  further extension

= account for backlog at sender

= if it was too slow in past, send packets with higher rate until average
throughput is OK again

» e.g. via size of sender buffer, bucket/burst size ...

» system design ensures that interference between GT senders does
not violate requirements

= otherwise system is not feasible
= when GT has priority, it can only interfere with GT
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Qutline

=  Motivation

= Providing Quality of Service

= Throughput Guarantees

= Experimental Results

= Conclusion
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Worst-case Service

» based on [Tobuschat2017] — compositional performance analysis
» |ocal router analysis
» Wworst-case waiting time at a port
=  maximum time until the port is ready to accept the g-th incoming flit
= used to derive minimum accepted throughput ﬁ; at each router port

» break down into sum of different terms addressing different
blocking factors

= for each stream

» analyze routers along its path and propagate event models
downstream

= formally analyze routers iteratively
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Worst-case Waiting Time

B;(q) <qxC + max {Z{B}’“t(ﬁﬁ (@ —Cn)+ E;(j),k+1(Q)}}
jco

State Arbitration
norm
i ) \i
9
BE
A L oupr 1>
Inputl GT
—>| Outputn H>
q : number of flits BE
0% : pos. mappings of k packets .
to output ports Inputn  GT
k : num. of packets q flits form
n : number of flits in packet . . .
C - sinale flit transmission time For details and equations look into the paper
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Worst-case Waiting Time

B;(q) </g*C + max {Z{B}’“t(ﬁﬁ (@ —Cn)+ E;(j),k+1(q)}}
j€o

flit

transmission

q : number of flits

0% : pos. mappings of k packets

to output ports

k : num. of packets q flits form

State Arbitration
norm
o \A
r9
/I\ BE
Inputl GT
9
BE
Inputn GT

9| Output 1

Outputn K

n : number of flits in packet
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C : single flit transmission time

For details and equations look into the paper
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Worst-case Waiting Time

flit

transmission

Arbitration \

q : number of flits

0% : pos. mappings of k packets

to output ports

k : num. of packets q flits form

B}(q) <q*C + max {Z{B}’“t(ﬁg (@ —Cn)+ E;U)’kﬂ(q)}}
jeo

interference
at output

State
norm
) \i
I/9
/I\ BE
Inputl GT
BE
Inputn GT

Outputn K

n : number of flits in packet
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C : single flit transmission time

For details and equations look into the paper
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Worst-case Waiting Time

B} (q) </g*C + max {Z{B}’“t(ﬁ; (@ —Cn)+ E;(i),k+1(q)}}
jeo

flit
transmission

q : number of flits

©% : pos. mappings of k packets
to output ports

k : num. of packets q flits form
n : number of flits in packet

C : single flit transmission time

AN

Arbitration \

Output 1

4E NE N

State
norm
) \i
I/9
/I\ BE
Inputl GT
BE
Inputn GT

For details and equations look into the paper

waiting at next

(backpressure)

router

interference

at output

—>| Outputn H>

!

%
%

=)
&
-
]
L]

)

e,

=t Technische
%E Universitit
22e Braunschweig

.
scﬂd

e
7,
“n,

08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 16




Worst-case Output Blocking

B?ut(At, q) <Y+ z {C * X + E;(]-)'k+1(X)}

JEOUL;
State Arbitration
norm
o |}

[T
L

9
- —> Outputl H>

Inputl GT

—>| Outputn H>

q : number of flits BE

0% : pos. mappings of k packets .

to output ports Inputn  GT

k : num. of packets q flits form

n : number of flits in packet . . .

C : sinale flit transmission time For details and equations look into the paper
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Worst-case Output Blocking

B?ut(At, q) <Y+ z {C * X + E;(]-)'k+1(X)}

JEOUL;
time until state Arbitration
threshold reached 7 N}
/ \
|/9 “ AR LB R
/I\ Q¢ BE
In GT
q : number of flits H: BE
©% : pos. mappings of k packets .
to output ports Inputn  GT
k : num. of packets q flits form
n : number of flits in packet ) i )
C - single flit transmission time For details and equations look into the paper
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Worst-case Output Blocking

B?ut(At, q) <Y+ Z {C * X + E;(]-)'k+1(X)}

Jeout \

time until r?fﬁtrﬁ Arbitration transmission
threshold reached 7 ! from other
I/9 inputs
Q¢ BE
/|\9 N
Inputl GT
Outputn H>

q : number of flits BE
©% : pos. mappings of k packets .
to output ports Inputn  GT

k : num. of packets q flits form
n : number of flits in packet ) i )
For details and equations look into the paper

C : single flit transmission time
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Worst-case Output Blocking

BiU(at @) <W+ ) {€xx+ Bl (0} T,
jéout; waiting time
\ of other inputs

time until state Arbitration transmission
threshold reached Z ! from other
I/9 inputs
Q¢ BE
/|\9 mmn EEE=
nputl  GT Outputl H>
—>| Outputn H>
q : number of flits BE
©% : pos. mappings of k packets .
to output ports Inputn  GT

k : num. of packets q flits form
n : number of flits in packet ) i )
For details and equations look into the paper

C : single flit transmission time
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Minimum Accepted Throughput

ff; (At) = min {At, max {mll’-?; (maX(O,m — Qb)) < At}}

with At € N* and in multiple of flit transfer time

B, (At)
M
Q) : buffer size
Technische At :
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Minimum Accepted Throughput

ff; (At) = min {At, max {mlﬁg (max(O,m — Qb)) < At}}

with At € N* and in multiple of flit transfer time

buffer size flits

can arrive
immediately
B, (At)
M
Q) : buffer size
Technische At :
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Minimum Accepted Throughput

ff; (At) = min {At, max {mlﬁ;; (maX(O,m - Qb)) < At}}

with At € N* and in multiplé,of flit transfer time
buffer size flits

can arrive
for more, account immediately
for waiting time

B, (At

Q) : buffer size

At
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Minimum Accepted Throughput

ﬂp (At) > m1n At max m|B+ max (0, m — Qb)) }}

with At € N* and in multiplé, of flit transfer time
buffer size flits
max number of flits can arrive
that can be accepted for more, account immediately
based on for waiting time
blocking/waiting time
B, (At)
M
Q) : buffer size
Technische At
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Minimum Accepted Throughput

ﬂp (At) > mln At max m|BJr max (0, m — Qb)) }}

with At € N* and in multiplé, of flit transfer time
not more than ﬂ buffer size flits
available time max number of flits can arrive
slots that can be accepted for more, account immediately
based on for waiting time
blocking/waiting time

B, (At

M

Q) : buffer size

At

Technische
08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 25

QI
'$
% %E Universitit

=)
&
3
® e

¢,b O Braunschweig




Outline

= Motivation

= Providing Quality of Service
= Throughput Guarantees

= Experimental Results

= Conclusion
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Evaluation (1)

» OMNeT++ framework + HNOCSs library
= packet size: 4 flits

» buffer size: 4 packets (16 flits)

* router with 4 stage pipeline

= 3-4VCs

= 8x8 mesh, XY-routing

* two sets of experiments:

= synthetic workload: general properties
» benchmark based: performance improvement
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Evaluation (2)

= two GT streams 0.1 ,2'00 x> OO0 0O
= node (0,1) to (6,4) requesting 30% O000moo0o
= node (0,2) to (5,4) requesting 20% O000moo0o

= compared different approaches )0 m o)) oy
= RR2/RR3: round robin O 000 ()OO

3VCs/4VCs (2-3 for BE, 1 for GT) O000 ’_: alala
= SP2/SP3: static priorit
3VCs/4VCs (2-320r BI):_/, 1 for GT) 8 8 8 8 8 8

= BS: backsuction
4\/Cs (2 for BE, 2 for GT)

= FP2/FP3: proposed
3VCs/4VCs (2-3 for BE, 1 for GT)
threshold: 3 packets (75% buffer size)
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Experiment 1

_ _ 30% 20%
= synthetic workload: general properties

» based on average link loads

=
-

» GT periodically sending burst of 4 packets

Ll (E

* increasing BE load

(=2)
f-S

0000000®
0000000

0agd
0agd
0agd
000
000
000
000
()0 &7

J0ooooaod

00000006
D E

» check performance of BE
= for highlighted BE node (0,3) to (4,4)

= random destinations for all other nodes (BE traffic)
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Observed Average BE Latency
GT periodically sending burst of four packets
| — | - | F o b
16075 Y : 1
- - 1=
| . y :
_ 1407 A :
= % 65+t - ;A ,‘::
5 5120160 o_ S o
&2 g8 B S ’ :
g L>)\ 100 S5 TS " ‘: ,1 D-
58 [ 5.00 oA : RN
= N > =
] Pl =T : L
ddadt Naiiadl - ‘1‘
W y lﬂ"r'“
le.-n\-'-'-""';'"‘"'.h"
OtgimmemmmnmnEmmemmpe
> = v = o = o 2 o o = =
- = T T B s B =T S © o
Q\ v o~ o 9\ < o~ o o i O <
— — — — (@] (@] (@] o on
requested throughput per BE sender (%)
® ®RR2 @ '®@RR3 & ASP2 A ASP3 FP2 FP3 v ¥BS
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Experiment 2

= benchmark based X ,2-00 =S 0 0 0O
= traces from CHStone O000mOoOOo
- d usin ; I
ARMT, 3268 L1 0ooomnooo
= accesses to network (e.g. memory access, 000 0ad
communication, cache access) U4doud i O 4ggd
= for each trace on (0,3) OO ue4 )OO
= multiple (random) mappings of traces to other JO0Ug )OO
nodes 0000000
= with random destinations for traffic
= Jatency for highlighted BE node (0,3 to 4,4)
= normalized to SP2 (over all runs)
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Normalized BE Latency

. 0
for higher num. of 16% lower
VCs better than RR average\latency
LLOS b BN
1.00L - E ....................... E ......... E E _____
> £ | = | g
[&] - - - - -
5 E | E 5 g
2 0.95F SREEP | N SR |- B - FEE R | - R i o i T
E‘ — i E | E -
£ 0.90
0.85
0.80 2 i - . Lt . - Ll g 5 L
Q 7 S, = = = ) =" ) =
3] < = & 2 £ <z 5 = g = z
] /s = 5 7 S B
=
-RRZ/ -RRB( -spz) E=ISsp3 [EIIBS E=IFP2 = FP3
I
similar performance
as BS with less VCs
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Synthesis Results — NoC

=  2x2 NoC, 3-4 VCs, buffer size of 4 packets per VC

= Virtex-6 LX760 FPGA, Xilinx ISE 14.6, standard settings
» RR3: round robin, 4 VCs (3 for BE, 1 for GT), not safe
=  SP3: static priority, 4 VCs (3 for BE, 1 for GT)
= DP: flag to change priority of GT, 4 VCs (3 for BE, 1 for GT)
= BS: backsuction, 4VCs (2 for BE, 2 for GT)
» FP2/FP3: proposed, 3VCs/4Ccs (2-3 for BE, 1 for GT)

+11.6%
— —

Unit RR3 SP3 DP BS FP3 FP2
#Regqisters 4368 4856 4868 4873 4875 3874
#LUTs 5720 6301 6322 6338 6346 5132
MHz 210 210 210 210 210 210

+0.7% -19.0%
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Outline

= Motivation

= Providing Quality of Service
= Throughput Guarantees

= Experimental Results

= Conclusion
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Conclusion

* run-time configurable, dynamic prioritization of GT to exploit slack of
safety-critical applications

» based on actual blocking through BE
= prioritize BE over GT when possible
—> increased performance for BE
= upto 16% lower average latency compared to static prioritization
» |essthan 1% hardware overhead compared to static prioritization
* reduced hardware overhead compared to backsuction
= while achieving similar performance benefits for BE
= future work:
» dependency of/between buffer, threshold and packet sizes

Thank you for your attention.

Questions?
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Back Up

Backup Slides

Technische
Universitit 08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 37

Braunschweig




SALL

o
%
&
]

v . v
o3| A5e

7, v
bi\fscﬂ-d

IEC 61508-2: 2010

"7.4.2.3 Where an E/E/PE safety-related system is to implement both
safety and non-safety functions, then all the hardware and software shall
be treated as safety-related unless it can be shown that the
Implementation of the safety and non-safety functions is sufficiently
Independent (i.e. that the failure of any non-safety-related functions does
not cause a dangerous failure of the safety-related functions).

NOTE 1: Sufficient independence of implementation is established by showing that
the probability of a dependent failure between the non-safety and safety-
related parts is sufficiently low in comparison with the highest safety integrity
level associated with the safety functions involved.

NOTE 2. Caution should be exercised if non-safety functions and safety functions
are implemented in the same E/E/PE safety-related system. While this is allowed
in the standard, it may lead to greater complexity and increase the difficulty in
carrying out E/E/PE system safety lifecycle activities (for example design,
validation, functional safety assessment and maintenance)."
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Experiment 1
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synthetic workload: general properties o4 0203 ) () () ()
based on average link loads OO 0mo 00
0000 mOoOado
check for achieved throughput for GT (JO) O Omo 00
GT periodically sending burst of 4 packets (] () () (] jf"" () () ()
increasing BE load O000M000
OO0t ed )OO
check performance of BE )00 0]
for highlighted BE node (0,3) to (4,4)
random destinations for all other nodes
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achieved throughput for GT1

Observed Achieved Throughput
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Compositional Performance Analysis for NoCs

= based on analysis from [Rambo2015] ey Model
nvironment Mode

= analysis performed iteratively l
Input Event Models <€—
= step 1:local analysis (at each router) l
= compute worst-case latency R{ of flits based on {smeduhﬁzaAlnawsis
critical instant (busy window) =
= derive output event models A
= step 2: global analysis Output Event Models
= propagate event models downstream l
= go to step 1 if any event model has changed Convergence or | NO

Non-Schedulability ?

|

Terminate

= otherwise, terminate

LL
o .?Q
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CPA Approach

= worst-case end-to-end latency relies on response times R* from local
analyses

= for each stream
= analyze routers along its path and propagate event models downstream
= formally analyze routers iteratively

Sink 1
|
R* R*
n; 51 Nout,s1 N
] T N Ea
Source > Router 1§ ] » Router 2 » Sink 2
5 >
I_,—’ Min,s2 Nout,s2 JI_J'_'—' '_,—’
c'«lf‘%
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Mapping NoC Domain to Processor Resource Model

* Qutput ports - processing resources 21

S3
* |nput ports - shared resources with
mutually exclusive access

= traffic stream - chain of tasks mapped
to resources

= flit transmission = task execution
= flit arrival =2 task activation
* input and output event models

=\

S2

h 4

Input 3

Nin,s2

Inl )€ Etl’ji > Nout,s2
77m,53\
(In2 )€

O3 T Moyt 53
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|
Qut3
N
Nin,s1
Out 2
A1LEy k nout,51
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Complex Activation Patterns

* variety of activation patterns used in

practice 3(n)
e.g. periodic + spontaneous, dual _
cyclic, on change 20ms

= timing verification can consider them
through use of minimum distance

functions 10ms
» |.e. specification of the minimum 5ms
distance between any n S
consecutive events 2 3 4 S \6 n
= derived from specification or rate-
limiter any 5 events are
separated by at
least 20 ms
2 events may come at
once
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