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 Networks-on-Chip are reaching 

safety-critical embedded systems 

 transmissions of different safety level 

share NoC resources 

 standards require isolation 

 e.g. IEC 61508: 

“sufficient independence” 

 consequences 

 highest relevant safety level for all 

     expensive 

 or implement “sufficient independence” 

       Quality of Service mechanisms (QoS) 

 main Challenge: QoS guarantees + high performance  

 

 

 

Networks-on-Chip (NoC) 
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 static partitioning (e.g. TDMA): 

    e.g. [Milberg2004], [Goossens2010], [Psarras2015] 

 typically reduced utilization 

 prioritization: 

    e.g. [Bolotin2004], [Bjerregaard2005] 

 “criticality as priority”:  reduced performance for BE 

 dual priority: 

    e.g. [Burns2014], [Indrusiak2015] 

 not accounting for NoC load; only for whole path 

 reduced exploitation of latency slack 

 performance monitoring + dynamic prioritization, e.g.: 

 fluid meter [Tsai1015]: increased header and increased router 

 backsuction [Diemer2010]: no VC sharing, initial setup 

 

 

 

 

Providing Quality of Service – Related Work 
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 backsuction [Diemer2010]: no VC sharing, initial setup 

 

 

 

 

Providing Quality of Service – Related Work 

Goal: minimize negative performance 

impact of QoS mechanisms 

(on non-critical senders) 

 

Idea: prioritize BE to exploit (latency) 

slack of critical applications 
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Outline 
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 Throughput Guarantees 

 

 Experimental Results 
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 slack: difference between worst-case transmission time and deadline 

 safety critical applications do not benefit from finishing before 

deadline or receiving more throughput than required 

 but best effort applications benefit from low latency 

 baseline approach: 

 two traffic classes: guaranteed throughput (GT) and best effort (BE) 

 prioritize BE over GT and limit interference BE induces to GT to 

exploit slack of GT 

 

 

 

Idea 

utility function of a firm/hard real-time task [Stankovic1998] 

u
ti
lit

y
(f

) 

finishing time f deadline 
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 GT injects with desired rate 

 monitor progress of GT (locally in each buffer/router) 

 if too slow  increase its priority (over BE) 

 

Limit BE Interference (1) 

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑄𝑡 
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 monitor fill level via threshold 

 if threshold reached, GT obtains priority over BE 

Limit BE Interference (2) 

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

crit 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑄𝑡 
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 tag last flit of transmission 

 to obtain priority for end of transmission 

 needed as there might be no subsequent packets that fill up the 

buffer 

 

Limit BE Interference (3) 

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

crit 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑄𝑡 
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 further extension 

 account for backlog at sender 

 if it was too slow in past, send packets with higher rate until average 

throughput is OK again  

 e.g. via size of sender buffer, bucket/burst size …  

 

 

 system design ensures that interference between GT senders does 

not violate requirements 

 otherwise system is not feasible 

 when GT has priority, it can only interfere with GT 

 

 

 

 

Limit BE Interference (4) 
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 based on [Tobuschat2017] – compositional performance analysis 

 local router analysis 

 worst-case waiting time at a port 

 maximum time until the port is ready to accept the q-th incoming flit 

 used to derive minimum accepted throughput 𝜷 𝒑
− at each router port 

 break down into sum of different terms addressing different 

blocking factors 

 for each stream 

 analyze routers along its path and propagate event models 

downstream 

 formally analyze routers iteratively 

 

 

Worst-case Service 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 13  
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For details and equations look into the paper 

𝑞 : number of flits 

𝚯𝑘 : pos. mappings of k packets 

to output ports 

k : num. of packets q flits form 
n : number of flits in packet 

C : single flit transmission time 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 14  

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Worst-case Waiting Time 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑩 𝒑
+ 𝒒 ≤ 𝐪 ∗ 𝐂 + max

𝜽∈𝚯𝑘
 𝑩𝒋

𝒐𝒖𝒕 𝑩 𝒑
+ 𝒒 − 𝑪, 𝒏 + 𝑩 𝑷 𝒋 ,𝒌+𝟏

+ 𝒒

𝒋∈𝜽

 

For details and equations look into the paper 

flit 

transmission 

𝑞 : number of flits 

𝚯𝑘 : pos. mappings of k packets 

to output ports 

k : num. of packets q flits form 
n : number of flits in packet 

C : single flit transmission time 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 15  

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Worst-case Waiting Time 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑩 𝒑
+ 𝒒 ≤ 𝐪 ∗ 𝐂 + max

𝜽∈𝚯𝑘
 𝑩𝒋

𝒐𝒖𝒕 𝑩 𝒑
+ 𝒒 − 𝑪, 𝒏 + 𝑩 𝑷 𝒋 ,𝒌+𝟏

+ 𝒒

𝒋∈𝜽

 

For details and equations look into the paper 

interference 

at output 

𝑞 : number of flits 

𝚯𝑘 : pos. mappings of k packets 

to output ports 

k : num. of packets q flits form 
n : number of flits in packet 

C : single flit transmission time 

flit 

transmission 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 16  

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Worst-case Waiting Time 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑩 𝒑
+ 𝒒 ≤ 𝐪 ∗ 𝐂 + max

𝜽∈𝚯𝑘
 𝑩𝒋

𝒐𝒖𝒕 𝑩 𝒑
+ 𝒒 − 𝑪, 𝒏 + 𝑩 𝑷 𝒋 ,𝒌+𝟏

+ 𝒒

𝒋∈𝜽

 

For details and equations look into the paper 

waiting at next 

router 

(backpressure) 

𝑞 : number of flits 

𝚯𝑘 : pos. mappings of k packets 

to output ports 

k : num. of packets q flits form 
n : number of flits in packet 

C : single flit transmission time 

flit 

transmission 

interference 

at output 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 17  

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Worst-case Output Blocking 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑩𝒊
𝒐𝒖𝒕 𝚫𝒕, 𝒒 ≤ 𝚿 +  𝑪 ∗ χ + 𝑩 𝑷 𝒋 ,𝒌+𝟏

+ χ

𝒋∈𝑶𝒖𝒕𝒊

 

For details and equations look into the paper 

𝑄𝑡 

𝑞 : number of flits 

𝚯𝑘 : pos. mappings of k packets 

to output ports 

k : num. of packets q flits form 
n : number of flits in packet 

C : single flit transmission time 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 18  

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Worst-case Output Blocking 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑩𝒊
𝒐𝒖𝒕 𝚫𝒕, 𝒒 ≤ 𝚿 +  𝑪 ∗ χ + 𝑩 𝑷 𝒋 ,𝒌+𝟏

+ χ

𝒋∈𝑶𝒖𝒕𝒊

 

For details and equations look into the paper 

𝑄𝑡 

time until 

threshold reached 

𝑞 : number of flits 

𝚯𝑘 : pos. mappings of k packets 

to output ports 

k : num. of packets q flits form 
n : number of flits in packet 

C : single flit transmission time 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 19  

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Worst-case Output Blocking 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑩𝒊
𝒐𝒖𝒕 𝚫𝒕, 𝒒 ≤ 𝚿 +  𝑪 ∗ χ + 𝑩 𝑷 𝒋 ,𝒌+𝟏

+ χ

𝒋∈𝑶𝒖𝒕𝒊

 

For details and equations look into the paper 

𝑄𝑡 

transmission 

from other 

inputs 

𝑞 : number of flits 

𝚯𝑘 : pos. mappings of k packets 

to output ports 

k : num. of packets q flits form 
n : number of flits in packet 

C : single flit transmission time 

time until 

threshold reached 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 20  

Arbitration 

Output 1 
Input 1 

BE 

GT 

State 

norm 

Worst-case Output Blocking 

Input n 

BE 

GT 

Output n 

…
 

…
 

𝑩𝒊
𝒐𝒖𝒕 𝚫𝒕, 𝒒 ≤ 𝚿 +  𝑪 ∗ χ + 𝑩 𝑷 𝒋 ,𝒌+𝟏

+ χ

𝒋∈𝑶𝒖𝒕𝒊

 

For details and equations look into the paper 

𝑄𝑡 
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Minimum Accepted Throughput 

𝜷 𝒑
− 𝚫𝒕 ≥ min 𝚫𝒕,max 𝒎 𝑩 𝒑

+ max 𝟎,𝒎 − 𝑸𝒃 < 𝚫𝒕  

with 𝛥𝑡 ∈ ℕ+ and in multiple of flit transfer time 

𝑸𝒃 : buffer size 
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Minimum Accepted Throughput 

𝜷 𝒑
− 𝚫𝒕 ≥ min 𝚫𝒕,max 𝒎 𝑩 𝒑

+ max 𝟎,𝒎 − 𝑸𝒃 < 𝚫𝒕  

with 𝛥𝑡 ∈ ℕ+ and in multiple of flit transfer time 

buffer size flits 

can arrive 

immediately 

max number of flits 

that can be accepted 

based on 

blocking/waiting time 

not more than 

available time 

slots for more, account 

for waiting time  

𝑸𝒃 : buffer size 
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 OMNeT++ framework + HNOCs library 

 packet size: 4 flits 

 buffer size: 4 packets (16 flits) 

 router with 4 stage pipeline 

 3-4 VCs 

 8x8 mesh, XY-routing 

 

 two sets of experiments: 

 synthetic workload: general properties 

 benchmark based: performance improvement 

 

 

 

Evaluation (1) 
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 two GT streams 

 node (0,1) to (6,4) requesting 30% 

 node (0,2) to (5,4) requesting 20% 

 compared different approaches 

 RR2/RR3: round robin 

3VCs/4VCs (2-3 for BE, 1 for GT) 

 SP2/SP3: static priority 

3VCs/4VCs (2-3 for BE, 1 for GT) 

 BS: backsuction 

4VCs (2 for BE, 2 for GT) 

 FP2/FP3: proposed 

3VCs/4VCs (2-3 for BE, 1 for GT) 

threshold: 3 packets (75% buffer size) 

 

 

 

Evaluation (2) 
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 synthetic workload: general properties 

 based on average link loads 

 

 GT periodically sending burst of 4 packets 

 

 increasing BE load 

 

 check performance of BE 

 for highlighted BE node (0,3) to (4,4) 

 

 random destinations for all other nodes (BE traffic) 

 

 

 

Experiment 1 
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Observed Average BE Latency 

GT periodically sending burst of four packets 
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 benchmark based 

 traces from CHStone 

 extracted using Gem5: 

ARMv7, 32kB L1 

 accesses to network (e.g. memory access, 

communication, cache access) 

 for each trace on (0,3) 

 multiple (random) mappings of traces to other 

nodes 

 with random destinations for traffic 

 latency for highlighted BE node (0,3 to 4,4) 

 normalized to SP2 (over all runs) 

Experiment 2 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 32  

Normalized BE Latency 

16% lower 

average latency 
for higher num. of 

VCs better than RR 

similar performance 

as BS with less VCs 
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 2x2 NoC, 3-4 VCs, buffer size of 4 packets per VC 

 Virtex-6 LX760 FPGA, Xilinx ISE 14.6, standard settings 

 RR3: round robin, 4 VCs (3 for BE, 1 for GT), not safe 

 SP3: static priority, 4 VCs (3 for BE, 1 for GT) 

 DP: flag to change priority of GT, 4 VCs (3 for BE, 1 for GT) 

 BS: backsuction, 4VCs (2 for BE, 2 for GT) 

 FP2/FP3: proposed, 3VCs/4Ccs (2-3 for BE, 1 for GT) 

 

Synthesis Results – NoC 

Unit RR3 SP3 DP BS FP3 FP2 

#Registers 4368 4856 4868 4873 4875 3874 

#LUTs 5720 6301 6322 6338 6346 5132 

MHz 210 210 210 210 210 210 

+11.6% 

+0.7% -19.0% 
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 run-time configurable, dynamic prioritization of GT to exploit slack of 

safety-critical applications 

 based on actual blocking through BE 

 prioritize BE over GT when possible 

 increased performance for BE 

 up to 16% lower average latency compared to static prioritization 

 less than 1% hardware overhead compared to static prioritization 

 reduced hardware overhead compared to backsuction 

 while achieving similar performance benefits for BE 

 future work: 

 dependency of/between buffer, threshold and packet sizes 
 

Conclusion 

Thank you for your attention. 

Questions? 
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"7.4.2.3 Where an E/E/PE safety-related system is to implement both 

safety and non-safety functions, then all the hardware and software shall 

be treated as safety-related unless it can be shown that the 

implementation of the safety and non-safety functions is sufficiently 

independent (i.e. that the failure of any non-safety-related functions does 

not cause a dangerous failure of the safety-related functions). 

 

NOTE 1: Sufficient independence of implementation is established by showing that 

the probability of a dependent failure between the non-safety and safety-

related parts is sufficiently low in comparison with the highest safety integrity 

level associated with the safety functions involved.  

NOTE 2: Caution should be exercised if non-safety functions and safety functions 

are implemented in the same E/E/PE safety-related system. While this is allowed 

in the standard, it may lead to greater complexity and increase the difficulty in 

carrying out E/E/PE system safety lifecycle activities (for example design, 

validation, functional safety assessment and maintenance)."  

 

IEC 61508-2: 2010 
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 synthetic workload: general properties 

 based on average link loads 

 

 check for achieved throughput for GT 

 GT periodically sending burst of 4 packets 

 increasing BE load 

 

 check performance of BE 

 for highlighted BE node (0,3) to (4,4) 

 

 random destinations for all other nodes 

 

 

 

Experiment 1 
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Observed Achieved Throughput 

RR provides no 

throughput 

guarantees 

GT1 
(0,1)  (6,4) 

 

GT2  
(0,2)  (5,4) 



08. September 2017 | S. Tobuschat | IEEE SOCC 2017 | Providing Throughput Guarantees in Mixed-criticality Networks-on-Chip | Slide 43  

 based on analysis from [Rambo2015] 

 

 analysis performed iteratively 

 

 step 1: local analysis (at each router) 

 compute worst-case latency 𝑹𝒊
+ of flits based on 

critical instant (busy window) 

 derive output event models 

 step 2: global analysis 

 propagate event models downstream 

 go to step 1 if any event model has changed 

 otherwise, terminate 

 

Compositional Performance Analysis for NoCs 

Input Event Models 

Local  

Scheduling Analysis 

Output Event Models 

Convergence or  

Non-Schedulability ? 

No 

Environment Model 

Terminate 
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 worst-case end-to-end latency relies on response times 𝑹+ from local 

analyses 

 for each stream 

 analyze routers along its path and propagate event models downstream 

 formally analyze routers iteratively 

 

CPA Approach 

Router 1 Router 2 Sink 2 

Sink 1 

Source 

𝜂𝑖𝑛,𝑆1 

𝜂𝑖𝑛,𝑆2 

𝜂𝑜𝑢𝑡,𝑆1 

𝜂𝑜𝑢𝑡,𝑆2 

𝑅+ 𝑅+ 
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 output ports  processing resources 

 input ports  shared resources with 

mutually exclusive access 

 traffic stream  chain of tasks mapped 

to resources 

 flit transmission  task execution 

 flit arrival  task activation 

 input and output event models 

 

 

 

Mapping NoC Domain to Processor Resource Model 
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 variety of activation patterns used in 

practice 

e.g. periodic + spontaneous, dual 

cyclic, on change 

 timing verification can consider them 

through use of minimum distance 

functions 

 i.e. specification of the minimum 

distance between any n 

consecutive events 

 derived from specification or rate-

limiter 

 

Complex Activation Patterns 

n 

δ(n) 

2 3 4 5 6 

5ms 

10ms 

20ms 

2 events may come at 

once 

any 5 events are 

separated by at 

least 20 ms 


