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For the development of complex software systems, we often resort to component-based approaches that sep-

arate the different concerns, enhance verifiability and reusability, and for which microkernel-based imple-

mentations are a good fit to enforce these concepts. Composing such a system of several interacting software

components will, however, lead to complex precedence and blocking relations, which must be taken into

account when performing latency analysis. When modelling these systems by classical task graphs, some of

these effects are obfuscated and tend to render such an analysis either overly pessimistic or even optimistic.

We therefore firstly present a novel task (meta-)model that is more expressive and accurate w.r.t. these

(functional) precedence and mutual blocking relations. Secondly, we apply the busy-window approach and

formulate a modular response-time analysis on task-chain level suitable but not restricted to static-priority

scheduled systems. We show that the conjunction of both concepts allows the calculation of reasonably tight

latency bounds for scenarios not adequately covered by related work.

CCS Concepts: • Computer systems organization → Real-time systems; Embedded and cyber-physical

systems;

Additional Key Words and Phrases: response-time analysis, component-based software systems, service-

oriented architectures

ACM Reference format:

Johannes Schlatow and Rolf Ernst. 2017. Response-Time Analysis for Task Chains with Complex Precedence

and Blocking Relations. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 172 (September 2017), 19 pages.

https://doi.org/10.1145/3126505

1 INTRODUCTION

In the following pages, we address the response-time analysis (RTA) of complex software systems.
Those systems often resort to component-based approaches that not only benefit the development
process but also improve the isolation and therefore security, especially when combined with a
microkernel architecture. For instance, we notice a trend towards these architectures in the au-
tomotive domain in order to deal with the increasing complexity of advanced driver assistance
systems and automated driving functions. In particular, such architectures are already commer-
cially available for this domain (e.g., QNX Neutrino [2]). This design methodology is focused on
the communication between software components such that a single functionality is therefore im-
plemented by multiple interacting software components. More specifically, service-oriented ap-
proaches are often applied in which a single instance of a software component (microserver) may
be used in different contexts. When modelling these systems for timing analysis, we not only have
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Fig. 1. Sequence diagram for the microserver (S) example with two clients (A, B).

to consider precedence relations that result from the communication but also blocking relations
that originate from shared services. Moreover, from a functional perspective, latency constraints
are rather formulated for entire task chains than a single task.

As our core contribution, we therefore present an RTA on task-chain level which covers the
above scenarios and that is based on the busy-window approach for single static-priority scheduled
processors. For this purpose, we additionally introduce an abstract task model that expresses the
precedence and blocking relations that result from shared services and different communication
semantics. With this, we try to close the gap between very powerful but complex timing-aware
modelling tools – such as MARTE UML [3] – and very basic models, which simplify or neglect
these aspects but still receive a lot of attention in research.

The following section moves on to explain the scope of our work in greater detail by introduc-
ing a motivational example. In Section 3, we introduce and explain our model that particularly
addresses the complex precedence and blocking relations of our targeted software systems. Based
on this, we present our RTA for the latter in Section 4 before we summarise the related work in Sec-
tion 5. This is followed by an experimental evaluation in Section 6 and our conclusion in Section 7.

2 MOTIVATIONAL EXAMPLE

As introduced in the previous section, we particularly focus on the RTA for microkernel-based
systems. Those systems typically host multiple software components (processes) that implement
e.g., applications, device drivers or protocol stacks. Inter-component communication (or inter-
process communication (IPC)) enables these components to interact and eventually implement
the desired functionality of the (embedded) system. The explicit nature of this communication
exposes the functional chains, which can be subject to real-time constraints. It is therefore essential
to model and analyse this communication adequately in order to derive formal upper bounds on
the response times.

In microkernel-based (and also in component-based) systems, we distinguish between synchro-

nous calls and asynchronous messaging. While the former has blocking semantics, i.e., the caller
waits for the reply of the callee, the latter is non-blocking and hence allows concurrency. Synchro-
nous IPC gained popularity in L3/L4-based microkernels as it significantly increased the perfor-
mance of the microkernel approach [12]. Nevertheless, modern L4-based microkernels also provide
mechanisms to efficiently exchange asynchronous notifications (much like software interrupts)
[7].

Because of the mentioned popularity of synchronous IPC in microkernels, supposedly the most
commonly used scheme is the microserver scheme in which a component provides a service to
multiple other components via a remote procedure call (RPC) interface. Figure 1 depicts such a
microserver component that is synchronously called by two different client components. Although
the procedure call semantics of such an interface is a very natural abstraction, it comes with the
drawback of inter-dependent blocking effects if the server component is single-threaded.
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While the blocking effects in the simple microserver scenario are relatively easy to grasp, it is
also common to use more complex communication schemes between components by combining
synchronous calls with asynchronous notifications [8, Section 3.6]. Hence, the functional chains
will comprise different communication semantics and potentially hidden blocking effects that de-
pend on the scheduling of the underlying kernel. (In Section 3, we will introduce a concrete exam-
ple for such a scenario.) We therefore developed a systematic approach to model these effects as
an abstraction of the actual kernel implementation. Before we go into detail, let us first summarise
what priority-based scheduling policies can be found in prominent microkernels that we would
like to cover with our approach.

As soon as blocking comes into play, priority inversion is a well-known effect that must be taken
into consideration [22]. Priority inversion is typically mitigated by priority inheritance, which can
be found in microkernel implementations, e.g., as so-called time slice donation and helping in
NOVA [23] and Fiasco.OC, thread migration in Composite [15], and a similar mechanism in the
QNX Neutrino RTOS [2]. The underlying principle of these mechanisms is that a caller contributes
its scheduling context (i.e., its priority, time slice or thread) to the callee so that the latter inherits
the scheduling parameters of all waiting callers. It is our understanding that a timing model for
such systems should explicitly capture these effects (inversion and inheritance) and thereby gen-
eralise from the kernel implementation. In the scope of this paper, we develop a single-processor
timing model that achieves this. Although our analysis focuses on typical priority-based schedul-
ing found in modern microkernels, our modelling approach is applicable to multi-threaded systems
with explicit communication (e.g., service-oriented architectures) in general.

3 EFFECT-ORIENTED MODELLING

In this section, we develop a software timing model for software systems of communicating soft-
ware components which explicitly models blocking and precedence relations that result from the
communication semantics and scheduling features. Given sufficient knowledge about the operat-
ing system (OS), such a platform-specific timing model can be translated, e.g., from more general
sequence diagrams. Note that the scope of our timing model is a single processing resource and
we assume the system is free of deadlocks.

The software timing is typically modelled in task graphs, which express the precedence relations
(directed edges/arcs) and execution times of different tasks (vertices), and serves as a basis for
schedulability and response-time analysis. In particular, an outgoing arc in such a task graph means
that a new job of the target task is released every time a job of the source task finished. Annotating
the tasks with best-case and worst-case execution times then allows performing a conservative
timing analysis.

A task graph, or timing model in general, should describe precedence and concurrency in a
way that allows a timing analysis to accurately bound possible interference. In order to specify an
accurate task graph for a given software system, a deep understanding of the interacting software
components is therefore necessary. As shown in Figure 1, sequence diagrams are a natural way
to describe this inter-component communication and have already been used for extracting task
graphs by associating each activity with a task and transferring the already described precedence
relations. In particular, Henia et al. [9] have shown how synchronous calls and asynchronous
notifications are reflected in the task graph, which closes the semantic gap between both modelling
approaches.

Yet, if applied to our microserver example in Figure 1, the resulting task graph obfuscates the
(functional) event chains. This is illustrated by Figure 2, which depicts a naive translation of the
five activities into tasks and their precedence relations. The task τS represents the activity of the
shared microserver, which is activated by either of the client tasks τA1 or τB1. By only looking at
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Fig. 2. Naive task graph representation of Figure 1.

Fig. 3. Illustrative use case combining client-server and publisher-subscriber communication.

Fig. 4. Sequence diagram for Figure 3.

the task graph, however, we typically assume that both tasks, τA2 and τB2, are activated for every
activation of τS (fork semantics). This obfuscates the modelled software system in which the server
S only replies to the actual caller (not both). Although similar scenarios have been addressed by
Perathoner et al. [16] with structured/hierarchical event streams, this approach still requires back-
ground knowledge not explicitly expressed in the task graph. Alternatively, our key observation
is that the same scenario can be modelled as distinct task chains which, however, are subject to
mutual blocking at the server task(s). Thus, our modelling approach consists in preserving the
event chains while explicitly expressing effects such as blocking and priority inheritance. Before
proceeding to the description of our task model that we developed for this purpose, let us first
introduce a more elaborate use case that we will use for illustration.

3.1 Illustrative Use Case

Our illustrative use case is depicted in Figure 3 and comprises four single-threaded components.
The central component (publisher P) acts as a microserver and provides two services: the client
service and the subscriber service. The sequence diagram in Figure 4 details the inter-component
communication in this scenario: The client component C reports data to the publisher which no-
tifies the subscribers Sa and Sb of newly available data. The subscribers can then use the corre-
sponding service to query the actual data from the publisher P. The result are three synchronous
transactions that a) experience blocking at the publisher component and b) build two event chains
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(from the client to each subscriber). Furthermore, we observe that synchronous transactions en-
force a strict order of the activities due to the fact that the caller (e.g., C) waits for the return of the
callee (P) and can therefore not be re-entered before the entire transaction is completed. On the
other hand, we observe that asynchronous notifications do not result in a particular order between
the transactions. In our example, this means that the transactions of Sa and Sb may interfere with
each other and can also be interrupted by a new transaction of C (depending on the scheduling pol-
icy). In addition, the blocking at P results in the fact that its activities cannot preempt each other.

Let us capture these observations by formulating two different semantics of precedence relations
that we later formalise:

(1) Strict precedence results from synchronous/blocking communication that causes a fixed
order between the strictly preceding elements in any execution trace.

(2) Weak precedence results from asynchronous/non-blocking communication and causes a
sequential order between the preceding elements but allows an interleaved execution of
multiple sequences.

In this paper, we illustrate strict precedence with solid arrows and weak precedence with dashed
arrows.

3.2 Task Model

In this section, we generalise the observations motivated by the examples described above in order
to formulate a more expressive task model w.r.t. platform and OS aspects. Let us first highlight
what questions arise when performing an (accurate) schedulability and RTA in order to derive the
requirements for our model:

What scheduling policy is implemented? The most prominent scheduling policies for real-time
systems are static-priority (non-)preemptive scheduling (SP(N)P) and earliest deadline first (EDF).
The scheduling policy models the decision-making of the system’s scheduler that assigns the pro-
cessing time of the CPU(s) to the different threads. A RTA must be aware of this policy in order
to derive accurate bounds on the interference that a thread might experience from other threads.
The task model itself should be agnostic of the scheduling policy w.r.t. how scheduling decisions
are made but expose where/when these decisions are made.

What is the scheduled entity? In contrast to what a conventional task graph indicates, tasks are
seldom the entities scheduled by an operating system; or to put this in another way: the entities
scheduled by an OS seldom resemble a single task that only communicates or interacts with the
OS at the beginning and end of its execution. Our task model shall therefore explicitly describe to
which scheduled entity a task belongs. For this, we introduce the concept of scheduling contexts,
which are scheduled if there is work (i.e., a job of a task) ready to be executed within this context.

How do scheduling parameters propagate during communication? As explained earlier, synchro-
nous IPC is best combined with a (priority-)inheritance mechanism that prevents inversion effects.
From a more abstract perspective, we see this as a propagation/inheritance of scheduling parame-
ters. In our model, these parameters are attributed to the scheduling contexts. The mapping of tasks
to these scheduling contexts thus exposes with what scheduling parameters a task is executed.

When can components be re-entered? This question addresses the blocking relations already
pointed out in our use case. In summary, these result from the fact that a component not only
needs to wait for the return of a callee but must also reach a point in its code where it is ready to
receive calls or notifications on its own. As our task model shall include these effects, we introduce
the concept of execution contexts that resemble shared resources. In particular, a task (i.e., its job)
can only be executed if its execution context is not already used by another task.
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Fig. 5. Extended task model for our use case in Figure 4.

Having stated the key aspects that our model shall incorporate, we now present its formal
definition.

Definition 3.1. (task model)
The task model is a graph G = (Vt ,Ve ,Vs ,At ,Ae ,Es ) with

• three disjoint sets of vertices (set of tasksVt , set of execution contextsVe , set of scheduling
contexts Vs ) and

• three disjoint sets of arcs/edges: At , Ae , Es ,

which result from combining the following sub graphs:

(1) The directed acyclic task graph Gt = (Vt ,At ), which describes the workload to be sched-
uled and its precedence relations.

(2) The bipartite directed allocation graphGe = (Vt ,Ve ,Ae ), which describes the allocation of
execution contexts by tasks.

(3) The bipartite mapping graph Gs = (Vt ,Vs ,Es ), which describes the mapping of tasks to
scheduling contexts.

Figure 5 depicts the task model that results from the sequence diagram in Figure 4. The tasks
τ11, τ12, τ13 represent the transaction between C and P while τ21, τ22, τ23 and τ31, τ32, τ33
correspond to the transaction from Sa and Sb to P respectively. We elaborate on the semantics of
the sub graphs in the following sections and describe how these are represented in the figure. For
this, let indeg(v )/outdeg(v ) denote the in/out degree of a vertex v .

3.2.1 Semantics of the Task Graph Gt . The task graph is a directed graph which describes the
precedence relations between tasks and hence models how the workload that needs to be scheduled
on the processor is released (tasks and solid/dashed arrows in Figure 5). More precisely,At denotes
the set of arcs as ordered pairs of τ ∈ Vt such that for every (τi ,τj ) ∈ At , a job of a task τj is released
once a job of τi completed. In the scope of this paper, we restrict the task graph to be a “forest”, i.e.,
each connected component ofGt is tree shaped, such that∀τ ∈ Vt : indeg(τ ) ≤ 1. We observed that
most of our inter-component communication scenarios break down to those tree-shaped graphs.
However, this restriction needs to be relaxed as soon as synchronisation of multiple concurrent
paths is required (e.g., voter scenarios), which is outside the scope of this paper.
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Let us briefly clarify some terminology to which we later refer: The activation of a task denotes
the release of a job. A task is pending if there is at least one unprocessed job. We further define
(direct) successors/predecessors of a task.

Definition 3.2. The direct successors and predecessors of a task τi are defined as follows:

succi = {τj |∃(τi ,τj ) ∈ At } (1)

predi = {τj |∃(τj ,τi ) ∈ At } (2)

Furthermore, let succ∗i (pred∗i ) denote the set of directly or indirectly connected tasks τj , i.e., τj is
reachable from τi (or vice versa).

In Figure 5, the direct predecessor and successor of τ31 are τ12 and τ32 respectively. Moreover,
the (indirect) predecessors of τ31 are τ11 and τ12 whereas its successors are τ32 and τ33. Note
that τ12 has multiple direct successors while it is not possible for any task to have multiple direct
predecessors according to our definition.

3.2.2 Semantics of the Allocation Graph Ge . As indicated previously, the allocation graph de-
scribes how the execution of tasks blocks or releases a component. The set of arcs connect tasks
with execution contexts (or vice versa), i.e., Ae ⊆ Vt ×Ve ∪Ve ×Vt . An incoming arc (τ ,v ) ∈ Ae

to an execution context denotes that the execution context is allocated by the connected task and
not released on completion (e.g., between τ11 and C in Figure 5). An outgoing arc (v,τ ) ∈ Ae , on
the other hand, indicates the release of the execution context after the task’s execution finished
(e.g., between τ12 and P). We refer to both, allocation and release, as blocking. A task can only be
scheduled if its execution context is not blocked or its predecessor already allocated this context.
A valid allocation graph must adhere to the following conditions:

(1) A task can block multiple execution contexts.
(2) A task allocating an execution context must have exactly one direct successor that either

allocates or releases the same execution context, i.e., ∀τi ∈ Vt , (τi ,v ) ∈ Ae : ∃1τj ∈ succi :
(τj ,v ) ∈ Ae ∨ (v,τj ) ∈ Ae .

(3) A task allocating an execution context must have a successor that releases the same exe-
cution context, i.e., ∀τi ∈ Vt , (τi ,v ) ∈ Ae : ∃τj ∈ succ∗i : (v,τj ) ∈ Ae .

Based on Ge , we distinguish strict/weak precedence as follows:

Definition 3.3. (strict precedence) An arc (τi ,τj ) ∈ At is classified as strict precedence iff both
tasks block the same execution context, i.e., ∃v ∈ Ve : ∃{τi ,v} ∈ Ee ∧ ∃{τj ,v} ∈ Ee , where Ee de-
notes the set of undirected edges from Ae . Analogously to Definition 3.2, strpred∗i /strsucc∗i are
defined as the set of tasks τj for which there exist a path to/from τi with only strict precedence
arcs.

For instance, in Figure 5, strict precedence exists between τ11, τ12 and τ13. Note that τ12, repre-
senting a callee task in P , still allocates the execution contextC and additionally blocks P which is,
however, released upon the task’s completion. The context C is eventually released after τ13. On
the other hand, neither τ21 nor τ31 are strict successors as they do not block the same execution
context as τ12 (emphasised by the dashed arrows in Figure 5).

3.2.3 Semantics of the Mapping GraphGs . The edges in the mapping graph describe the unique
mapping of tasks to scheduling contexts and thereby indicate when and based on what scheduling
parameters a task is scheduled, i.e., ∀v ∈ Ve : deg(v ) = 1. We refer to the edges e ∈ Es as unordered
pairs {τ ,v} with τ ∈ Vt and v ∈ Vs . A task which is mapped to a different scheduling context than
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its direct predecessor must typically wait for an invocation of the scheduler and the decision to be
scheduled. In Figure 5, we have assumed an inheritance scheme, which results in the callee tasks
being mapped to the same scheduling context as the caller.

Note that a subset of our model can be expressed and analysed with related work, i.e., MAST [5].
Taking Figure 5 as an example, tasks relate to operations in MAST, scheduling contexts to sched-
uling servers and execution contexts to shared resources. In MAST, operations can lock/unlock a
shared resource, however, a lock must not be hold across scheduling server boundaries This is in
conflict with τ12, which holds the lock of C when activating τ31 and τ21.

3.3 Task Chains

The next part of this paper will present our RTA for task chains based on the model introduced
above. Before proceeding to this part, let us briefly summarise how we define the task chains.
While our task model specifies the entire workload of a single processor, the task chains specify
the transactions for which the response-times shall be calculated.

Definition 3.4. (task chain) A task chain Ta is a sequence of directly connected tasks (on the
same processor). For a task-chain response-time analysis, task chains can be specified arbitrarily
as long as each task belongs to at least one chain.

Note that this definition also includes specifying a single task as a task chain. However, in order
to benefit the most from our analysis approach, we typically specify a task chain for every sink
(i.e., leaf in the task graph) such that it contains all predecessors (and the sink itself). In Figure 5,
we thus find the following task chains: chain A from τ11 to τ13, chain B from τ11 to τ23, and chain
C from τ11 to τ33.

4 RESPONSE-TIME ANALYSIS

In the following pages, we present our RTA which is based upon our modelling approach intro-
duced above. Note that we assume static-priority (preemptive) scheduling. In order to perform this
analysis, we annotate the tasks with best-case and worst-case execution times, and the scheduling
contexts with a priority. Hence, let Li denote the set of lower-priority, and Hi the higher and
equal-priority tasks of τi . For readability, we also define the set of higher priority tasks for each
task chain as follows:

Definition 4.1. H c
a = {τj |∃τi ∈ Ta : τj ∈ Hi } denotes the set of higher or equal-priority tasks for

task chain a.

For our RTA, we further assume the activation patterns for our input tasks (roots of the task
graph) are given by a pair of arrival curves η+ (Δt )/η− (Δt ) specifying an upper/lower bound on
the number of events that can arrive within any half-open time interval [t , t + Δt ). Alternatively,
the arrival curves can be expressed by their pseudo-inverse functions δ− (n)/δ+ (n) that specify the
minimum/maximum time interval between any n consecutive events. We also base our analysis on
the generalised busy-window technique [21] in order to calculate the busy window for every task
chain on a processor (task-chain busy window), as we will detail in the next section. This provides
us with an upper bound of the time the processor may take from the arrival of a particular input
event to the production of a corresponding output event, i.e., the local response time. Note that
this local RTA is an essential building block of a compositional performance analysis (CPA), which
naturally deals with the analysis of distributed systems but has been shown to be overly pessimistic
on the local response-times for event chains [19].
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4.1 Task-Chain Busy Window

The task-chain busy window is the maximum time the processor may be busy processing the ac-
tivations of a particular task chain. In general, a busy window must consider the following aspect:

(1) Core execution time is the time that is required to execute all parts of the task chain in
isolation without any interference or blocking. This is a lower bound on the busy time.

(2) Deferred load/blocking is the workload or blocking time resulting from previous activations
of other tasks (e.g., lower-priority blocking). It results from the fact that a busy window
does not necessarily start when the processor is idle.

(3) Incoming activations are the cause of interference from arriving events within the busy
window.

For this purpose, we need conservative and preferably tight upper bounds for the interference on
a certain task chain. In the remainder of this section, we will formulate these bounds based on the
model introduced earlier together with the arrival curves. Note that a tight timing analysis must
incorporate assumptions about the (OS) implementation. However, changes of these assumptions
shall not invalidate the entire approach. We therefore formulate the task-chain busy window as a
collection of independently applicable bounds, which keeps this approach more modular.

Similar to [19], we define the q-event task-chain busy window for the chain under analysis
(CUA) Ta as follows:

Definition 4.2. For any task chain Ta , the q-event task-chain busy window Bc
a (q) denotes the

maximum time a processor may be busy processing q-events of Ta , i.e., of all τi ∈ Ta . Furthermore,
let Qa denote the maximum q for which Bc

a is defined such that ∀q > Qa : δ−a (q) > Bc
a (Qa ).

Note that the q-event busy window ends with the completion of the q-th activation of the last
task in the CUA.

Lemma 4.3. The maximum task-chain busy window, Bc
a (Qa ), is the longest time the processor may

take to re-transition into a state in which there are no pending activations of any τi ∈ Ta .

Proof. We prove this by contradiction. Let us assume, there is a pending task τp ∈ Ta after
Bc

a (Qa ). From Definition 4.2 we infer that the last task of the CUA executed Qa times. Due to
the precedence relations in the chain, all other tasks must have executed at least Qa times. From
the assumption, we infer that τp has a predecessor who executed q > Qa times. Applying the
precedence relations, we know that the first task of the CUA also executed at least q times. Hence,
this can only occur if δ−a (q) ≤ Bc

a (Qa ), which contradicts the definition of Qa . �

Based on this, we can calculate the worst-case response time of the CUA as follows:

Corollary 4.4. As proved by Schliecker et al. [21], the worst-case response time is found among

all q-event busy windows as follows:

R+a = max
q

(Bc
a (q) − δ−a (q)) (3)

We would like to emphasise these definitions do not guarantee that there are no pending ac-
tivations of any τi � Ta after Bc

a (Qa ), potentially leading to deferred load. We approach this by
systematically considering and bounding the different types of interference experienced by the
CUA.

In order to calculate the Bc
a (q), we distinguish between two semantics of bounding functions:

event-count bounds and workload bounds. The former bound the number of activation events
that can be seen for a certain task within the q-event task-chain busy window of the CUA. The
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Fig. 6. Exemplary busy window for the chain under analysis CUA (green) with arriving higher-priority

interference/blockers (Ha /Hb , orange), deferred interference/blockers (Hd /Bd , blue), indirect blockers (Bi ,

red), preempted execution (white), and blocked execution (hatched).

latter bound the workload that is induced by a certain task (within the particular busy window).
Our framework for calculating the busy windows is based on using multiple of the above bounds
under the following assumptions:

Definition 4.5. No event-count/workload bound used for calculating a busy window must be
mutually exclusive with another bound, i.e., the selection of a particular bound must not invalidate
another bound.

Definition 4.6. The event-count/workload bounds may depend on each others results, i.e., a
bounding function may rely on and use the result of another bound.

Hence, we note that Definition 4.5 may significantly restrict the tightness of the bounds. Nev-
ertheless, mutual exclusive bounds can still be applied in terms of a candidate search, which is,
however, not in the scope of this paper. We also conclude that Definition 4.6 basically creates a
fixed-point problem that requires propagating the intermediate results until the bounds converge.

In order to formulate such bounds, we further distinguish between two types of interference (cf.
Figure 6):

Definition 4.7. The interference experienced by the chain under analysis is either accounted for
as arriving or deferred interference. For arriving interference, we assume that there is no pending
activation/workload at the start of the chain’s busy window. On the other hand, deferred interfer-
ence is based on pending activations/workload that may result from a previous busy window and
is independent of the arrival curves.

We therefore must ensure that the arriving interference finishes within theq-event busy window
of the CUA by including transitive interference effects.

Definition 4.8. Any bounding function must ensure that it safely bounds the interference that
either the CUA or any arriving interferers may experience during the q-event busy window.

Before we elaborate on the particular bounds that we can derive from our model in the following
sections, let us state our basic formula for Bc

a (q).
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Theorem 4.9. The q-event task-chain busy window is computed as follows:

∀q ∈ [1,Qa] : Bc
a (q) =

∑
τi ∈Vt

min
k

θ (k )
a,i (q) (4)

where θ (k )
a,i (q) denotes the k-th safe upper bound on the processing time (workload) required by τi

while processing q events of Ta .

Proof. Every bounding function safely bounds the interference from a particular task during
the q-event busy window, respecting all possible interference scenarios (Definition 4.7 and Defini-
tion 4.8). By Definition 4.5, each bounding function must be valid at every time such that selecting
the minimum is a safe operation even if we allow the bounds to depend on each others results
(Definition 4.6). �

4.2 Workload Bounds

In the scope of this paper, we formulate a single workload bound per task that we calculate from
an upper bound on the task’s activations within a q-event task-chain busy window.

Definition 4.10. The workload from a task τi within the q-event busy window of task chain Ta
is conservatively bounded by

θ (1)
a,i (q) = na,i (q) ·C+i (5)

where na,i (q) denotes the safe upper bound for the number of activations of τi within the q-event
busy window of Ta .

Note that other and more elaborate workload bounds, e.g., by considering varying execution
times [25], can be applied but are outside the scope of this paper. We therefore move on to detail
how na,i (q) can be bounded by event-count bounds.

4.3 Event-Count Bounds

In this section, we formulate lower and upper bounds on the number of activations that must be
included in a q-event busy window of a task chain. First, let us have a look at the lower event-count
bounds, which result from the fact that in any q-event busy window, every task τi ∈ Ta must at
least execute q times.

Definition 4.11. The lower event-count bound for a task τi within the q-event busy window of
task chain Ta is given by ζa,i (q) and defined as follows:

∀τi ∈ Ta : ζa,i (q) = q (6)

∀τi � Ta : ζa,i (q) = 0 (7)

For the upper event-count bounds, we need to bound the interference that may be experienced
when executing theq activations of the CUA. Note that every task in τi ∈ Vt may interfere with our
CUA in the worst case, including the τj ∈ Ta (self-interference). In the remainder of this section,
we thus introduce several upper event-count bounds such that we can calculate na,i (q) as follows:

Theorem 4.12. The number of executions of τi in the q-event busy window of Ta is not greater than

na,i (q) = max
(
ζa,i (q),min

k
ϑ (k )

a,i (q)
)

(8)

where ϑ (k )
a,i (q) denotes the k-th upper event-count bound for task τi in the q-event busy window of Ta .
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Proof. Similar to Theorem 4.9, we only rely on the validity of the lower and upper event-count
bounds ζa,i (q) and ϑa,i (q) respectively. Due to Definition 4.5, every bound must be valid on its
own, which allows us to apply themin andmax operators. �

We conservatively start with an unbounded upper event-count function for every task.

Definition 4.13. The upper event-count bounds are initialised with the unbounded function

ϑ (0)
a,i (q):

∀τi : ϑ (0)
a,i (q) = ∞ (9)

Of course, this function alone will not allow us to compute a bounded busy window but ensures
that every task will be considered unless it can be safely improved or excluded. For this purpose,
we start with applying the arrival curves.

Theorem 4.14. For every task chain other than the CUA, the interference is bounded by its upper

arrival curve.

∀b � a,τi ∈ Tb : ϑ (1)
a,i (q) = max(η+b (Ba (q)), 1) (10)

Proof. The arrival curve is an upper bound for the number of activations of Tb that arrive
within the busy window. Due to Definition 4.8, the busy window starts with no pending activations
of τi ∈ Tb and any additional interferers or blockers that delay the execution of τi must also be
included in the busy window. Hence, any situation that may lead to a backlog worse than the
arrival curve is part of the busy window and there are no pending activations of τi at the end of
the busy window. �

By definition of the q-event busy window, we can further limit the activations of the last task
of the CUA and any of its strict predecessors.

Corollary 4.15. The last task τi of the CUA (Ta) never executes more than q times.

ϑ (2)
a,i (q) = q (11)

The same holds for the strict predecessors of τi in the CUA.

∀τj ∈ strpred∗i ∩ Ta : ϑ (2)
a, j (q) = q (12)

Let us now focus on the precedence relations. The authors of [19] have shown that every in-
terfering task τi � Ta can execute at most once if it has a lower-priority predecessor τj which can
never execute during the busy window (cf. Hd in Figure 6). As this bases on the fact that two ex-
ecutions of τi are always separated by an execution of τj , we can also apply this in case of strict
precedence between those tasks in which case it is applicable in both directions. Note that this
changes τi into a deferred interferer so that it may leave pending activation after the busy window
(cf. Hd in Figure 6). Nonetheless, this bound will still hold independent of any pending or arriving
activations.

Corollary 4.16. A task can execute at most once if there is a lower-priority or strict predecessor

that cannot execute at all within the busy window of the CUA.

∀τi � Si,τj ∈ Si : ϑ (3)
a,i (q) =

{
1 if na, j (q) = 0
∞ else

(13)

with Si = {τj |τj ∈ Li ∩ pred∗i ∨ τj ∈ strpred∗i ∪ strsucc∗i }.

The formulated bounds for the precedence relations come into effect when we consider the
priorities and exclude lower-priority tasks from the busy window that can never act as blockers.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 172. Publication date: September 2017.



Response-Time Analysis for Task Chains 172:13

More precisely, blocking occurs when there is a task τi that shares an execution context with the
CUA such that, in the worst case, the latter must wait until the execution context is released. Note
that we also need to consider indirect (transitive) blocking (cf. Bi in Figure 6), which has most
recently been described in [6]. Transitive blocking occurs when there is a task τj which blocks
another execution context from τi and which is no strict predecessor or successor of the latter.
This is due to the fact that a strict predecessor (successor) can only be an indirect blocker if it
does not block the CUA directly, which means that any execution context shared with the CUA is
allocated after (released before) it.

We therefore define the set of tasks that are potentially required to execute within the busy-
window of Ta although they run on a lower priority. We do this conservatively by assuming that
every higher-priority task may be considered as arriving interferer. Hence, we include every lower-
priority task if it may block the CUA, a higher-priority task, or another lower-priority blocker. Note
that blocking of higher-priority tasks can only occur if there is no precedence relation (directly or
indirectly) between the tasks. Otherwise, the higher-priority task is deferred and we do not need
to consider the blocking (cf. Corollary 4.16).

Definition 4.17. The possible lower-priority blockers are found among all tasks that block an
execution context which is also blocked by the CUA, or by another possible blocker or higher-
priority task that is not a predecessor or successor.

Ba = {τj � H c
a ∪ Ta |Ve (τj ) ∩Ve (Ta ) � ∅ (14)

∨∃τi ∈ Ba ∪H c
a : V (τi ) ∩V (τj ) � ∅ ∧ τj � pred∗i ∪ succ∗i }

with Ve (X ) = {e ∈ Ve |∃τi ∈ X ∧ {τi , e} ∈ Ee }.

In the scope of this paper, we do not further restrict the interference from these lower-priority
blockers, e.g., by considering mutually exclusive blockers or single-time blocking. Although this
can be pessimistic in certain scenarios, our evaluation did not show overly pessimistic results (cf.
Section 6). Instead, we thereby avoid several pitfalls that arise from the fact that we can construct
scenarios in which the CUA might be blocked multiple times by the same lower-priority blocker
(cf. Hb2 in Figure 6).

The remaining, i.e., non-blocking, lower-priority tasks can now be excluded if they do not have
a lower-priority task that might execute during the busy window of Ta .

Theorem 4.18. For static-priority scheduling, all lower-priority tasks τi that are neither part of the

CUA nor a possible lower-priority blocker will never be scheduled during the busy window of the CUA

unless there is an even lower-priority task τj that may execute in this busy window.

∀τi � (H c
a ∪ Ta ∪ Ba ) :

ϑ (4)
a,i (q) =

⎧⎪⎪⎨
⎪⎪
⎩

0 if Li = ∅
0 if �τj ∈ Li : na,i (q) > 0
∞ else

(15)

Proof. At first, the bound is not applied for tasks that are part of the CUA, a higher-priority
interferer or a (direct or indirect) lower-priority blocker. Hence, the remaining tasks τi can only
execute within the busy window of the CUA if they interfere with any other task in the busy
window. As we excluded blocking interference, this can only happen if there is a task on a lower-
priority than τi whose execution cannot be safely excluded from the busy window. �

Note that Equation (15) can be improved (and simplified) if a donation/helping mechanism as
in [23] is applied such that a lower-priority blocker will never see any lower-priority interference
if a higher-priority task is waiting for it.
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5 RELATED WORK

There exists a large body on research regarding timing/response-time analysis in general. In this
section, we provide a brief overview of related work in three different subdomains: modelling for
timing analysis, timing analysis considering precedence relations, and timing analysis considering
blocking/shared resources.

Stigge [24] intensively studied schedulability analysis for various (graph-based) task models of
different expressiveness. More specifically, he proposed the Digraph Real-Time task model which
already increases the expressiveness of existing models but does not consider blocking relations
due to locking, semaphores or shared resources. MAST [1] is based on a model which originated
from the very expressive but also complex MARTE UML [3] and focuses on the analysis of object-
oriented real-time systems. This model is quite similar to our approach and particularly includes
shared resources but restricts these to be unlocked within the same segment, i.e., critical sections
must not cross scheduling servers.

MAST implements various offset-based analyses, such as [13], which exploit precedence rela-
tions to improve the RTA by formulating correlations between activations (inputs) that would
otherwise be assumed independent/uncorrelated. For instance, such correlations have also been
formulated between parallel paths with a common timing reference [17] and for the sequential
character of output events from a single scheduler [10, 18]. All these can be considered orthogonal
to our approach as they focus on reintroducing correlations that are hidden in the scope of a lo-
cal timing analysis. Kurtin et al. [11] exploited precedence relations in streaming applications by
augmenting the RTA with dataflow analysis and thereby cover cyclic dependencies but no block-
ing. We believe that this approach can be combined with our methods. Schlatow and Ernst [19]
applied the busy-window concept to entire task chains and showed a substantial improvement
over a compositional performance analysis (CPA), which computes the chain’s response time by
summing up the response times of all tasks separately. However, this work only allows strictly
sequential chains (no forks/joins) and strictly synchronous/asynchronous communication. Never-
theless, this work demonstrated that the task-chain busy-window approach substantially increases
the tightness and scalability of the CPA. Schliecker and Ernst [20] presented a path analysis that
improves the latency bounds for global task chains by addressing their self-interference in case of
pipelined behaviour. However, this still relies on performing a compositional performance analysis
in advance, which tends to be overly pessimistic or not convergent on a single processing resource
with dependent tasks.

When it comes to timing analysis under blocking effects, the large body of research consider-
ing shared resources in multiprocessor systems appears to be related to our work. However, our
model addresses blocking relations due to local resource sharing, which is typically not considered.
Negrean and Ernst [14] considered a nested locking of global and local resources that induced addi-
tional blocking on local tasks. The crucial effects of nested locks and the resulting transitive block-
ing have most recently been studied by Biondi et al. [6]. Nevertheless, to the best of our knowledge
the existing literature always assumes that shared resources are released upon task/job comple-
tion (or segments in case of MAST), which is a reasonable assumption in the context of shared
resources in multiprocessors systems but only of limited applicability in our scenario.

6 EVALUATION

For the evaluation, we implemented our analysis in Python as an extension to pyCPA [4] based
on a constraint-programming approach in order to address the propagation of the na,i values. We
formulate our models as GraphML descriptions that can be fed into this analysis extension. Note
that our pragmatic implementation has not been optimised for performance.
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Table 1. Worst-case Response-Time Results Chains A, B and C (As Defined

in Section 3.3) for All Priority Assignments in Our Illustrative Use Case

(CPA Results in Parentheses).

Priority of ctx_a/ctx_b/ctx_c (H = Hiдh,M = Medium,L = Low)
H/M/L H/L/M M/H/L M/L/H L/H/M L/M/H

C 70 (90) 70 (90) 70 (180) 70 (180) 90 (270) 90 (270)
A 70 (240) 90 (330) 70 (210) 90 (390) 90 (270) 90 (360)
B 90 (330) 70 (240) 90 (390) 70 (210) 90 (360) 90 (270)

Unfortunately, we cannot refer to any reference benchmarks due to the novelty of our model.
Thus, we first have a look at our use case introduced in Section 3.1, to show how our analysis
covers the targeted scenarios. In addition, we compare our approach with a use case from the
related work and run some synthetic but characteristic benchmarks to test the scalability.

6.1 Illustrative Use Case

We first performed our RTA on the illustrative use case shown in Figure 5. For this, we set the
best-case (worst-case) execution times of each task to 5 (10) time units and chose a long activation
period of 1000 time units to model a sporadic activation without bursts.

In particular, we performed the RTA for single tasks and the full chains (cf. Section 3.3), and
compared both with the CPA results from the unmodified pyCPA for all six priority permutations.
For the single-task analysis, both the CPA and our approach provide the same results for most
tasks. However, for the tasks allocating P the CPA provides either optimistic results because the
blocking is not accounted or overly pessimistic results if we add the longest response-time of any
lower-priority blocker.

The results for the full-chain analysis are shown in Table 1. On the one hand, although omitting
the blocking effects, the CPA results are overly pessimistic due to the fact that it sums up the
worst-case response times of all tasks in a chain. On the other hand, our results are not tight either
as we can see from the results for chain C in the first priority assignment. This chain has three
tasks (τ11, τ12, τ13) and therefore a (worst-case) core execution time of 30. Our analysis accounted
for a single interference from tasks τ21, τ22, τ23 and τ32 because the latter was considered as a
lower-priority blocker and the others as interferers of this blocker. In the general case, it is correct
to account for the blocking from τ32 despite the precedence relations between the chains since the
blocking might originate from a previous activation. However, in this particular scenario, τ32 will
also act as a blocker for τ22 so that their execution can be considered mutually exclusive within
the busy window ofC . Note that we have not included this aspect in the scope of this paper, but it
can be added to our analysis approach in terms of a candidate search. As mentioned in Section 3.2,
despite all similarities, MAST is not applicable to this use case.

6.2 Comparison with Related Work

In this section, we compare our analysis with related work on the analysis of task-chain response
times. We therefore model the park assist use case introduced in [19]. This use case comprises
seven software components that build two independent task chains that represent two different
functional chains: a park assist and lane assist function. Note that this use case only covers strict
precedence relations and excludes blocking relations between task chains.

Figure 7 depicts our model of this unmodified use case. The related work provides a basic and a
refined analysis for this scenario. Using the same best-case/worst-case execution times, we get the
same task-chain response-time results as the basic analysis for all 5040 possible priority assign-
ments whereas the refined analysis still provides better results for chain P in 1332 assignments and
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Fig. 7. Model representation of the park assist (tasks P0-P4) and lane assist (tasks L0-L6) use case in [19].

Table 2. Worst-Case Response-Time Results and

Core Execution Times (CET) for the Modified

Park Assist Use Case with Blocking and Priority

Inheritance (MAST Results in Parentheses)

H/L L/H CET
P 36 (45) 76 (85) 26
L 76 (85) 60 (75) 50

for chain L in 672 assignments because it considers mutual exclusion between different segments
of the interfering chains. As mentioned before, this can only be covered by our approach if we
combine it with a candidate search.

This use case only becomes more interesting for our approach if we add blocking between the
two, otherwise independent, task chains. We easily achieve this by letting L1 and P2 share the
same execution context (OR2). By also assuming priority inheritance for the IPC, we render this
use case analysable with MAST. The latter results in all tasks of each chain to be mapped to the
same scheduling context. The resulting model thus comprises only two scheduling contexts and
therefore only two different priority assignments. The results of our analysis are shown in Table 2,
which also shows the core execution time of each chain and the results from an offset-based
analysis with MAST (in parentheses). This illustrates that the higher priority chain experiences
an additional blocking delay equal to the worst-case execution time of L1/P2 respectively whereas
MAST’s results are more pessimistic.

We also tried to analyse this use case with the unmodified pyCPA. While we expected opti-
mistic results because it does not consider blocking, even in this simple scenario, it was not able
to converge and return any results although the processor load was only at 65%.

6.3 Synthetic Benchmarks

As previously mentioned, we are not aware of any reference benchmarks which comprise the
kind of precedence and blocking relations that we address with this work. Although there ex-
ist benchmark suites covering quite similar scenarios, such as E3S1, they do not describe the

1http://ziyang.eecs.umich.edu/dickrp/e3s/.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 172. Publication date: September 2017.

http://ziyang.eecs.umich.edu/dickrp/e3s/


Response-Time Analysis for Task Chains 172:17

Fig. 8. Percentage of analysable models for varying system parameters and processor load.

software system to the level of detail at which we are aiming. In order to evaluate our analysis
in a wider range of scenarios, we tried to parametrise our target systems such that we can ran-
domly generate models with different characteristics. As our main parameters, we chose chain
length, number of chains, maximum number of blockers, and call depth, which is the maximum
number of nested allocations of execution contexts. Note that we restricted the models to sequen-
tial task chains without branches as these had put to many restrictions on the combination of
the other parameters. For the resulting task chains, we choose a periodic activation pattern with
a jitter of 10%. For each model we randomly generated worst-case execution times to generate
different levels of processor utilisation/load up to almost 100%. We randomly selected different
priority assignments and performed our RTA. As we did not impose any deadline constraints, we
only test the convergence and scalability of the analysis. More precisely, our assumption is that a
perfectly tight and scalable analysis will be able to calculate response times even for a fully loaded
system. However, as soon as over approximation comes into account, the analysis will not be able
to converge (i.e., find a Qa ) in a reasonable number of iterations.

The results are depicted in Figure 8, which shows the percentage of priority assignments that
could be successfully analysed. In the remaining cases, the busy-window grew too large (we
aborted the analysis at Qa = 100). We observe that most of the systems were considered schedu-
lable up to 98% load, which indicates that our analysis cannot be overly pessimistic. Moreover, we
notice that an increasing number of chains and an increasing number of blockers has a significant
impact on the analysability for the systems with 99% and 99.9% load. On the other hand, there is
no such correlation for the chain length or the call depth.

7 CONCLUSION

In this paper, we addressed the RTA for software systems that build upon communicating threads
or software components such as microkernel-based systems. When modelling these systems for
timing analysis, those systems not only result in tasks with precedence relations but also with
mutual blocking effects if the software components can only be re-entered at certain points in
their execution. For these scenarios, we presented a novel task model that explicitly describes the
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precedence relations and the mutual blocking between tasks as well as where scheduling decisions
are made by the operating system (OS). Given sufficient knowledge about the OS, we can easily
translate sequence diagrams – which naturally describe inter-component communication – into
platform-specific task graphs in order to perform a RTA. For this RTA, we proposed a framework
that is applied as a single-processor analysis in the scope of a CPA. This framework deals with an
arbitrary number of independent workload or event-count bounds on the interference that can be
experienced by the chain under analysis. In the scope of this paper, we focused on formulating con-
servative event-count bounds for static-priority scheduling that cover all the tricky aspects such as
priority inversion and deferred activations. This represents a significant improvement over state-
of-the-art techniques as these aspects cannot be neglected in realistic systems in general, especially
because they may lead to hard-to-catch timing errors. Our experimental evaluation additionally
showed that our analysis can already provide reasonably tight results although our event-count
bounds include pessimistic assumptions.
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