
This is an author produced version of :

Article:



Towards model-based integration of
component-based automotive software systems

Johannes Schlatow, Mischa Möstl
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Abstract—The increasing complexity of automotive software
systems and the desire for more frequent software and even
feature updates require new approaches to the design, integration
and testing of these systems. Ideally, those approaches enable an
in-field updatability of automotive software systems that provides
the same degree of safety guarantees as the traditionally lab-
based deployment. In this paper, we present a layered modelling
approach that formalises the integration procedure of automotive
software systems using graph-based models and formal analyses.

I. INTRODUCTION

The current trend towards autonomous driving technolo-
gies gradually pushes the complexity of automotive soft-
ware systems. In particular, the development of advanced
driver assistance systems (ADAS) not only requires more
sophisticated and complex sensors for environment perception
but also the application of state-of-the-art software design
methodologies that help to mitigate side effects and to reduce
interdependencies. In other words, separation of concerns is
a major objective when it comes to the design of complex
software. This results in a more interface-oriented approach
which ideally reduces the scope that must be checked for side
effects. We can observe this trend as a growing interest in
component-based software and service-oriented architectures
in the automotive domain [1], [2]. In the general case, however,
non-functional requirements – such as real-time, safety or
security – cannot be verified on an interface-/service-oriented
basis but instead require an in-depth understanding of the
entire system on different layers. This is due to the fact
that multiple (software) components execute on the same
platform (operating system/system on chip/processor/etc.) and
may therefore influence each other not only via software
interfaces but also on other system layers. For instance a
flawed device driver may easily impede the timing of the
application software. This becomes increasingly relevant when
we look at the trend towards high-performance platforms such
as the zFAS1 from Audi or the Drive PX2 from NVIDIA.

On the layer of the operating system, which connects the
application software with the hardware, microkernels are a
well-known concept that provides a tamper-proof isolation
of software components, which bases on fine-grained and
flexible access control. In our point of view, this closes the
gap between rather static systems as in OSEK/AUTOSAR,

and very dynamic and open systems such as Linux. The
fine-grained control of privileges (at run time) makes the
interfaces explicit, and enables containment of software errors
and security leaks. We consider these systems as having a
fixed configuration that, although changeable at run time,
must only be modified in a controlled manner. The challenge
in this regard consists in finding a composition of software
components (and their privileges) that implements the desired
functionality and fulfils all given requirements.

In the scope of the collaborative research project Controlling
Concurrent Change (CCC)3 funded by the German Research
Foundation (DFG), we develop model- and component-based
methods for solving the integration and update problem of
critical embedded systems such as automotive vehicles. Here,
we focus on the integration problem which consists in finding
new system configurations rather than modifying/updating
only particular parts. Note that, from a modelling perspec-
tive, this is a prerequisite for considering later changes as a
complete system understanding must be available to safely
exclude any side-effects. For this purpose, let us have a look
at the traditional V-model development process. In this model,
the left branch of the V represents the top-down approach
that gradually refines the design and implementation from
system layer over subsystems to single software components
and modules. The right branch of the V then models the
corresponding integration and testing on the different layers in
a bottom-up approach. Our ultimate objective is to automate
the integration phase of this process, which will enable in-
field updates as the vehicle can thereby perform the essential
integration steps by itself. Note that this model, however, only
illustrates the very abstract nature of the development process
without design iterations or product variants. We also observe
that this process typically tailors the design to a particular
(hardware) platform which is chosen in the beginning. In order
to automate the integration phase, we have to assume some
modifications to this process: We assume the design phase
is platform-independent and results in a library of reusable
and tested hardware/software components with clearly defined
interfaces. The integration phase then starts with combining
these components to achieve the desired functionality on the

1http://audiblog.co.uk/featured-2/zfas-the-brain-behind/
2http://www.nvidia.com/object/drive-px.html
3http://ccc-project.org
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target platform. This phase is formalised and augmented with
(formal) verification techniques based on additional model in-
formation extracted from the design phase. As a result, testing
may only be required as a means to validate the adherence
of a component’s implementation to its model. In this regard,
the automated integration must replace design decisions on the
upper layers which are often based on experience and expert
knowledge. In this paper, we present our top-down approach
which bases on formal models for the different layers and their
composition. More precisely, we use graph-based models for
each layer and mapping relations between the layers.

The following section summarises the automotive applica-
tion scenario for which we develop and evaluate these methods
in CCC. In Section III, we present our meta-model for the au-
tomated integration of these applications as it evolved from our
experience within CCC and briefly summarise some practical
implementation details in Section IV. Furthermore, we will
elaborate in Section V on the challenges and opportunities this
approach involves, before we have a look at the related work
in Section VI and finally conclude our findings in Section VII.

II. APPLICATION SCENARIO

In the CCC project, the TU Braunschweig Institute of
Control Engineering contributes two experimental vehicles
which act as demonstrators for the developed run-time en-
vironment: A 1:5 model vehicle (Modular X-by-Wire, MAX)
and a full-scale x-by-wire vehicle (MOBILE). Both vehicles
currently act as platforms for research in E/E-systems and
vehicle dynamics. MOBILE features four close-to-wheel elec-
tric drives (4 × 100 kW), individually steerable wheels, and
electro-mechanic brakes [3]. A similar actuator topology has
been implemented for MAX. Both vehicles feature a FlexRay
communication backbone for inter-ECU communication and
additional CAN bus interfaces, which are, e.g., used for
communication with sensors and actuators in the full-scale
vehicle. The implemented applications on the vehicles can be
divided into control applications and automated driving func-
tions based on environment perception algorithms. In order
to demonstrate the applicability of the CCC approach, several
updatable applications have been selected for implementation
on the research vehicles:

A cruise-control application serves as a basic example with
soft real-time requirements, considering the rather inert lateral
dynamics of the research vehicle. Three different variants are
implemented. Besides a basic variant, two extensions feature
a speed-limit detection and vehicle-to-vehicle communication,
both imposing limits on the controlled velocity of the vehicle.

The force-feedback application provides haptic feedback at
the steering wheel about the road surface to the driver. It serves
as an example for a more time-critical application, due to the
higher dynamics of the feedback actuator at the steering wheel.
Application updates are limited to parameter updates so the
desired strength of the feedback is configurable.

The stability control keeps the vehicle controllable for the
driver performing yaw-rate and slip control. As it needs to
be able to control the vehicle at the limits of handling, the

controller is sensitive to varying cycle times. The application is
intended to provide updatable control strategies, ranging from
differential braking to advanced strategies utilising all avail-
able actuators in the vehicle. The stability control also provides
a basis for the implementation of automated driving functions
in the CCC framework. For this, the application will be
extended to a use case of automated obstacle avoidance. The
resulting trajectory-following stability control will use data
acquired from multiple environment sensors (three LiDAR
scanners, a radar sensor, and a camera). From this data a map
of the static environment is created which provides the basis
for a model-based trajectory planning utilising all actuators
(particularly all-wheel steering) for maximal manoeuvrability.

III. CROSS-LAYER INTEGRATION

As motivated in the introduction, we present a cross-layer
modelling approach for the automated integration of software
components in automotive systems. In this section, we for-
malise our model layers as directed graphs and introduce their
top-down pattern-based transformation.

Definition 1 (directed graph) A directed graph G = (V,A)
is defined by a set of vertices V and directed edges (arcs)
A ⊆ V × V , i.e. ∀a = (v, u) ∈ A : v 6= u ∧ v ∈ V ∧ u ∈ V .

Definition 2 (arc splitting) An arc splitting of a directed
graph G = (V,A) is a directed graph G′ = (V ∪ {s}, (A \
{(v, u)})∪{(v, s), (s, u)}) which contains an additional inter-
mediate vertex s on arc (v, u). We denote the result from any
iterative application of an arc splitting on G as an arc-split
graph from G.

Definition 3 (pattern-based transformation) A pattern-based
transformation transforms a graph G = (V,A) into a graph
G′ = (V ′, A′) such that ∀v ∈ V : ∃v′ ∈ V ′ and ∀a
in A : ∃a′ ∈ A′, i.e. every vertex/arc in G has at least
one corresponding vertex/arc in G′. The transformation is
performed by replacing every v ∈ V with a pre-defined
pattern P (v). A pattern P (v) = (Vv, Av, Ov, Iv) is a graph
with nodes Vv , internal arcs Av , and output/input nodes
Ov/Iv ⊆ Vv . The transformation patterns are applied such
that V ′ =

⋃
v∈V Vv and A′ =

⋃
(v,u)∈A(v

′, u′) ∪
⋃

v∈V Av

with v′ ∈ Ov and u′ ∈ Iu, i.e. G′ comprises all the nodes and
internal arcs from the patterns as well as transformed arcs
from G, which connects an output vertex with an input vertex
of the corresponding patterns4.

The additionally required model information – such as
interface compatibility, service dependencies, transformation
patterns – is stored in a so-called component repository, which
we will describe in more detail in Section IV.

In order to illustrate the tasks performed by our auto-
mated integration procedure, we introduce an exemplary use
case which generalises the common sensor-decision-actuator
scenario in vehicular systems based on a simplified cruise-
control application. Note that we structure the remainder of
this section top-down into a functional view, a component
view and a thread view. A view combines several layers that

4or vice versa, depending on the semantics of the transformed arcs



are similar in their semantics but represent different steps in
the integration procedure. We will further elaborate how these
layers are reflected in our use case (cf. Figure 1).

A. Functional View
We split the functional view into two layers: the platform-

independent functional architecture and the platform-specific
communication architecture. The primal entities of both layers
are functional blocks, which form the set of vertices. The arcs
represent data dependencies between the functional blocks.

1) Functional Architecture Layer: We consider the func-
tional architecture as the input to our automated integration
procedure. Knowing the dependencies on the functional level
additionally enables a thorough assessment of the impacts
of any degrading or deviating performance on the functional
safety which may rely on certain assumptions on the platform
or the implementation. We base this assessment on skill/ability
graphs, which we briefly summarise in Section V. Here, we
only assume that such an assessment exists – either automated
or manual – and that it imposes additional requirements on the
integration procedure.
Definition 4 The functional architecture graph Gfunc =
(V,A) is a directed graph with functional blocks V and their
data dependencies A. An a = (v, u) ∈ A denotes that u
depends on data from v.

Data dependencies on this layer indicate that there must be
some communication between the connected blocks in order
to exchange the corresponding data but do not specify how this
data is exchanged. We refer to this as semantic compatibility
that must be guaranteed from the functional architecture.

The functional architecture of the cruise-control application
shown in Figure 1a consists of a functional block which
performs speed control according to the velocity selected by
the driver via a human machine interface (HMI). This block
takes inputs from sensors to measure the actual velocity of the
vehicle and commands an appropriate torque to the drive train.
We further assume that wheel speed sensors and an inertial
measurement unit (IMU) are present to measure velocity.

2) Communication Architecture Layer: This layer starts
tailoring the given functional architecture to a particular plat-
form consisting of multiple CPUs and/or electronic control
units (ECUs). From our experience, it is beneficial to include
platform- and implementation-specific considerations early on
as this significantly narrows the corridor of feasible con-
figuration in the design space. This includes a distribution
of the functional blocks across the ECUs based on model
information on their compatibility. Another aspect is to decide
for communication interfaces between the ECUs, which we
explicitly model in this layer by inserting so-called proxy
blocks between (connected) functional blocks that are mapped
to different ECUs. These proxy blocks serve as a place holder
for any inter-ECU communication mechanism that guarantees
that both functional blocks can actually exchange data (reach-
ability problem).
Definition 5 A communication architecture graph Gcomm =
(V,A) is an arc-split graph from the functional architecture

graph with the only difference being the semantics of the
arcs: An arc a = (v, u) ∈ A not only denotes the semantic
compatibility of the connection between v and u but also that
u is reachable from v, i.e. u and v are mapped to the same
platform component (ECU).

We consider a publisher-subscriber mechanism for inter-
ECU communication that allows to publish data at defined
points in time. This mechanism does not resort to strict time
triggering such as TDMA because the computation time is
arbitrary but constrained, i.e. as long as it finishes before the
specified publishing point the publishing time can be enforced,
which keeps the communication timing deterministic. We refer
to this as logical execution time (LET) communication [4].
This allows us to decouple the communication between ECUs
from their implementation (internal architecture, operating
system, run-time environment) and thus to take early decisions
on particular time budgets.

This layer is illustrated in Figure 1b, which depicts the
mapping of the functional blocks to the platform components,
and shows the insertion of the aforementioned proxy blocks.

B. Component View

The component view starts including implementation-
specific aspects based on the given (functional) communication
architecture, which is first converted into the component
architecture by a pattern-based transformation. In this case,
a pattern describes how a functional block is implemented
by a network of software components. By deciding between
alternative patterns, different implementations can be cho-
sen subject to non-functional requirements. The component
architecture layer also deals with interface compatibility by
inserting library components if required.

Note that the component architecture may contain the same
component at several places. As we use service-oriented
interfaces between components, i.e. a component can provide
a service to various other components, not every component
needs to be instantiated multiple times. Moreover, device
drivers – which are also software components in the mi-
crokernel approach – must only exist once as they require
exclusive access to the corresponding hardware device. This is
addressed by the component instantiation layer, which reduces
the component architecture to a minimum set.

1) Component Architecture Layer: In contrast to the upper
layers, the vertices on this layer model software components
whereas the arcs denote their connections via service-oriented
interfaces that describe the dependency of a service provider
and its client(s). The objective of this layer is to derive an
implementation-specific and complete model of the software
architecture for a given communication architecture. As a
first step, this involves a pattern-based transformation of the
latter (i.e. its functional blocks) into application components.
Secondly, it addresses the compatibility of the connected
interfaces and their cardinality, i.e. the maximum number of
clients. For this purpose, we insert available library com-
ponents that either perform a translation between different
interfaces (protocol stack) or act as a multiplexer of a service
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Figure 1. Illustrative cruise-control example on the modelling layers of the functional and component view. (HMI = human machine interface, IMU = inertial
measurement unit, NIC = network interface controller, LET = logical execution time)

interface (muxer), both without modifying semantics of the
exchanged data. Similar to the semantic compatibility dealt
with on the functional layers, we refer to this as syntactical
compatibility which is ensured by this layer.

Definition 6 The component architecture graph Gcomp =
(V,A) is an arc-split graph from the pattern-based trans-
formation of Gcomm . The vertices V represent the software
components (i.e. application and library components). An arc
(v, u) ∈ A denotes that u provides a syntactically compatible
service to v. Note that the arcs in this graph may therefore
have a reverse direction to the corresponding arcs in Gcomm .

Figure 1c depicts this layer for our illustrative use case.
The functional blocks have been transformed into software
components. For better readability, we assumed a simple trans-
formation into a single component for most of the functional
blocks. Each of the proxy blocks, however, was transformed
with a more complex pattern: The LET tx component transmits
the data from the HMI to the LET rx component on CPU3.
For this purpose, both components are connected to a NIC
component, which represents the device driver for the network
interface controller (NIC). Moreover, as this device driver must
only have one client, a multiplexer component (muxer) has
been inserted on CPU3.

2) Component Instantiation Layer: As mentioned above,
the purpose of this layer is to reduce the component ar-
chitecture to a (minimal) set of component instantiations
under cardinality constraints, i.e. the maximum number of
instantiations of a component on a particular CPU or ECU.
The component instantiation graph has similar semantics as
the component architecture graph Gcomp but models the actual
instantiation of software components.

Definition 7 The component instantiation graph Ginst =
(V ′, A′) models the instantiations of software components in
Gcomp = (V,A) such that for every vertex in V there is a
vertex in V ′ that refers to an instantiation of the same software
component. Similarly, every arc in A can be related to an arc
in A′ that connects the appropriate instantiation.

Yet, this reduction is not a trivial task as it must ensure
that the paths between sources and sinks in the component
architecture are preserved. It must also respect that compo-

nents executing on different platform components must not be
mapped to the same instantiation. As presented in [5], this
can be approached by constraint solving techniques that will
respect all these constraints and can also be combined with
objective functions to minimise the number of instantiations.

An example of a subset of this layer is shown in Figure 1d.
On CPU3, the two LET rx components could be merged into
a single instantiation that implements both communication
channels to the HMI and IMU. In this small example, this
actually renders the multiplexer component superfluous, which
needs to be taken care of separately. In realistic use cases,
however, this is rarely the case as there will often be more
components accessing a shared service provided by a device
driver. We omitted the model for CPU1 and CPU2 in this
example, as they are the same as in the previous layer.

Note that our approach of separating the component ar-
chitecture from the instantiations can also be applied to
classic automotive software models in which runnables are
the atomic entities of the software architecture. Multiple
runnables are executed within the same periodically executed
software component. We can therefore model the interaction
(communication) between the runnables on the (component)
architecture layer and their mapping to the actual software
components on the (component) instantiation layer.

C. Thread View

As previously stated, the integration procedure for automo-
tive software systems is subject to timing requirements among
others. Please refer to the AUTOSAR Timing Extensions [6]
for a quite complete summary of relevant timing constraints.
We introduce the thread view in order to perform a timing
analysis that formally verifies the adherence to the given
requirements. More specifically, the thread communication
layer models the interaction between software components in
more detail – comparable to sequence diagrams – such that a
proper timing model can be derived as, e.g., in [7]). Yet, as
the timing analysis has previously been addressed in [8], we
only focus on the model transformation from the component
instantiation graph in the scope of this paper.

1) Thread Communication Layer: We consider single- and
multi-threaded software components. A thread is a sequentially



executed part of a software component that may communicate
with other threads. Multiple threads can run concurrently.

We distinguish three different thread communication mech-
anisms: implicit communication, synchronous inter-process
communication (IPC) and asynchronous messages. Implicit
communication is dominant in control systems where data
is sampled periodically, i.e. it is read from shared memory
following a time-triggered activation. Synchronous IPC and
asynchronous messages correspond to the prominent mecha-
nisms in microkernels. They also reflect the different semantics
modelled by sequence diagrams: the procedure call, which
blocks the caller until the callee replied, and the notification,
which triggers the receiver but does not block the sender’s
execution. As was mentioned in Section III-A2, we apply the
LET paradigm between inter-ECU communication. Due to the
fact that LET is an implicit communication, we only need
to consider the thread communication on a CPU/ECU basis.
W.r.t. the verification of timing requirements, this allows us
to apply a response-time analysis as shown in [8] to derive
upper bounds on local response times and use these with an
end-to-end latency analysis for the LET paradigm.

Definition 8 The thread communication graph Gth = (V,A)
is derived from Ginst purely by a pattern-based transfor-
mation. The patterns describe the activities of a software
component in relation to its interaction with the connected
components. As a result, the vertices V represent the activities
and the arcs A model the trigger dependencies between the
activities, i.e. an arc (v, u) ∈ A denotes that v activates u
with the associated communication mechanism.

A detailed description of how these patterns can be specified
for a software component and its interfaces is found in [9].

IV. IMPLEMENTATION

In this section, we briefly describe the most relevant imple-
mentation details of our approach; a more detailed account
of this is presented with our case study in Appendix A.
As mentioned earlier, the model information is stored in
a component repository on a per-component basis. More
precisely, the information is specified in a structured way
using XML, which can be easily extended and thus suits the
agile nature in our research unit. Due to space limitations,
we omit syntactical details and rather focus on what (essen-
tial) information we specify for each component in a more
abstract way. First, we specify the platform requirements of a
component to capture the platform compatibility. In addition,
a component has provisions and requirements that either relate
to the functional or the component view and which describe
the data/service dependencies and their compatibility. The
provided services are annotated with the maximum number
of clients as a cardinality constraint. A component providing
a function is classified as an application component and
implicitly specifies a possible transformation pattern for this
function. The remaining components are classified either as a
proxy, a muxer, or a protocol stack. We also capture whether
a component is a singleton (cardinality ≤ 1) or not. Moreover,

we specify functional blocks either as alternative sets of pre-
connected components or single components. On the one hand,
this provides the transformation patterns from the functional
to the component view. On the other hand, it also circumvents
transitive application of arc splitting as we can pre-define
complex scenarios into a functional block that, e.g., specifies
a protocol stack.

W.r.t. graph-based data structures, we emphasise that we are
annotating the arcs and vertices with model information during
the integration procedure such as the mapping decisions or the
services to which an arc relates. For this purpose, we make use
of the LEMON graph library5, which provides a good support
for these annotations.

For the in-field integration, we resort to a separation of a
model domain, which implements our model-based methods
to find valid system configurations, and an execution domain,
which runs the configuration that was selected and fixed by
the model domain. Please refer to [10] for more details of this
architecture w.r.t. self-assessment capabilities.

V. DISCUSSION & FUTURE WORK

We now extend our scope and discuss the benefits and
challenges that arise from our aforementioned model. In
the preliminary section, we only focused on the structural
properties of the model and a limited set of views. One
important aspect that we omitted thus far is how design
decisions are made based on additional information during
our automated integration procedure. More precisely, a de-
sign decision must be made on a certain layer if there are
multiple options such as an alternative mapping to platform
components or a different transformation pattern. For this,
we incorporate so-called analysis engines that evaluate the
model layers (or a selection thereof) at particular steps in
the integration procedure. These engines basically serve two
purposes: On the one hand, they can incorporate additional
information – e.g. from orthogonal views or lower layers –
in order to guide the decision-making either heuristically or
holistically. As a result, they replace the expert knowledge
and experience which is often required to make good design
decisions (possibly on incomplete information) early in the
design process. On the other hand, the analysis engines can
implement established or novel analyses in order to perform
formal admission tests so that they can give formal guarantees
on whether the requirements and constraints of a particular
view are satisfied by the current model. This design-space
exploration may therefore involve backtracking if a design
decision on an upper layer results in an infeasible model on
a lower layer, which may lead to design iterations. We are
currently working on methods that reduce the design iterations
and thereby increase the efficiency of this exploration.

A major benefit that we see in our approach is its ex-
tensibility by additional views in order to model and ver-
ify requirements on, e.g., security, safety, availability. Such
concerns can, in general, not fully be addressed within a
functional or logic architecture alone. In the scope of this

5http://lemon.cs.elte.hu
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paper, we want to focus on (functional) safety aspects, which
we approach by a compositional approach of dependency
modelling/analysis on the functional and platform levels. On
the functional level, the concept of ability and skill graphs
[11] has been proposed for supporting system design and run-
time monitoring of automated vehicle systems. During design
time, the system is composed of platform-independent skills
which are required to fulfil the system’s task. Abilities are
preconditions for executing the corresponding skills and can
thus also be attributed with a level of run-time performance,
which dictates platform requirements or can be used as an
input for monitoring the system. On the platform level, we
perform a cross-layer analysis of dependencies to expose
any implicit dependency between functionally independent
components due to platform sharing [12]. W.r.t. safety aspects,
dependency analysis enables identifying points of possible
interference, e.g. between functions that must be separated
according to the functional safety concept and the skill repre-
sentation.

VI. RELATED WORK

As far as model- and component-based development of
embedded systems is concerned, there exist several tools and
frameworks such as MARTE6, EAST-ADL7, or Rubus [13].
Most of them, however, aim at the assisted development
of statically configured systems and thus do not suit fully-
automated integration. EAST-ADL is an architecture descrip-
tion language that focuses on capturing automotive electronic
systems through an information model on different levels of
abstraction. The engineering flow behind this meta model
is not intended for continuous integration efforts but rather
focuses on variant management as known from classical ap-
proaches. Similarly, MARTE is an UML2 profile which aims
at the description of timing properties of models specified, e.g.
in EAST-ADL. However, both are only standard description
such as e.g. AUTOSAR but not a concrete tool itself. The
Rubus approach [13], for instance, pursues a similar strategy
of modelling different views and their transformation in a
layered manner for the design, analysis and code generation
of vehicular software systems. In contrast to our approach,
Rubus – as an all-in-one solution with a strong focus on the
real-time aspects – is more mature and practical but also makes
more restrictions such as requiring its own operating system.
Furthermore, as it starts on the component level as the view
of the development team, it does not accommodate automated
changes on this level. Instead, we try to build a compositional
layered model such that it is extensible in vertical and hor-
izontal direction in order to incorporate additional views on
the system such as (functional) safety, reliability, or security.
Moreover, as we only focus on the automated integration
procedure our models can be more abstract as they rely on
certain properties that can already be checked in detail by
the preliminary design process (e.g. interface compatibility).

6http://www.omg.org/spec/MARTE
7http://east-adl.info

Similar limitations hold for other approaches, on which we
cannot elaborate in detail in the scope of this paper.

VII. CONCLUSION

In this paper, we presented a layered (meta-)model for
the automated integration of automotive software systems
which we developed in the scope of the collaborative research
project CCC. It ranges from a platform- and implementation-
independent modelling of the functional architecture to a
complete software model of its implementation for the target
platform. This is intended to replace the traditional V-model
design process such that the integration and testing can be
performed after initial deployment and thereby allow in-field
updates of automotive systems. Similar to the importance
of the engineers’ experience, this procedure relies on the
fact that certain decisions must be made early in the design
without knowing every detail of its results. In the scope
of this paper, we presented the framework that ensures the
soundness of these decisions by admission tests and potential
design iterations whereas we will address the efficiency of this
framework in future work.
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APPENDIX A
CASE STUDY

In this part of this paper, we perform a case study by
conducting our automated integration process on a use case
from the CCC project: an inertial navigation system (INS)
that is augmented by environment perception (see Figure 2).
More precisely, this use case incorporates two functionalities:

ECU1 ECU2 CAM

IMU

RADAR

IMU

Lat.

Long.

Steering

SpeedCtrl

Netw.

TrajectoryCalc.

ACC

Netw.

Camera

Radar

Figure 2. The inertial navigation system (INS) with environment perception.

lateral and longitudinal guidance of a road vehicle. The
INS is implemented on two ECUs and dedicated hardware
components that host camera, radar and IMU. ECU1 is directly
connected to the IMU, which provides inertial measurements
from three gyroscopes and three accelerometers. The camera,
radar and both ECUs are furthermore connected to a switched
Ethernet network. Figure 2 depicts the functional architecture
and its predefined mapping to the target platform. Longitudinal
guidance controls the vehicle speed based on the measured
acceleration and speed provided by the IMU. Additionally, it
includes the target velocity provided by a radar-based adaptive
cruise control (ACC). Lateral guidance uses the yaw rate pro-
vided by the IMU in order to control and correct the heading. It
also incorporates a reference trajectory which is calculated by
a camera-based lane detection. Note that longitudinal guidance
is essential for basic driving assistance systems such as ACC
whereas lateral guidance gains importance when it comes
to more advanced assistance systems (e.g. lane keeping) or
automated driving.

Our goal is therefore to integrate both functionalities at
different times on our experimental vehicle which performs the
previously presented automated integration process by itself.
The following part is structured as follows: We first summarise
the essential aspects of the CCC framework before we explain
the particular integration steps for the INS example.

A. Framework

This section gives a more detailed account of the system
architecture developed in the scope of CCC. This architecture
is particularly tailored for enabling in-field software updates
of critical systems. For this purpose it comprises two segre-
gated domains: model and execution domain. The execution
domain hosts the actual functionality of the vehicle whereas
the model domain takes control over the execution domain
by changing its configuration in consequence of a software
update. As shown in Figure 3, the execution domain com-
prises the operating system (OS) and run-time environment
on which the software components are executed. It is further
augmented by monitoring and shaping mechanisms, which
enable the observation and enforcement of modelled behaviour

Run-Time Environment
(including OS)

Platform Shaper/Monitor

Hardware
Component

Hardware
Component

. . .

Network

Application Shaper/Monitor

Software
Component

Software
Component

. . .

Multi-Change
Controller

(MCC)

evolving contract

configuration

metrics

model domain execution domain
at down time at run time

Figure 3. CCC system architecture

respectively. The model domain is implemented by the Multi-
Change Controller (MCC), which equips the system with in-
field update capabilities. More precisely, it applies model-
based methods to find a system configuration (i.e. a Ginst)
that satisfies all requirements such that the new configuration
can be applied to the execution domain in a safe state (e.g.
at function down time). Note that the MCC operates on an
execution budget to not interfere with the execution domain.

Algorithm 1 sketches the integration algorithm that im-
plements the three model transformations from Section III
that provide a Ginst. Each transformation starts by creating
a copy of the current graph. The first transformation from
the functional architecture to the communication architecture
is implemented by inserting proxies for arcs that cannot be
implemented by direct communication. The second transfor-
mation from the communication architecture to the component
architecture is implemented by selecting and replacing every
node with a component pattern and by inserting protocol stacks
for every arc that connects incompatible interfaces. Moreover,
it will be checked whether any service has more connections
than its maximum client limit in which case a multiplexer
is inserted. The third transformation from the component
architecture to the component instantiation consists in merging
duplicate components where possible. This is implemented by
the REDUCE procedure, which iterates the nodes in reverse
topological order and merges duplicate components that share
the same successors, i.e. only if they connect to the same
services. Note that we omitted parametrisation of software
components (e.g. scheduling parameters, LETs) in this frame-
work as we address these in separate analysis engines.

B. Step-by-Step Automated Integration of the INS

In this section, we first give a more detailed account of
how Algorithm 1 is applied to the longitudinal guidance. In
the second part, we have a look at the update procedure that
adds the lateral guidance to the INS.

Figure 4 illustrates the integration procedure of longitudinal
guidance starting from Gfunc . For simplicity, we omitted the



Algorithm 1 Integration algorithm
1: procedure INTEGRATE(Gf unc)
2: Gcomm ← Gfunc . copy graph
3: for all arc in Gcomm do
4: if ¬REACHABLE(arc) then
5: INSERT PROXY(Gcomm, arc)
6: end if
7: end for
8: Gcomp ← Gcomm . copy graph
9: for all node in Gcomp do

10: SELECT PATTERN(Gcomp, node)
11: end for
12: for all arc in Gcomp do
13: if ¬COMPATIBLE(arc) then
14: INSERT PROTOCOLSTACK(Gcomp, arc)
15: end if
16: end for
17: for all arc in Gcomp do
18: #clients← arc.target.connections
19: limit← arc.target.max clients
20: if #clients > limit then
21: INSERT MUX(Gcomp, arc)
22: end if
23: end for
24: Ginst ← Gcomp . copy graph
25: REDUCE(Ginst)
26: return Ginst

27: end procedure
28: procedure REDUCE(Ginst)
29: for all node in REVERSE TOPOLOGICAL(Ginst) do
30: if ∃ duplicate dup of node then
31: if node.successors == dup.successors then
32: MERGE(dup, node)
33: end if
34: end if
35: end for
36: end procedure

mapping from software to hardware components for Gfunc

and Gcomm . Note that IMU and Radar are implemented on
dedicated hardware components which are not managed by
the MCC. After the first transformation (into Gcomm), the
unreachable arc (orange) has been replaced with a proxy.

The second transformation (to Gcomp) starts with selecting
transformation patterns. Here, only the proxy is replaced
with more than one component, similar to the example
in Section III. We also identified two incompatible arcs:
(Long., IMU) and (ACC,Radar), for which the IMU drv
and NIC have been inserted as the IMU can be interfaced
by its device driver and the Radar via the Network. Note
that the NIC is already part of the proxy pattern such that a
muxer component was also inserted. As there are no duplicate
components in Gcomp, Ginst is identical.

Now, we add the lateral guidance to the INS following
Algorithm 2. The Ginst,new looks similar to the one for lon-

ECU1 ECU2

IMU Long. SpeedCtrl

ACC Radar

Gfunc

IMU Long. SpeedCtrl

proxy ACC Radar

Gcomm

IMU drv Long. SpeedCtrl

LET rx

LET tx ACC

NIC1

muxer

NIC2

Figure 4. Steps for longitudinal guidance (Gfunc , Gcomm and Gcomp)

Algorithm 2 Update algorithm
1: procedure UPDATE(Ginst,old, Gfunc,new )
2: Ginst,new ←INTEGRATE(Gfunc,new )
3: Ginst ← Ginst,old +Ginst,new

4: REDUCE(Ginst)
5: return Ginst

6: end procedure

gitudinal guidance (Ginst,old ) such that combing both results
in duplicates of IMU drv, LET rx, LET tx, muxer and NIC.
Reverse topological sorting (i.e. from service providers to
clients) results in the following order:

1) IMU drv, NIC1, NIC2, SpeedCtrl, Steering
2) Long., Lat., LET rx, muxer
3) LET tx, ACC, TrajectoryCalc

By iterating the duplicates (bold) in this order, we start with the
NIC1, NIC2 and IMU drv components, which can be merged
with their duplicates because they do not have any successor.
Next, LET rx, muxer can be merged with their duplicates
because they have the same successors (i.e. the same instances
of NIC1 and NIC2 respectively). Last, LET tx is merged with
its duplicate because both are connected to the same muxer.
The resulting INS is depicted by Figure 5.

ECU1
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IMU drv
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LET rx NIC1

NIC2 muxer LET tx
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Figure 5. Ginst of the complete INS
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