
The IDA LET Machine - An efficient and
streamlined open source implementation of the

Logical Execution Time Paradigm
Matthias Beckert and Rolf Ernst

Institute of Computer and Network Engineering
TU Braunschweig, Germany

{beckert | ernst }@ida.ing.tu-bs.de

Abstract—Multi-core CPUs are getting more and more impor-
tant in the field of automotive electronic control units. In order
to make use of the advantages of those multi-core platforms, new
techniques for system design need to be considered. This includes
scheduling and communication as well as function placement
onto several cores. More often the logical execution time (LET)
paradigm is considered to ensure synchronization among multiple
cores. In theory LET introduces an zero-time communication
model, which can be used to provide a consistent core-to-
core communication at fixed points in time. In this interactive
session we show, how those mechanisms can be implemented
efficiently with a low memory and runtime overhead. We provide
a generic open source implementation, which profits from special
software/hardware features in the automotive domain and can sill
be used on the other platforms. The approach is evaluated with an
automotive use-case in an OSEK/VDX conform implementation
based on ERIKA/OS.

I. INTRODUCTION

Each car might include more than 50 electronic control units
(ECUs) and several buses (or other interconnect mechanisms).
In general, software on automotive ECUs is implemented in
a set of periodical tasks. The scheduling is done based on
fixed priorities with a rate monotic priority assigned for all
tasks. Each task consists of a set of so called runnables which
implement the applications functionality. Inside a task those
runnables are executed in a static order. Due to cost and time,
functionality developed for singlecore ECUs is usually reused
also on multicore ECUs.

In automotive singlecore systems, the communication along
several tasks and runnables is often achieved via shared
memory variables following a publisher subscriber paradigm.
When dependent runnables are executed on different cores,
the communication between those needs to be synchronized.
Otherwise data consistency cannot be guaranteed, especially if
shared-memory communication is used. A possible approach
to mitigate this problem is to insert fixed points in time
where data is read or written. This mechanism can be covered
with the paradigm of logical execution time (LET) [5]. The
paradigm defines, that at task activation all input data is read
and after the results will not be written before or after the
defined LET. As LET enforces a deterministic write behavior,
data consistency among several cores can be achieved if this
theoretical concept can be accurately implemented. The IDA-
LET-Machine (ILM)[3] is an open source LET implementation
based a zero-time communication with double buffering[4].

II. INTEGRATION INTO THE AUTOMOTIVE DOMAIN

Modern automotive software is often developed and inte-
grated according to the AUTomotive Open System ARchitecture
(AUTOSAR)[1] set of standards. In general it consists of
three parts. First, the AUTOSAR Software which contains
the applications. Second, the AUTOSAR Runtime Environment
(RTE) which abstracts inter- and intra-ECU communication
to the application. And third the AUTOSAR Basic Software
(BSW) which integrates driver, services and hardware abstrac-
tion layer (HAL). In the AUTOSAR context, the operating
system is considered a system service. As the LET paradigm
needs to be tightly coupled to operating system and underlying
hardware, it therefore should be integrated as a part of the
AUTOSAR BSW.

Fig. 1 shows an overview of our implementation proposal.
Each LET related action is coupled to an so called LET Event.
Those actions can be the start of an LET task, a pointer swap or
also the backup of a read pointer. As an example, at t0 in Fig. 1
the LET task λ1 is started and the corresponding block b1 will
be executed within λ1. In order to generate the LET events on
different cores, we use an LET IRQ which is generated on one
core by a single timer and is then redirected to other cores.
In our example, the IRQs are generated on C0 and redirected
to C1 and C2 if necessary. If an LET IRQ should also result
in an LET event on C0, it is directly processed afterwards.
Therefore, the IRQ pattern generated on C0 contains events
from all other cores and is repeated periodically. The period
of the IRQ pattern is defined by the hyperperiod of all LET
tasks. As Fig. 1 contains tasks with an 10ms and 20ms period,
the hyperperiod is equal 20ms in this example. From pattern
and period we derive an IRQ Table. Each entry consists of
an offset relative to the hyperperiod and a bitfield which
marks all relevant cores for event redirection. The table is
used to configure a Hardware Port which generates the needed
IRQ pattern in a most efficient way. This can be done with
a timer and/or capture compare unit. Inside the hardware
dependent IRQ handler the LET Handler on each relevant core
is activated, which usually can be done with a software IRQ.
While the hardware generated IRQ is only handled on one core
(e.g. C0 in our example), the LET handler can be executed on
all cores in parallel with a barrier synchornization at the end of
each LET handler. Each handler accesses an own LET Event
Table, which contains again an relative offset, an action to be
performed and an additional payload field. In contrast to the
IRQ table, the event table might contain multiple entries with



Hardware & OS Independent
C0
C1
C2

LET Events / LET IRQs

C0
τ10

τ20

C1
τ10

τ20

C2
τ10

τ20

OS Tasks

C0

Hardware Port

C2
C1

C0
OS Port 

tt
0

t
0
+10ms t

0
+20ms

IRQ Table

C2
C1

C0
LET Handler 

C2
C1

C0
Event Table

t
1

b1

λ1

Fig. 1. Overview of the proposed LET implementation

the same relative offset. This is the case when two or more
actions must be performed at the same time. An example for
this behavior is a simple back-2-back execution of two LET
tasks (e.g. on C2 at t1), where first the pointer of the previous
LET task is swapped and second the following LET task is
activated. The activation of an LET task is performed through
the OS Port abstraction, which maps the LET task activation to
an OS task activation. At this point the LET implementation
hands over the actual OS task dispatching to OS scheduler.
This way the LET implementation activates the OS task but
does not dictate the actual task execution or the scheduling
scheme.

The generation of the needed IRQ pattern can be realized
with common hardware periphery usually used for the gen-
eration of a pulse width modulation (PWM). This is also the
case for the prevalent Infineon AURIX microcontroller series,
which we used for our first hardware port. Most of the AURIX
microcontroller do support the generation of PWM signals in
two different ways. Either based on the Capture Compare Unit
(CCU6) or on the Generic Timer Module (GTM). We used in
our implementation the CCU6 module, as the implementation
was straight forward this way. Using the GTM instead is more
challenging due to its complexity.

For the software port we use ERIKA OS[2] as underlying
operating system, which implements an OSEK/VDX and
AUTOSAR OS compliant API. Both define so called basic
conformance classes (BCC) and extended conformance classes
(ECC). Tasks of both conformance classes can be started
with the ActivateTask function. At the end of each task the
OS function TerminateTask is called, to announce the end of
execution to the OS. The mapping of LET tasks to operating
system tasks can be performed direct to BCC or grouped to
either BCC or ECC.

III. EVALUATION

The evaluated setup consists of an AURIX TC275, ERIKA
OS 2.8.0 and is included in the ILM repository on GitHub[3].
The memory overhead shown in Table I has been extracted
from the optimized and stripped .elf file with the binutils
tool nm. First, the LET implementation including the rele-
vant event handling, OS and hardware port and second, the
hook functions used for pin toggling and tracing. The LET
implementation primarily consists of instructions in .text and a
few uninitialized system variables in .bss, which get initialized
through an init call during runtime. Additional on C0 also the

.text .bss .data .rodata .global
LET implementation
C0 638 62 0 0 8
C1 200 17 0 0 0
C2 200 17 0 0 0
Hook functions
C0 166 0 184 192 0
C1 146 0 0 184 0
C2 158 0 0 184 0

TABLE I
MEMORY OVERHEAD IN BYTES

AURIX specific hardware init and 8bytes for bitmask/barrier
in .global used for core-2-core synchronization are included.
For additional tracing via a logic sniffer, the hook functions
implement a pin toggling resulting in additional code overhead
in .text. The overhead in .data and .rodata is based on pin
mapping tables which provide an abstraction layer to the used
evaluation platform.

The generated runtime overhead UHdl,x on core x depends
on the number of LET handler activations per hyperperiod and
on the actual execution time of the LET handler CHdl,x.

UHdl,x =
NoOfHandlerActivationsx

Hyperperiod
· CHdl,x (1)

In the example from [3], C0 is used for IRQ generation and
the LET based application is executed on C0/1/2. Therefore
CHdl,0 includes CCU6 IRQ and LET handling (6.2µs), while
CHdl,1 and CHdl,2 do only include LET handling (4.5µs).
This lead to a runtime overhead of ∼ 0.58% on C0, ∼ 0.34%
on C1 and ∼ 0.36% on C2 for the given example.

IV. CONCLUSION

The results show a small memory footprint and a low impact
with respect to runtime mechanisms. Overall the generated
overhead is primarily based on the actual application and
not by the ILM implementation itself. The ILM therefore
represents an efficient and streamlined implementation of
the LET paradigm, especially for prototyping or academic
research.

REFERENCES

[1] Automotive open system architecture. https://www.autosar.org/.
[2] ERIKA Enterprise RTOS. http://www.erika-enterprise.com/.
[3] ILM. https://github.com/matthiasb85/IDA-LET-Machine.
[4] M. Beckert, M. Möstl, and R. Ernst. Zero-time communication for

automotive multi-core systems under spp scheduling. In Proc. of ETFA,
Berlin, Germany, Sep 2016.

[5] C. M. Kirsch and A. Sokolova. The logical execution time paradigm. In
Advances in Real-Time Systems, pages 103–120. Springer, 2012.


