
This is an author produced version of :

Article:



Cross-Layer Dependency Analysis with Timing Dependence
Graphs

Mischa Möstl and Rolf Ernst
Technische Universität Braunschweig

{moestl,ernst}@ida.ing.tu-bs.de

ABSTRACT
We present Non-Interference Analysis as a model-based method
to automatically reveal, track and analyze end-to-end timing de-
pendencies as part of a cross-layer dependency analysis in com-
plex systems. Based on revealed timing dependencies of functional
cause-effect chains, this method enables an automated FMEA in-
spection of timing behavior of individual functions. In consequence,
this method can support safety-critical design processes w.r.t. the
technical safety concept as mandated by safety standards such as
ISO 26262. Our case-study from a state-of-the-art automated re-
search vehicle and synthetic experiments confirm the applicability
and scaleability of the proposed method.

ACM Reference Format:
Mischa Möstl and Rolf Ernst. . Cross-Layer Dependency Analysis with
Timing Dependence Graphs. In DAC ’18: DAC ’18:The 55th Annual Design
Automation Conference 2018, June 24–29, 2018, San Francisco, CA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3195970.3196018

1 INTRODUCTION
Functional safety is defined as the absence of harm from unintended
hazardous behavior w.r.t. the design intent (cp. [8, 1.51,Part1]). Hid-
den dependencies in highly-networked complex systems can trigger
such malfunctioning behavior, and are one of the foremost design
risks e.g. for automated vehicles. The ISO 26262 design process
approaches safety in three phases: definition of items, a functional
safety concept [8, Part3] to ensure the safety of the items, and a
technical safety concept [8, Part4] that ensures the adherence of the
implementation to the functional safety concept. This, however,
creates a design problem for the elements of an item: For a truly
conservative approach, a designer has to assume dependence if an
element [8, 1.32, Part1] is shared within a system or among systems
of a network [8, 1.129, Part1], unless required independence can be
proved. This leads to a situation where at the beginning of the de-
sign all elements are dependent. Following the conservative design
strategy, a designer has further to assume that any dependency
leads to interference, i.e. failures causing malfunctioning behavior.
The solution to this design problem is to systematically add design
knowledge to be able to prove freedom from interference. To argue
that an element A is free from interference from an element B,
is either possible by a proof of strict non-interference or through
a proof of safely-bounded interference, where the bounds must
suffice the required safety level of element A.

As an example, consider a lateral guidance control that extends

DAC ’18, June 24–29, 2018, San Francisco, CA, USA
©
ACM ISBN 978-1-4503-5700-5/18/06.
https://doi.org/10.1145/3195970.3196018

ECU1 ECU2CAM

RADAR

IMU

Gyro.

Accel.

WheelSpeed

Lat.

Long.

NIC

Steering

SpeedCtrl

Network NIC

TrajectoryCalc.

ACC

Camera

Radar

Figure 1: Functional Architecture of the research vehicle,
with an updated lateral guidance functionality for auto-
mated driving.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time in s

0

0.2

0.4

0.6

D
e
vi

a
tio

n
 in

 m Lateral Deviation
Max. Tolerable Overshoot

Figure 2: Lateral Deviation of the vehicle due to controller
dead time. The red line indicates themaximal tolerable over-
shoot [19].
an Adaptive Cruise Control (ACC) system to an Inertial Navigation
System (INS) for automated driving. Figure 1 shows the simplified
functional architecture and platform that implements longitudinal
(lower half) and lateral (top half) guidance control. Environment
perception for trajectory planing is based on camera and radar
sensors, as well as on motion estimation provided by an Inertial
Measurement Unit (IMU) based on sensor-data fusion from gyro-
scopes, accelerometer, and wheel-speed sensors. 1 The function and
communication path mapping to Electronic Control Units (ECUs)
already exhibits dependencies between the longitudinal and the
lateral guidance due to sharing common elements such as their
ECU, and the data provided by the IMU. W.r.t. intended behavior
of the lateral guidance, a Hazard and Risk Analysis (HARA) in an
ISO 26262 process for automated vehicles in freeway traffic has
identified a maximal tolerable overshoot of 0.1m [19]. To achieve
this control performance, the function depends on strict timing
constraints for its cause-effect chains to avoid controller instabil-
ity or overshoots. Unpredictable and unanticipated timing such as
unconsidered dead time that implies phase are potential causes for
unstable and undesired behavior [13]. In the example, this means
that the safety of lateral control depends on timely measurement
values from the IMU and reference values from the trajectory calcu-
lation. Thresholds for e.g. the maximum tolerable data age (i.e. dead
time) can be derived by functional analysis, and serve as timing
1We are aware, that this example is incomplete w.r.t. functionally-safe fully-automated
driving. For illustration, we omitted parts of the safety concept, such as hardware
redundancy.

https://doi.org/10.1145/3195970.3196018
https://doi.org/10.1145/3195970.3196018


DAC ’18, June 24–29, 2018, San Francisco, CA, USA Mischa Möstl and Rolf Ernst

constraints for the implementation. Figure 2 shows the resulting
control deviation for the lateral controller if measurement values
from the IMU are delayed beyond these thresholds. Consequently,
the implementation and integration must avoid interference caused
by other elements on these constraints. In this example, either strict
non-interference or bounded interference must be guaranteed for
lateral and longitudinal control such that the violation of safety
requirements (e.g. timing) can be avoided.

In order to claim freedom from interference and resolve an existing
dependency, the system knowledge must be detailed to argue about
the relevance of a dependence relation. E.g., [8, Part4] proposes Fault
Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA)
to identify paths of failure propagation. The goal of the technical
safety concept is thus to ensure the independence of the function
timings in the sense that they solely depend on artifacts and proofs
that fulfill the same or higher levels of assurance than itself. The
goal of dependency analysis is to support this action as, with a
growing number of dependencies, (manual) methods such as FTA
and FMEA become more challenging.

Problem Statement: While timing analysis of individual tasks
is an established technique, systematic tracing and quantification
of dependencies across layers to prove irrelevance and, hence, non-
interference in the context of a safety concept is an open issue.
To consider two items independent, we need dependency analysis
covering all potential paths to prove that no functionally relevant
dependency can possibly exist between these items. The search
for these paths has to be conducted over the complete architecture
of the design, which consists of an interconnected combination
of several architecture layers describing functional, software, and
hardware behavior of the system. Especially the question of how the
data quality of timing-analysis input parameters influences bounds
of functional requirements via timing dependence is of interest. For
assessing a dependency’s relevance, it is often not the actual result
of a timing analysis that matters but the fact on what data basis
a bound is derived. Regardless of the fault’s cause, it is important
how it affects this data and how it influences end-to-end behaviour
in complex Cyber-Pysical Systems (CPSs).
Contribution: In this paper we show how to systematically link
system parameters between different model layers that influence
the timing behavior of the system (section 3). Based on the presented
data structure of a Timing Dependence Graph (TDG) (section 4) we
demonstrate how timing effects in complex CPSs can be explored.
By the use of TDGs, we are able to reduce the problem complexity to
reachability problems in the graph structure and ultimately support
an ISO 26262 safety process (section 5).

2 RELATEDWORK
A number of works have investigated the sensitivity of timing-
analysis results, i.e. they argue about the robustness of computed
bounds based on varying input parameters. Particularly, [4] com-
putes exact results for strictly periodic systems w.r.t. varying execu-
tion times and periods, while other approaches rest on systematic
searches in the solution space for entire systems [15, 22], or specifi-
cally target activation patterns, i.e. one input parameter type [11].
All of these methods have in common that sensitivity analysis is

computationally intensive and neglects the relevance aspect of de-
pendencies, i.e. the approach is not suitable to directly show the
dependence of two parameters. It can merely show a correlation
in the results and therefore cannot show a separation of different
levels of safety criticality.

Strictly time-driven architectures enable isolation of the timing
behavior of functions [9]. While this approach reduces dependency
analysis to fewer layers and effects, it is not work conserving, is
sensitive to later changes, and complicates reuse. While this is a
potential alternative, vehicle networks and ECUs still mainly oper-
ate on priority driven scheduling, e.g. CAN, automotive versions
of Ethernet (TSN), as well as the AUTOSAR OS itself [2], even for
safety critical functions. Moreover, time-driven architectures still
require a proof of non-interference, at least in case of shared ele-
ments (cameras, function blocks, ...). A further discussion is beyond
this paper.

To avoid unintended hidden dependencies already in the design
of complex CPSs, contracting methods seem a promising candidate.
In these methods, software components are equipped with a model-
based description of their behavior and a set of assumptions which
needs to be fulfilled to provide a set of specified guarantees. A
common application is the verification of pre and postconditions
within a software architecture to guarantee functional properties,
e.g. for safety. As this is carried out within a single architecture
layer, it is often referred to as horizontal contracting. However,
contracting to guarantee vertical (also referred to as non-functional)
properties such as timing behavior is still an open issue [16].

Furthermore, a number of techniques exist to guarantee and
enforce timing behavior as expected by performance analysis. E.g.
[7, 10] study how to enforce specified behavior on runtime inputs.
While these methods are costly and limit performance when used
throughout a networked vehicle, they can selectively be deployed
to remove interference detected with the methods proposed in this
paper.

3 CROSS-LAYER MODEL
In the initial example we motivated that solely from the mapping
of a (sub)function to a common execution resource, a timing depen-
dency emerges. To formally capture these and other dependencies
on individual layers, we introduce our multi-layer system model,
which reveals cross-layer dependencies. In principle, we treat each
layer as a graph, where elements from one layer can have a bidirec-
tional mapping relation with nodes and edges on another layer.

In our example, the top layer models the system on a functional
basis as in Figure 1. The functionalities are then decomposed into
an executable functional model:
Definition 1. An executable functional model is a graph RG=

(R,L,
w
−−→,

r
−→) with R as the set of runnables, L denoting the set of

data labels and
w
−−→,

r
−→ defining two precedence relations between

runnables and labels and vice versa denoting writing and reading
of labels.
Definition 2. A runnable ρi ∈R is executable workload and defined
by a tuple (C+i ,C

−
i ,TRi ) whereas C

+
i is a bound on its worst-case

execution time (WCET), C−
i a bound on its best-case execution

time (BCET), and TRi defines a triggering requirement for ρi .
In principle the executable function model corresponds to the



Cross-Layer Dependency Analysis with Timing Dependence Graphs DAC ’18, June 24–29, 2018, San Francisco, CA, USA

graph structure of e.g. SIMULINKmodels. Furthermore, cause-effect
chains Ψ can be defined as alternating sequences of runnables and
labels in order to annotate end-to-end timing requirements in the
executable function model. We formalize two requirements: (a)
the backward distance d

aдe
i, j which is defined as the maximum

time between a read event of ρ j and the preceding write event
of ρi on a common label (data age), and (b) the forward distance
dr eai, j which defines the maximum time between a write event to a
label by ρi and its subsequent read by ρ j (reaction-time). End-to-
end requirements on a cause-effect chain can then be defined as
sums of daдe /dr ea and the processing time between the read and
write events of runnables. Note that, e.g. maximum data age can be
directly mapped onto a delay block, e.g. in SIMULINK to account
for dead time [1].

The runnable semantic allows a fine-grained description of the
workload and behavior of embedded software. However, runnables
are typically not executed individually but aggregated in schedula-
ble entities with a common trigger condition to minimize context
switches and enable low-overhead OS implementations, e.g. as in
AUTOSAR [2]. These schedulable entities are referred to as tasks,
and correspond to the well-established notion of real-time tasks
and respective analysis techniques [6, 21].
Definition 3. A task τi ∈T is defined by a tuple (C+i ,C

−
i ,δ
+
i,in ,δ

−
i,in ,

Si ), where C+i denotes the WCET and C− the BCET respectively,
δ+i,in ,δ

−
i,in are functions that are event model abstractions of con-

crete execution traces that capture the maximum/minimum time
interval between n consecutive activation events, and Si is a set of
three tuples (m, t , l)withm∈N denoting a unique sequence number
of a read/write access of type t ∈{read,write} to a label l ∈L.
Definition 4. A task graph is a tuple TG=(T ,R,→, ξ ) with T

representing the set of tasks, → defining a directed precedence
relation between tasks such that output/completion events become
activation events of the preceding one, R as the set of computa-
tion resources, and ξ as a right total function that maps each task
to exactly one resource that provides execution time to its tasks
according to its scheduling policy.

We also introduce mappings between RG and TG to complete
the cross-layer model (together with the functional model that
maps onto RG). Each runnable maps to exactly one tasks, where
the runnable’sWCET and BCET contributes to the one of its task
and the order of runnables is fixed within each task. The read and
write events of a label map to the read and write events of a task.

Figure 3a shows the executable function model next to the task
graph in Figure 3b for our example. The cycle times of the individual
runnables are indicated by their fill color as they correspond to
tasks with names that indicate their period. Further, we assume
Rate Monotonic (RM) Static-Priority Preemptive (SPP) scheduling
for ECUs 1 and 2, while the Network is priority-based Ethernet.

Based on the description of the workload and its parametriza-
tion in the model, several bounds on the timing behavior can be
computed, e.g. by Compositional Performance Analysis (CPA). To
analyze an entire system of resources and tasks, CPA first analyzes
all tasks τi on each resource, computing its worst-case response
time (WCRT) R+i , best-case response time (BCRT) R−i and output
event models δ+i,out ,δ

−
i,out based on the execution times bounds

C+i ,C
−
i , input event models δ+i ,δ

−
i , and the scheduling policy of the

resource ξ (τi ). Intermediate results are the minimum and maximum
q-event busy windows w−

i and w+i as well as the maximum num-
ber of backlogged activations qmax . Second, the computed output
event models are propagated to their dependent tasks as new input
event model. Subsequently, CPA iterates over these two analysis
steps until the system converges, i.e. all output / input event models
are stable and do not change anymore between two consecutive
analysis steps [6]. How data age and reaction time for individual
tasks can be computed based on CPA is e.g. described in [5].

4 TIMING DEPENDENCE GRAPHS
Dependencies, such as a data age/dead time requirement in the
executable function model, can be hidden on other layers. In this
section, we thus show how to enable traceability of dependencies
across layers. As this is based on the scheduling behavior and its
analysis, we define a data structure to capture the dependencies.
Definition 5. A Timing Dependence Graph is a graph G=(V, E)

consisting of nodes vi ,vj ∈V and edges ek ∈E where each edge
ek =(vi ,vj ) describes that vj is dependent on vi . Each node vi
either describes a task parameter p∈P={C+,C−,δ+in ,δ

−
in } or an

(intermediate) timing analysis result r ∈R={w+,w−,δ+out ,δ
−
out , R

+,

R−,qmax }.
To convert parameters and results from the task model in nodes

of the respective type we define two conversion functions:
Definition 6 (Conversion functions). The parameter conversion
function is a function

ϑp :T × {C+, C−, δ+in, δ
−
in } 7→V (1)

that maps each input parameter type p∈P for a task τi ∈T to a
node v=ϑp (τi ,p) with v ∈V in the TDG, and the result conversion
function:

ϑr :T × {w+, w−, δ+out , δ
−
out , R

+, R−, qmax } 7→V (2)

that maps each result type r ∈R of a task τi ∈T to a nodev=ϑr (τi , r )
with v ∈V in the TDG.

This conversion function is analysis specific, i.e. how the busy-
window and output event models are computed. In general, a
TDG is constructed in four steps: First, for each task in the task
graph, the timing dependency graph is populated with the nodes
describing its parameters. In the second step, all explicit depen-
dencies between tasks on different resources are added as edges
in the graph. This happens for two tasks τa and τb by inserting
two edges ek =(vi ,vj ) and e l =(vm ,vn ) into the dependency graph
in order to capture the dependency between their output and in-
put event model (δ−a,out /δ

+
a,out and δ−b,in/δ

+
b,in ). More precisely,

vi=ϑr (τa ,δ
−
out ) andvj=ϑp (τb ,δ

−
in ) as well asvm=ϑr (τa ,δ

+
out ) and

vn=ϑp (τb ,δ
+
in ). The third step then deals with the dependencies

on each resource. It adds dependency edges according to the con-
struction of the busy window (w+/w−), and the computation of
response times (R+/R−). This implies that, for each scheduler, a
specific transformation is necessary. Consequently, the third step
must be carried out for each resource individually, respecting its
scheduling analysis. It can further incorporate the treatment of
dependent tasks on one resource, if not the task precedence con-
straints are treated according to step two. The fourth step then deals
with capturing the dependencies that influence the computation of
the output event model, based on the resource analysis results and
the applied propagation strategy to bound them.



DAC ’18, June 24–29, 2018, San Francisco, CA, USA Mischa Möstl and Rolf Ernst

(a) The executable function model (b) The task graph

Figure 3: Architecture of the example system. Colors of runnables (octagons) indicate the target task (circle) with the triggering
period as task caption. Cycle times are based on [14].

We illustrate step two and three of constructing the TDG for the
tasks on ECU2 from the example. The set of nodes V is populated
based onT ={τ80ms ,τ20ms } as well as two nodesvi ,vj for δ−NWx,in
and δ+NWx,in since τNWx is a dependent task of τ80ms , and to illus-
trate step two. In the second step, the only two inserted edges are
ek =(ϑr (τ80ms ,δ

−
out ),vi ) and e l =(ϑr (τ80ms ,δ

+
out ),vj ) since τNWx

is the only dependent task in this scope. The third step, is dictated
by the SPP scheduling and the rate-monotonic priority assignment,
i.e. τ20ms has a higher priority than τ80ms . As in SPP w.o. blocking a
higher-priority task’s w+ is independent from lower-priority tasks,
w+20ms only depends on its own parameters C+20ms and δ−20ms,in .
However, w+80ms also depends on the maximum preemption time
seen from τ20ms , i.e. C+20ms and δ

−
20ms,in , plus its own parameters

δ+80ms,in , C
+
80ms to maximize w+80ms to a conservative upper bound.

The w− for both tasks only depends on their own parameters C−

and δ− as it lower bounds the time for a number of executions.
WCRTs R+i in SPP are again directly dependent on w+i and δ−i,in .

For proofs and in-depth descriptions on how the busy-window
and BCRT/WCRT respectively can be bounded for a number of
scheduling strategies we refer the reader to [17] for SPP including
chained tasks, and [3] for Static-Priority Non-Preemptive (SPNP).
Note that our approach is generally applicable to any analysis
relying on the busy-window technique, e.g. also [20] who analyzes
Switched-Ethernet traffic or [5] who shows analysis for data-age
and reaction-time constraints.

The TDG captures the timing dependencies between all parame-
ters involved in the system analysis. However, the goal is to identify
the parameters (and results) that must hold in order for a bound to
be valid.

Since the edges E of the TDG encode which parameters exert an
influence on which parameter/result, the task at hand is to obtain
all nodes from which the investigated node is reachable.
Definition 7. The reachability graphGr each (vt )=(V

r each , Er each )

for a given nodevt is a graph withVr each being the set of all nodes
discovered by a breadth-first search from vt in G with reversed
edges and Er each being the set of all traversed edges in original
orientation.

Note that we refer to vt as the root, although Gr each contains
edges in the same orientation as the TDG, further the nodes which
have an in-degree of 0 are referred to as leaves.

5 TRACING DEPENDENCIES
In this section we show how TDGs support a safety oriented design
process, especially its implementation and integration phase and
the technical safety concept [8, Part 4]. In the first place, TDGs
allow to verify that timing behavior of elements with different
safety levels is free from interference in the strict sense, i.e. that
faults of one element can not lead to timing faults of other elements.

5.1 Strict Non-Interference
Definition 8. Strict timing non-interference is the inability of an
element A to influence a timing requirement of element B.

We illustrate this on the initial example. Since lateral control
exhibits higher dynamics than longitudinal control, the former has
to be considered more critical as it has more stringent requirements
w.r.t. controllability in the ISO 26262 sense. Consequently, it is at-
tributed a higher Automotive Safety Integrity Level (ASIL) than
the longitudinal control and freedom from interference must be
established between the two. As already demonstrated in Figure 2
the data-age/dead-time of the cause-effect chain Ψ1 (indicated in
blue in Figure 3a) from Gyro via the IMU to the lateral controller
(transporting the yaw angle) is particularly critical and inherits
the lateral control’s ASIL. For the mapping of RG to TG of the
example we supply further knowledge about the implementation,
not directly shown in Figure 3: (a) All runnables that are mapped to
the same task are ordered such that writing and reading common
labels happens in the same job of the task, (b) other read and write
events of runnables occur at activation and termination events of
the task they are mapped to and that label read and write times
are accounted for in the tasks’ execution time. However, any other
mapping of events in RG’s S to job instances of TG are possi-
ble, depending on the implementation. Ψ1’s end-to-end data-age
requirement is computed as the sum of the data-ages in the chain,
i.e. daдeΨ1

=d
aдe
Gyro, IMU + d

aдe
IMU ,Lat . Via the mapping from RG to

TG this translates into R+10ms +d
aдe
10ms,5ms , accounting for the time

from activation of ρGyro to the read event of ρLat .
In the example, we assume that the Network is shared among a

number of streams, which exhibit a lower ASIL (or none at all) than
required for daдe10ms,5ms . In consequence, these frames can influence
the timing behavior of ECU1, as the reception of any Ethernet frame
triggers an IRQ on the receiving ECU. This is indicated by the task
precedence shown in Figure 3b between τNW y and τI RQ .



Cross-Layer Dependency Analysis with Timing Dependence Graphs DAC ’18, June 24–29, 2018, San Francisco, CA, USA

Figure 4 shows the resulting reachability graphGr each (d
aдe
10ms,5ms )

ofdaдeΨ1
. What the reachability graph shows is that the timing behav-

ior of event streams on the network can influence the IRQ-load of
ECU1, and is thus able to taint the requirement of Gr each (d

aдe
Ψ1

)’s
root. The interference from unqualified streams is highlighted in or-
ange coloring, which shall indicate the lowest assurance level, while
white coloring indicates a similar assurance level as daдe10ms,5ms .
Consequently, the example system would not fulfill the strict non-
interference requirement.

Figure 4: Reachability Graph Gr each (d
aдe
10ms,5ms ) for the data-

age requirement of the yaw rate

To understand the general importance of automatic timing depen-
dency analysis for system design we investigate system feasibility
w.r.t. strict timing non-interference. A system is feasible under the
strict non-interference constraint iff the reachability graph of the
TDG of any constraint attributed with a ASIL does not contain any
dependency on any element with a lower ASIL. To investigate feasi-
bility under this constraint, we generate test systems that resemble
typical automotive cause-effect chains. I.e. each cause-effect chain
contains a number of runnables with varying triggering periods
and implicit, unbuffered label communication. Without loss of gen-
erality we assume that each runnable is mapped into an individual
task, and that each cause-effect chain contains at least one label
between communicating tasks. Criticalities, i.e. ASILs between QM
and D, are randomly (uniformly) assigned to each of the cause-
effect chains, and the chains are generated with the SMFF/TGFF
benchmark [12]. For each chain, the end-to-end data age is set as
the safety-critical timing constraint. It is composed of the data age
between the communicating tasks and the response times of tasks
between labels.

Note that w.r.t. systems design and the technical safety concept
all cause-effect chains are dependent at this stage, since informa-
tion on the platform is missing to proof independence. For the
experiment, the platforms are also generated with SMFF and the
cause-effect chains are mapped in a sensor-to-actuator style, where
no chain traverses a resource more than once, although consecutive
tasks in the data flow of the cause-effect chain can reside on one
resource (for over and undersampling). W.r.t. their timing behavior
the chains on the generated platform are still dependent, as the
necessary knowledge to compute the TDGs is still insufficient and
thus no proof of independence is possible. In oder to construct
the TDGs information on the scheduling strategy and parameters
must be available. Automotive ECUs are typically SPP scheduled,
consequently we assume this for the generated systems as well [2].

Subsequently, we conduct the experiment in two variants: In the
first one, we assign priorities to individual tasks randomly, while
in the second one priorities on each resource are assigned in RM
order, i.e. according to the triggering period of the task. To deter-
mine feasibility, we compute the reachability graph of the WCRT
and data-age requirements for all cause-effect chains and check
whether a parameter node v ∈V (e.g. the WCET) of a task from
any lower-critical cause-effect chain is contained. I.e. a cause-effect
chain is marked infeasible if one of its tasks experiences interference
according to 8.

We generated 10000 test systems, each containing four resources
with 40 cause-effect chains consisting of eight tasks each. The
attraction factor for the SMFF mapper is set such that on average 2
tasks per chain reside on the same resource.

A B C DCriticality
50

60

70

80

90

100

%
-ra

tio
 o

f r
ej

ec
te

d 
ca

us
e-

ef
fe

ct
ch

ai
ns

 p
er

 c
rit

ica
lit

y

RMS
Random

Figure 5: %-ratio of infeasible effect chains per criticality un-
der the strict non-interference definition

A B C DCriticality
0

5

10

15

20

25

30

35

%
-ra

tio
 o

f s
ch

ed
ul

ab
le

 c
au

se
-e

ffe
ct

ch
ai

ns
 p

er
 c

rit
ica

lit
y

RMS
CAP

Figure 6: %-ratio of schedulable cause-effect chains per crit-
icality

Figure 5 shows the %-ratios of infeasible chains (w.r.t. strict tim-
ing non-interference) over all chains per criticality. For an entirely
random mapping almost all effect chains (above 99%) from a cer-
tain criticality experience interference from a lower criticality and
is thus infeasible. This can be expected due to the random map-
ping and priority assignment. For the typically applied RM priority
scheme (due to its optimal resource usage), still most of the chains
experience interference from a lower criticality. Compared to the
random priority assignment chains with oversampling turn feasible,
since RM assignment causes higher task priorities. However, the
result is unsatisfactory if chains with heterogeneous criticalities
should be mapped to a common platform.

The unfeasible systems can only be made feasible if a design
parameter is changed, e.g. the mapping or priority assignment. If
we assume the mapping is fixed due to sensor and actuator depen-
dencies, the priorities have to be assigned such that they isolate



DAC ’18, June 24–29, 2018, San Francisco, CA, USA Mischa Möstl and Rolf Ernst

timing of different criticalities. A Criticality as Priority (CAP) pri-
ority order on each resource turns all chains feasible, however, has
implications on the timing performance and can affect schedulabil-
ity compared to the optimal RM assignment. To investigate this, we
assign WCET and BCET with the UUnifast algorithm (utilizations
of 0.6 to 0.9 per resource, BCET probability of 0.5), and assume the
period of a task to be its deadline. Figure 6 shows the deteriorated
schedulability of the CAP compared to an RM assignment. Note
that a chain is considered unschedulable if at least one task of the
chain violates its deadline.

5.2 Bounded Interference
However, safety and performance are not necessarily antagonists.
In cases where a schedulable, performance-efficient priority as-
signment (e.g. RM) can be found, but strict interference exists,
timing-dependence analysis can be used as a design method to
avoid infeasible systems. Therefore, we identify timing parameters
that interfere with a requirement of a certain criticality via the
TDG. The technical safety concept then only has to ensure that
the interference from these parameters is bounded such that it
can not violate a timing requirement. This only lifts the respective
parameter’s safety requirement, not the ASIL of its function or
cause-effect chain. It relaxes the strict notion of non-interference
from 8 to one of bounded interference. For bounded interference the
TDG then systematically identifies timing parameters that must be
assured to the criticality level of the strictly interfered requirement.
I.e. although a timing parameter belongs to a lower-critical effect
chain, the respective parameter must be qualified to the required
level, e.g. through suitable documentation or analysis techniques.
For instance, tight WCET parameters for low or uncritical func-
tions are often not documented and specified to the same extent as
functions with higher ASIL requirements. The TDG, however, can
require this specifically for one parameter without propagating the
whole safety requirement to the interfering function. After assuring
identified requirements, the system is feasible under the bounded
interference requirement.

5.3 Scalability
The runtime of our TDG construction is dependent on the number
of runnables and tasks (assuming: #cores << #tasks + #runnables).
Measurements2 for systems with 4 up to 20 cores with a task struc-
ture similar to [18], and a random mapping of tasks to resources
support this: The median time per run (out of 100 runs) is between
6s and 7s. This is identical to the runtime for TDG and reachability
graph construction in the model of a publicly available real-world
engine-management system with 4 cores and over 10000 runnables
and labels each [18].

6 CONCLUSION
For a comprehensive view on a system’s behavior to rule out in-
terference ISO 26262 proposes methods like FTA and FMEA. Our
proposed TDGs support a system-wide FMEA by proving timing
non-interference proofs in an automated way. Furthermore, we
have shown how to use TDGs as a design automation method for
cases where strict timing non-interference can not be proved. Our
2 conducted single threaded on an Intel i5-3210M@2.5GHz

Non-Interference Analysis increases design efficiency since it limits
the separation of elements with different ASILs to relevant depen-
dencies, and a proof that this suffices can be provided. This is well
suited to be combined with run-time enforcement techniques such
as [7, 10]. However, limiting their non-negligible overhead to a
minimum since the technique is only applied where necessary.

REFERENCES
[1] Karl-Erik Årzén, Anton Cervin, and Dan Henriksson. 2005. Implementation-

Aware Embedded Control Systems. In Handbook of Networked and Embedded
Control Systems. Birkhäuser.

[2] AUTOSAR 2016. Specification of Operating System (4.3 ed.). AUTOSAR.
[3] Iain John Bate. 1999. Scheduling and timing analysis for safety critical real-time

systems. Ph.D. Dissertation. University of York.
[4] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. 2007. Sensitivity analysis for

fixed-priority real-time systems. Real-Time Systems 39, 1-3 (April 2007), 5–30.
[5] Kai-Björn Gemlau, Johannes Schlatow, Mischa Möstl, and Rolf Ernst. 2017. Com-

positional Analysis for the WATERS Industrial Challenge 2017. In International
Workshop on Analysis Tools andMethodologies for Embedded and Real-time Systems
(WATERS). Dubrovnik, Croatia.

[6] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and Rolf
Ernst. 2005. System Level Performance Analysis - the SymTA/S Approach. In
IEE Proceedings Computers and Digital Techniques.

[7] Kai Huang, Gang Chen, C. Buckl, and A. Knoll. 2012. Conforming the runtime
inputs for hard real-time embedded systems. In 2012 49th ACM/EDAC/IEEE Design
Automation Conference (DAC). 430 –436.

[8] Intern. Organization for Standardization - ISO 2011. ISO 26262 - Road vehicles -
Functional safety (2 ed.). Intern. Organization for Standardization - ISO.

[9] Hermann Kopetz. 2011. Real-Time Systems: Design Principles for Distributed
Embedded Applications (2 ed.). Springer.

[10] Moritz Neukirchner, Sophie Quinton, Rolf Ernst, and Kai Lampka. 2013. Multi-
mode monitoring for mixed-criticality real-time systems. IEEE, 1–10.

[11] Moritz Neukirchner, Sophie Quinton, Tobias Michaels, Philip Axer, and Rolf Ernst.
2013. Sensitivity Analysis for Arbitrary Activation Patterns in Real-time Systems.
In Proceedings of the Conference on Design, Automation and Test in Europe (DATE
’13). EDA Consortium, 135–140.

[12] Moritz Neukirchner, Steffen Stein, and Rolf Ernst. 2011. Smff: System models
for free. In 2nd International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS 2011). 6.

[13] Silviu-Iulian Niculescu. 2001. Delay effects on stability: a robust control approach.
Vol. 269. Springer Science & Business Media.

[14] Marcus Nolte, Marcel Rose, Torben Stolte, and Markus Maurer. 2017. Model
Predictive Control Based Trajectory Generation for Autonomous Vehicles – An
Architectural Approach. Los Angeles, USA.

[15] R. Racu, R. Ernst, and A. Hamann. 2006. A formal approach to robustness
maximization of complex heterogeneous embedded systems. In Proceedings of the
4th International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’06). 40–45. https://doi.org/10.1145/1176254.1176267

[16] A. Sangiovanni-Vincentelli. 2012. Taming Dr. Frankenstein: A primer on the chal-
lenges posed by cyber-physical systems. In 2012 IEEE Technology Time Machine
Symposium (TTM). 1–1. https://doi.org/10.1109/TTM.2012.6509037

[17] Johannes Schlatow and Rolf Ernst. 2016. Response-Time Analysis for Task Chains
in Communicating Threads. In Real-Time Embedded Technology & Applications
Symposium (RTAS). Vienna, Austria.

[18] Arne Hamann Simon Kramer, Dirk Ziegenbein. 2016. Real World Automotive
Benchmark For Free. In Proceedings of the 6th International Workshop on Analysis
Tools and Methodologies for Embedded Real-Time Systems WATERS 2016.

[19] T. Stolte, G. Bagschik, and M. Maurer. 2016. Safety goals and functional safety
requirements for actuation systems of automated vehicles. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC). 2191–2198.

[20] Daniel Thiele, Philip Axer, and Rolf Ernst. 2015. Improving Formal Timing
Analysis of Switched Ethernet by Exploiting FIFO Scheduling. In 52nd Annual
Design Automation Conference (DAC ’15). ACM, New York, NY, USA, 41:1–41:6.

[21] L. Thiele, S. Chakraborty, and M. Naedele. 2000. Real-time calculus for scheduling
hard real-time systems. In The 2000 IEEE International Symposium on Circuits and
Systems, 2000. Proceedings. ISCAS 2000 Geneva, Vol. 4. 101–104 vol.4.

[22] ErnestoWandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. 2006. System
architecture evaluation using modular performance analysis: a case study. Intern.
Journal on Software Tools for Technology Transfer 8, 6 (July 2006), 649–667.

https://doi.org/10.1145/1176254.1176267
https://doi.org/10.1109/TTM.2012.6509037

	cover_page_form
	paper

	Paper title: Cross-Layer Dependency Analysis with Timing Dependence Graphs
	Article reference: Mischa Möstl and Rolf Ernst, Cross-Layer Dependency Analysis with Timing Dependence Graphs, in Proceedings of the 55th DAC, June 24–29, 2018, San Francisco, CA, USA
	DOI: https://doi.org/10.1145/3195970.3196018


