
This is an author produced version of :

Article:

Data-Age Analysis and Optimisation for
Cause-Effect Chains in Automotive Control Systems

Johannes Schlatow∗, Mischa Möstl∗, Sebastian Tobuschat∗, Tasuku Ishigooka† and Rolf Ernst∗
∗TU Braunschweig, Institute of Computer and Network Engineering, Braunschweig, Germany

{schlatow,moestl,tobuschat,ernst}@ida.ing.tu-bs.de
†Center for Technology Innovation – Controls, Research & Development Group, Hitachi Ltd., Ibaraki, Japan

tasuku.ishigoka.kc@hitachi.com

Abstract—Automotive control systems typically have latency
requirements for certain cause-effect chains. When implementing
and integrating these systems, these latency requirements must
be guaranteed e.g. by applying a worst-case analysis that takes all
indeterminism and limited predictability of the timing behaviour
into account. In this paper, we address the latency analysis
for multi-rate distributed cause-effect chains considering static-
priority preemptive scheduling of offset-synchronised periodic
tasks. We particularly focus on data age as one representative of
the two most common latency semantics. Our main contribution
is an Mixed Integer Linear Program-based optimisation to select
design parameters (priorities, task-to-processor mapping, offsets)
that minimise the data age. In our experimental evaluation, we
apply our method to two real-world automotive use cases.

I. INTRODUCTION

Automotive control systems are a prominent representative
of increasingly complex Cyber-Physical Systems (CPSs), par-
ticularly with regard to the emergence of Advanced Driver-
Assistance Systems (ADASs). These systems are typically
constrained by certain Sensor-to-Actuator (StA) delays that
must not be exceeded. These delays are commonly captured as
(worst-case) latencies of so-called cause-effect chains, which
describe the data flow as it is being processed by different
parts (i.e. tasks) of the software system. In particular, when it
comes to multi-rate control systems, sampling of data values is
applied. This leads to a time-triggered (periodic) data exchange
along the cause-effect chains which is well-understood by
control theory. Note that, depending on the function, i.e. the
particular sensor and actuator, one distinguishes between two
latency semantics: reaction time and data age (cf. [1]). The
former describes the latest time it takes a control system to
react to a certain sensor value whereas the latter describes
the maximum age of the input data that was used for a
particular output. A too large data age often reduces the control
performance such that data age constraints must be considered
for certain chains.

When designing such control systems in simulation, certain
implementation details are not taken into account as they
remain unknown at this stage. More precisely, critical require-
ments must still be checked and verified after implementation
and integration on the target platform. For instance, worst-
case analysis tackles indeterminism and predictability issues
(e.g. jitter) and provides safe upper/lower bounds. When it
comes to control systems, response times and latencies are

the main subjects of such an analysis. As these are influenced
by particular design parameters such as scheduling priorities
and task-to-processor mapping, selecting parameters such that
the given requirements are satisfied becomes an important
objective of the software integration. In particular, we focus
on data age constraints that not only should be satisfied but –
for better robustness – can further be minimised.

In this paper, we present an Mixed Integer Linear Program
(MILP)-based optimisation of these design parameters that
we apply to two real-world automotive use cases in order
to minimise the data age of given cause-effect chains. As
this work was motivated by one of these use cases, we first
introduce and specify its scenario in Section II. From this, we
derive our system model and problem statement in Section III
and summarise related work in Section IV. In Section V, we
briefly present the response-time and data-age analysis for
which we derive an MILP formulation in Section VI. We apply
and evaluate this formulation to our use case and a similar
automotive benchmark in Section VII before we summarise
and conclude our findings in Section VIII.

II. AUTOMOTIVE USE CASE

Table I
TASK SET A (ADAS)

Core Task Period WCET BCET

0 ISR 550µs 20µs 5µs
0 Task A 100ms 250µs 70µs
0 Task B 10ms 500µs 40µs
0 Task C 50ms 2600µs 1800µs
0 Task D 250µs 160µs 45µs
0 Task E 10ms 750µs 200µs

1 Task G 10ms 200µs 1µs
1 Task H 50ms 3800µs 2600µs
1 Task I 10ms 110µs 2µs
1 Task J 10ms 2500µs 2µs
1 Task K 10ms 500µs 3µs
1 Task L 2000ms 300µs 150µs

The following is a brief description of a real ADAS use case
from Hitachi Ltd. that underlines the relevance of this work.
In addition, we will later show the practical applicability of
our analysis w.r.t. this use case in Section VII.

The use case comprises a dual-core system running a set of
periodic real-time tasks as specified in Table I. Note that this

ISR 1 Task E

Task G

Task H Task C

Cause-Effect Chain 1
Cause-Effect Chain 2

Figure 1. Task data dependencies

task set also incorporates best-effort tasks as well as a single
sporadic task (ISR). Both cores employ local Static-Priority
Preemptive (SPP) scheduling. Data dependencies between the
tasks lead to two distributed cause-effect chains as illustrated
in Figure 1. A data dependency originates when a task writes
output data (e.g. sensor value) into shared memory which is
read and used as input data by another task. The performance
of these chains is latency critical in terms of the maximum
data age.

Several obstacles arise for this use case. Due to a high
load on both cores, overapproximation during Response-Time
Analysis (RTA) can quickly result in an overloaded CPU.
Hence, Worst-Case Execution Times (WCETs) and Best-Case
Execution Times (BCETs) for this task set have been extracted
from traces and summarised in Table I. The measured execu-
tion times are depicted as a Tukey boxplot in Figure 2 in which
the red bar indicates the median and the box includes the data
points between the 25th percentile and the 75th percentile.

IS
R

 A

T
A

S
K

 A

T
A

S
K

 B

T
A

S
K

 C

T
A

S
K

 D

T
A

S
K

 E

T
a
sk

 G

T
a
sk

 H

T
a
sk

 I

T
a
sk

 J

T
a
sk

 K

T
a
sk

 L

100

101

102

103

104

E
x
e
cu

ti
o
n
 t

im
e
 (

u
s)

Tukey Boxplot of trace data

Figure 2. Tukey Boxplot of traced execution times

W.r.t. data age analysis, the time-triggered nature of the
inter-task communication (sampling) must be taken into ac-
count as this imposes additional delays depending on the
sampling periods and phasing.

Furthermore, as the cause-effect chains stretch across both
cores, we need to take synchronisation and activation phas-
es/offsets into account. We can assume that both cores use
a common timer such that activation periods can be syn-
chronised. However, the phasing can significantly influence
the data age and the Worst-Case Response Times (WCRTs).
Hence, a data age analysis must not only respect the different
sampling periods but also the activation phases in order to
provide reasonable bounds.

In the scope of this paper, we not only want to perform an
RTA and data age analysis for this system but also want to

answer the following questions:

1) Can we improve the data-age bound if we not only
select scheduling priorities but also include (and wisely
choose) the activation phases?

2) Can we also change the task-to-core mapping to improve
the data-age bound?

III. PROBLEM STATEMENT AND SYSTEM MODEL

In this section, we formulate the underlying system model
and problem statement for the remainder of this paper.

A. Task model

The workload is modelled by a set of periodic tasks
{τ1, . . . , τn} and a set of sporadic tasks {τn+1, . . . , τm}. A
job of a task τi is released at most every Ti time units.
For periodic tasks, we only consider harmonic periods, i.e.
∀i 6= j : min(Ti, Tj) = gcd(Ti, Tj). The release of a periodic
task’s job can be further delayed by φi time units (activation
phase) relative to the common timer. The relative arrival time
of the j-th job of τi is denoted by ai(j). The execution time
of each job is bounded from above by C+

i time units and from
below by C−i time units. A job must be completed before the
next job of the same task arrives (constrained deadlines). More
precisely, a job has the relative deadline Di(j) ≤ (j + 1) · Ti.
We denote the relative completion (exit) time by ei(j) and
define the response time Ri(j) as the time between ai(j) and
ei(j), such that ∀j : ei(j) ≤ Di(j)⇒ Ri(j)+φi ≤ Ti. A task
τi will read input data from shared memory at the beginning
of its execution and will write output data upon completion.
More formally, we assume ai(j) ≤ ri(j) < wi(j) = ei(j),
where ri(j) and wi(j) denote the relative read and write
times. Figure 3 illustrates this model for two tasks {τi, τj}
with Ti = 2Tj .

B. Cause-effect chains

A cause-effect chain Ψ is given by a sequence of tasks
Ψ = (τi, τi+1, τi+2, . . .) which corresponds to a sequence of
alternating read and write events (ri, wi, ri+1, wi+1, ri+2, . . .),
i.e. τi+1 reads data from τi and writes data for τi+2. We
differentiate two relevant latency semantics for Ψ, reaction
time and data age as specified in [1]: Reaction time denotes
the maximum time it may take for an input value (e.g. sensor)
to cause a reaction (e.g. actuator). Data age describes the
maximum age of the input data on which an output is based.
This difference results from the register-based communication
for which only the last written data is stored (last-is-best)
for the reader. I.e. for undersampling, data is overwritten
whereas, for oversampling, the same data will be read multiple
times. For data age, the adjacent preceding write thus becomes
relevant when looking at a particular read (last written data).
In contrast, for reaction time, the adjacent subsequent read is
of interest (first reaction to the written data).

τj

τi
0

Dj(0) Tj Dj(1) 2Tj

TiDi(0)

rj(0)aj(0)

ej(0)wj(0)

rj(1)aj(1)

ej(1)wj(1)

ri(0)ai(0)

ei(0)wi(0)

φj φj

φi

Cj(0) = Rj(0) Cj(1)

Rj(1)

Ci(0) = Ri(0)

Figure 3. Illustration of our task model and terminology

C. Scheduling
The task set is scheduled on a given set of equal processors

using partitioned SPP scheduling. For this, each task τi will
be assigned a static priority πi. Also, each task will be
statically mapped to a single processors. On each processor,
the pending job (released but not yet completed) with the
highest priority will be scheduled. Higher-priority jobs can
preempt the execution of lower-priority jobs. Note that lower
numerical values of πi correspond to higher priorities.

D. Problem statement
Based on the above model, we can now define our problem

statement: Given a task set (τi) including periods Ti and
execution time bounds C+/C−, a set of cause-effect chains
(Ψj) and the number of processors m, we want to derive
a priority assignment (πi), processor mapping (τi → [1,m])
and activation phases (φi) that minimise the data age laten-
cies of the chains and guarantees the implicit response-time
constraints (Ri + φi ≤ Ti).

IV. RELATED WORK

The problem of latency computation in multi-rate systems
has first been approached by Feiertag et al. [2] with a
compositional framework. In particular, the authors generalise
end-to-end semantics, eliminate unreachable timing paths and
provide bounds for different latency semantics but exclude
offsets. Moreover, data age and response time are denoted
as “last-to-last” and “first-to-first” semantics respectively. La-
tency analysis for cause-effect chains has also been addressed
by the WATERS Industrial Challenge 2017 [3] for which
several solutions have been presented [4]–[8]. Most recently,
the cause-effect chain analysis with different communication
paradigms and varying timing information was summarised
by Becker et al. [9]. Our compositional approach reduces the
cause-effect chain analysis to the calculation of pairwise write-
to-read delays and therefore simplifies the MILP formulation.

In contrast, Becker et al. take a holistic approach by looking
at data propagation paths which may include more knowledge
(if available) to further tighten the analysis.

Priority assignment is a well-known problem that must be
faced for design and integration of real-time systems. Existing
(optimal) techniques have recently been reviewed by Davis et
al. [10]. Moreover, Davis and Burns [11] published a survey
about real-time scheduling for multiprocessor systems which
summarises fundamental results and research challenges in-
cluding task-to-processor allocation. Wieder and Brandenburg
[12] have presented an MILP formulation of RTA on multi-
processing systems with shared resources as a technique to
solve the task-to-processor allocation and priority assignment.
However, the existing methods only consider optimality w.r.t.
local deadlines, i.e. response-time constraints, rather than end-
to-end latencies for cause-effect chains.

V. RESPONSE-TIME AND DATA-AGE ANALYSIS

In this section, we summarise the RTA considering acti-
vation phases (offset) which we apply for our system model.
Furthermore, we present our data-age analysis for cause-effect
chains. Before proceeding, let us first clarify some additional
terminology and assumptions.

Because of limited timing predictability of real systems, we
can only determine lower and upper bounds for certain time
values. More precisely, we consider this for w, r, a, e, φ, C,R,
for which we denote the lower/upper bounds by a superscript
−/+, e.g. w−/w+.

Note that, as we only consider independent tasks that share
a common time reference we do not consider any activation
jitter. Even if the common time reference experiences jitter,
all tasks will be affected in the same way. On the other hand,
we do consider jittering offsets which can result from small
variations in execution time of the scheduler.

In consequence, we assume that the lower and upper bounds
of different offsets are ordered equally:

φ−i > φ−j ⇔ φ+
i > φ+

j (1)

We further denote activation events ai, aj that have the
same reference as coinciding activations ai(0) and aj(0). For
harmonic periods (let Ti > Tj), aj(n) with n = Ti

Tj
coincides

again with ai(1).

A. Response-time analysis

We apply a response-time analysis based on [13] but slightly
adapted for our definition of response times. As argued above,
we only consider jitter that originates from varying offsets.
In addition, we can safely exclude certain interferers if their
offsets and periods arrange favourably:

Theorem 1. A higher-priority task τj can not interfere with a
task τi if it (i.e. τj) has a shorter (harmonic) period (Ti = nTj
with n ∈ N) and is activated after τi’s latest completion, i.e.
φj ≥ φi +R+

i .

Proof: First, the job of τj that coincides with τi at time t
cannot interfere as it is only released after τi completed. Let
t = 0 without loss of generality. Because of Ti = nTj and the
implicit deadlines, any job of τj that starts within [0, Ti] will
also finish within this interval and thus cannot interfere with
any later job of τi.

We thus calculate the best-case (R−) and worst-case
response-times (R+) as follows:

R−i = C−i (2)

R+
i = C+

i +
∑
j∈Ii

⌈
R+
i + Jj
Tj

⌉
· C+

j (3)

with Jj = φ+
j − φ

−
j and Ii = {j|πj ≤ πi} \ {j|φj ≥ φi +

R+
i ∧ Ti = nTj}, n ∈ N.
Eq. (3) calculates the WCRT from the WCET of task τi

itself and the maximum preemption time from every possible
interferer (τj) that is activated every Tj in the time window
from τi’s activation to its completion (R+

i). Note that, an
activation jitter (Jj) of the interfering tasks increases this
time window. Here, we derive the activation jitter from the
activation offsets. In contrast to [13], we also exclude certain
interferers from the set of possible interferers as proven in
Theorem 1.

B. Data-age analysis

As defined in Section III, a cause-effect chain is a sequence
of read and write events. In order to perform a data-age
analysis, we need to bound the distance between consecutive
read and write events. Note that the distance between a
read and the subsequent write event (read-write distance) is
bounded by the WCRT R+.

Theorem 2. The read-write distance for a task τi is bounded
by the worst-case response time R+

i .

Proof: The read-write distance is calculated by
maxn{wi(n)− ri(n)}. As reading occurs after activation and

writing before completion, i.e. ri(j) ≥ ai(j) and wi(j) ≤
ei(j), the read-write distance is bounded by maxn{ei(n) −
ai(n)}. By definition, the worst-case distance between ai(n)
and ei(n) is referred to as R+

i .

A

B

C

ď+

ď+

Figure 4. Write-read distances according to Eq. (12-14)

For the distance between a write and the subsequent read
event (write-read distance), we must consider all possible
candidates (jobs) of the producing task (writer) that may have
provided the input data for a particular job of the consuming
task (reader). Figure 4 illustrates this candidate search w.r.t.
data-age semantics The figure depicts a Gantt chart for a cause-
effect chain of three tasks A, B and C. Task B has a longer
period than task A (undersampling) whereas task C has a
shorter period than task B (oversampling). In this example,
the jobs (candidates) that exchange data with a particular job
of task B are highlighted. In order to compute the data-age
delay, we are only interested in the directly preceding job of
the writer (red arrows).

This candidate search must respect different sampling
periods and indeterminate (but bounded) read/write times.
However, by assuming harmonic periods, this search can be
kept manageable. For this purpose, let us first derive the
upper/lower bounds for the read and write times before we
elaborate on the calculation of the data-age delay in more
detail.

The lower/upper bounds for the activation and exit times of
a job n of task τi are straightforwardly computed as follows:

a−i (n)= nTi + φ−i (4)
a+
i (n)= nTi + φ+

i (5)
e+
i (n)= nTi + φ+

i +R+
i (6)

e−i (n)= nTi + φ−i +R−i (7)

By definition, output data is written at completion, hence
the write times are bounded by the exit times.

w−i (n) = e−i (n) (8)
w+
i (n) = e+

i (n) (9)

Input data is read at the very beginning of a job, i.e. as
soon as it is scheduled for the first time. In consequence, the
read time cannot be earlier than the arrival time and cannot
be later than the Best-Case Response Time (BCRT) before the
exit time.

r−i (n)= a−i (n) (10)
r+
i (n)= e+

i (n)−R−i (11)

With these bounds, we can now calculate the data-age
delay (write-read distance) between τi and τi+1, which we
denote by ď+

i,i+1. More precisely, we look at the coinciding
activation cycles and decide whether the reader reads data that
was written in the same or previous cycle. We distinguish
two cases: oversampling and undersampling (including equal
periods). Note that we can still bound the write-read distance
for tasks with non-harmonic periods [4] (here: sporadic tasks,
e.g. ISRs) but not leverage offsets in this case.

1) Oversampling: (Ti+1 < Ti)
In case of oversampling, the same output data of τi is

read multiple times by τi+1, i.e. we must consider the read
times ri+1(n) with n ∈ [0, Ti

Ti+1
− 1]. Depending on the write

time of τi, τi+1 might also read data from the previous cycle
such that we need to take wi(−1) in addition to wi(0) into
consideration. Thus, we look for the maximum between all
possible read/write times taking into account that data might
be produced in the previous cycle if w+

i (0) > r−i+1(n):

ď+
i,i+1 ≥ (12)

max
n≥0

(
r+
i+1(n)−

{
w−i (0)

w−i (−1) if w+
i (0) > r−i+1(n)

)
2) Undersampling: (Ti+1 ≥ Ti)
For undersampling, we only need to consider a single reader

job but multiple write times wi+1(n) with n ∈ [−1, Ti+1

Ti
−1].

If the reader reads data produced in the same cycle, the
data-age is bounded by:

ď+
i,i+1 ≥ max

n≥0
(r+
i+1(0)− w−i (n)) (13)

Otherwise, if the data may be produced in the previous cycle,
we need to consider w−i (−1):

∀w+
i (0) > r−i+1(0) :

ď+
i,i+1 ≥ r

+
i+1(0)− w−i (−1) (14)

Note that we do not consider overwrite effects in Eq. (13)
and (14), i.e. if it is guaranteed that the output data is
overwritten by the next job of τi before τj reads the data, these
formulas are pessimistic. However, by using these bounds as a
basis for our MILP formulation, we can simultaneously reduce
or even eliminate overwrite effects along with the data age
optimisation.

VI. MILP FORMULATION

In this section, we first summarise the MILP formulation
for the RTA which is based on [12] but extended to consider
offsets. Secondly, we present our MILP formulation for the
data-age analysis of cause-effect chains. In combination, both
parts will find activation offsets, priority assignments and
processor mappings for a given task set such that the response-
time constraints (deadlines) will be satisfied and data-age will
be minimised.

We consider the tasks’ best-case and worst-case execution
times C−i /C+

i , and periods Ti as constants (input parameters).
In addition, as we want to find activation offsets, we introduce

a constant jitter Ji to describe the variance between φ+
i and

φ−i , i.e. φ+
i − φ

−
i = 2Ji.

We introduce the following decision variables:
• The binary variable Ai,k which takes 1 iff τi is mapped

to processor k.
• The binary variable πi,p which takes 1 iff τi has priority
p.

• The integer variable φi ≥ 0 which decides the activation
offset of τi.

A. Response-time analysis

The RTA is formulated by the following MILP constraints;
for a more detailed explanation of these, please refer to [12].
Every task must be mapped to exactly one of the m processors:

∀τi :

m∑
k=1

Ai,k = 1 (15)

Every task must be assigned to exactly one priority:

∀τi :

n∑
p=1

πi,p = 1 (16)

Every priority must be assigned at most once:

∀1 ≤ p ≤ n :
∑
τi

πi,p ≤ 1 (17)

The additional binary variable Vx,i is forced to 1 iff τx and τi
are mapped to the same processor:

∀τx : ∀τi, τx 6= τi : ∀k, 1 ≤ k ≤ m :

Vx,i ≥ 1− (2−Ai,k −Ax,k) (18)

In order to distinguish between higher from lower priority
tasks, the binary variable Xi,x is introduced and shall take 1
iff τi has a higher priority than τx (lower p = higher priority).
This is implemented by the following constraints which force
Xi,x to 0 iff τx is on a higher priority and by enforcing that
either Xi,x or Xx,i is 1:

∀τx : ∀τi, τx 6= τi : ∀p, 1 ≤ p ≤ n− 1 :

Xi,x ≤
n∑

j=p+1

πx,j + (1− πi,p) (19)

∀τx : ∀τi, τx 6= τi : Xi,x ≤ 1− πi,n (20)
∀τx : ∀τi, τx 6= τi : Xi,x +Xx,i = 1 (21)

Eq. (19) is only effective if τi has priority p as otherwise,
(1−πi,p) will be > 0 so that Xi,x can assume 1. Furthermore,
if τx has not a lower priority, i.e.

∑n
j=p+1 πx,j = 0, the right

side will evaluate to 0 such Xi,x must assume 0. Note that
Eq. (20) does the same for the lowest priority task which is
not covered by Eq. (19).

Now, we can formulate the response-time bounds. The
WCRT of τi is bounded by the task’s WCET plus any
interference as follows:

∀τi : R+
i = C+

i +
∑

τx,τx 6=τi

Hi,x · C+
x (22)

Where Hi,x ≤
⌈
Ti
Tx

⌉
is an integer variable that bounds the

number of executions of τx that may interfere with τi. If τx
has a smaller period (and deadline), it can only interfere if its
offset φx is smaller than the completion time of τi, i.e. R+

i +φi.
Note that Hi,x shall be 0 if τi is assigned a higher priority
(Xi,x = 1) or not mapped to the same processor (1−Vi,x = 1).

∀τx, τx 6= τi : (23)

Hi,x ≥ −
Ti
Tx

(1− Vi,x +Xi,x) +

{
Ri+φi−φx

Tx
if Ti = nTj

Ri+Jj
Tx

else

The response-time constraint (implicit deadline) is easily for-
mulated by:

∀τi : Ri + φi + Ji ≤ Ti (24)

B. Data-age analysis

First, we introduce variables for w+/−
i and r+/−

i and encode
the previously derived bounds for w+/−

i (0) and r+/−
i (0) (cf.

Eq. (4)-(11)) into the following constraints by replacing φ−i
and φ+

i with φi ± Ji:

∀τi : r−i = φi − Ji (25)
∀τi : r+

i = w+
i −R

−
i (26)

∀τi : w−i = φi − Ji +R−i (27)
∀τi : w+

i = φi + Ji +R+
i (28)

Note that R−i is provided by the task’s BCET, i.e.
C−i , which is constant. Furthermore, we can calculate the
w

+/−
i (n)/r+/−

i (n) for n > 0 by adding the term nTi.
The data age of a cause-effect chain Ψj = (τ1, . . . , τk) is

captured in the integer variable DAj ≥ 0 and calculated by
the following constraint as the sum of all response times and
data-age delays plus the worst-case activation offset:

∀Ψj : DAj = φ1 + J1 +

k−1∑
i=1

(R+
i + ďi,i+1) (29)

Here, the data-age delays are provided by the integer variables
ď+
i,i+1 ≥ 0. In order to constrain these delays, we need to

encode the equations (12)-(14) presented in Section V-B into
linear constraints. For this purpose, we use binary decision
variables by which we can mask the conditional cases in (12)
and (14).

For the oversampling case, we introduce the binary variable
Oj,i,n which is forced to 0 iff the write time of the 0-th job
of the i-th task in Ψj can be later than the read time of the
n-th job of the reader (i.e. w+

i (0) > r−i+i(n)). Note that we
encode this for every chain Ψj , for every writer in this chain
(1 ≤ i ≤ k − 1), only if the reader has a shorter period
(Ti+1 < Ti). In this case, the following constraint must be
satisfied for every n:

∀Ψj : ∀1 ≤ i ≤ k − 1 : Ti+1 < Ti : ∀0 ≤ n ≤ Ti
Ti+1

− 1 :

Ti · (1−Oj,i,n) ≥ w+
i − (r−i+1 + nTi+1) (30)

If the right side of Eq. (30) is negative (or zero), the left side
always holds. The right side becomes positive if w+

i (0) >

r−i (n) and is bounded from above by Ti. In this case, Oj,i,n
must be 0 to satisfy the constraint.

Now, we can encode Eq. (12) into two linear constraints
that represent the two cases:

∀Ψj : ∀1 ≤ i ≤ k − 1 : Ti+1 < Ti : ∀0 ≤ n ≤ Ti
Ti+1

− 1 :

ď+
i,i+1 ≥ r

+
i+1 + nTi+1 − w−i (31)

ď+
i,i+1 ≥ r

+
i+1 + nTi+1 − (w−i − Ti)− 2Oj,i,nTi (32)

Note that Eq. (32) corresponds to the conditional case in
Eq. (12), i.e. w+

i (0) > r−i+1(n), in which case Oj,i,n = 0.
Note that the constraint is not effective once the right side
becomes negative. This is the case when Oj,i,n = 1 as 2Ti is
an upper bound for r+

i+1(n) − w−i (−1), which is calculated
by the first part of the constraint.

For the undersampling case (including equal periods), we
similarly introduce a binary variable, Uj,i, which is forced to
0 if the write time of the i-th task in Ψj can be later than the
read time of the reader, i.e. w+

i (0) > r−i+1(0):

∀Ψj : ∀1 ≤ i ≤ k − 1 : Ti+1 ≥ Ti :

Ti+1 · (1− Uj,i) ≥ w+
i − r

−
i+1 (33)

Similar to the oversampling case, we encode Eq. (13) and
Eq. (14) by the following constraints:

∀Ψj : ∀1 ≤ i ≤ k − 1 : Ti+1 ≥ Ti : ∀0 ≤ n ≤ Ti+1

Ti
− 1 :

ď+
i,i+1 ≥ r

+
i+1 − (w−i + nTi) (34)

∀Ψj : ∀1 ≤ i ≤ k − 1 : Ti+1 ≥ Ti :

ď+
i,i+1 ≥ r

+
i+1 − (w−i − Ti)− 2Uj,iTi+1 (35)

For the non-harmonic case, we conservatively bound ď by
the maximum distance between two write events, which is
calculated by its period plus response-time jitter:

ď+
i,i+1 ≥ Ti +R+

i −R
−
i (36)

C. Optimisation

In order to minimise the data age, we formulate the objective
function as follows. Note that this must also minimise the
response-time variables as, otherwise, the values will not be
tight, i.e. we are looking for the smallest upper bound. We thus
formulate the objective function such that it first minimises
the data-age variables (DAj) and, as a second objective,
minimises the response-time variables (Ri). We achieve this
by multiplying the data-age variables with the upper bound on
the response time (here: Ti) such that no reduction in response
time can be traded against an increase in data age:

∑
τi

R+
i + Ti ·

∑
Ψj

DAj

 (37)

VII. EVALUATION AND EXPERIMENTS

In this section, we evaluate our MILP formulation on the
ADAS use case as presented in Section II. In addition, we
apply the same approach to a public domain automotive
benchmark [14] from Bosch which specifies an engine control
system and has also been used for the industrial challenge of
the WATERS’16 and WATERS’17 workshop [3].

We implemented the response-time and data-age formu-
lation from Section VI using Zuse Institut Mathematical
Programming Language (ZIMPL) [15] in order to generate
the particular .lp files for the different use cases; the im-
plementation is available online1. The .lp files can be read
by several solvers. In the scope of this paper, we used SCIP2

with SoPlex3. For validation of the response-time and data-age
results, we further used pyCPA4 as reference.

A. ADAS use case

We performed two experiments using the task set from
Table I. In the first experiment, we kept the initial task to
processor mapping and only assigned priorities and offsets. In
the second experiment, we allowed the MILP to also choose
the mapping. We name the experiments A.πφ and A.πφA
respectively so that the names show what parameters are
assigned by the MILP. For all experiments, we used an offset
jitter of Ji = 20µs.

The results are summarised in Table II. By choosing optimal
offsets for the initial scenario, we achieve a data age of approx.
73ms. The main contributors to this are the rather long WCRT
of Task C and a large write-to-read distance between Task H
and Task C. We conclude from this that the predetermined
task to processor mapping only offers a limited optimisation
potential. On the other hand, by changing the mapping in the
second experiment, we can reduce the data age to approx.
12ms.

Note that the chains in this use case are representing two
slightly different paths in the data dependencies (cf. Figure 1).
Moreover, all tasks have equal or longer periods so that only
undersampling is considered in this use case. We therefore
applied our approach to a second use case in the following
section.

B. Engine-control use case

This use case is based on a real-world engine control appli-
cation that has been made publicly available as an automotive
benchmark [14]. The system comprises four cores and 21 tasks
which have been specified as an Amalthea model5 from which
we extracted the task set as shown in Table III.

The model specifies two distinct cause-effect chains that
represent inter-task communication between harmonic and
non-harmonic tasks (i.e. sporadic ISRs) with oversampling and
undersampling as illustrated in Figure 5.

1https://www.ida.ing.tu-bs.de/pub2018/schlatow2018dataage.zip
2http://scip.zib.de/
3http://soplex.zib.de/
4https://bitbucket.org/pycpa
5http://www.amalthea-project.org

Table II
A.πφ AND A.πφA RESULTS (φ AND WCRT IN µs)

A.πφ A.πφA
Task π φ WCRT π φ A WCRT

ISR 3 n/a 20 5 n/a 1 20
Task A 11 20 770 9 30 1 770
Task B 9 1100 5950 4 7990 2 500
Task C 10 3860 27190 6 3860 2 2600
Task D 5 50 180 8 50 1 180
Task E 8 1100 4450 2 8990 2 750
Task G 4 6620 200 1 9780 2 200
Task H 7 20 3800 10 20 2 3800
Task I 2 9370 110 5 7880 2 110
Task J 6 4120 2500 12 20 1 9490
Task K 1 9480 500 3 8490 2 500
Task L 12 20 4100 11 20 1 1750

Chain Data Age Data Age

Chain 1 72655µs 11885µs
Chain 2 73093µs 12323µs

Table III
TASK SET E (ENGINE CONTROL)

Core Task Period WCET BCET

0 ISR 9 6000µs 260µs 124µs
0 ISR 8 1700µs 213µs 91µs
0 ISR 7 5007µs 228µs 121µs
0 ISR 6 1100µs 22µs 10µs
0 ISR 5 900µs 181µs 90µs
0 ISR 4 1504µs 257µs 116µs
0 ISR 10 700µs 22µs 11µs
0 ISR 11 5011µs 215µs 96µs
1 Angle Sync 6660µs 2664µs 913µs
1 Task 1ms 1ms 536µs 175µs
2 Task 200ms 200ms 97µs 49µs
2 Task 20ms 20ms 7328µs 2523µs
2 Task 50ms 50ms 2160µs 919µs
2 Task 5ms 5ms 653µs 255µs
2 Task 2ms 2ms 283µs 97µs
2 Task 100ms 100ms 6593µs 2188µs
2 Task 1000ms 1000ms 96µs 47µs
3 Task 10ms 10ms 8199µs 2792µs
3 ISR 2 9502µs 13µs 7µs
3 ISR 1 9501µs 25µs 10µs
3 ISR 3 9503µs 17µs 8µs

Similar to the previous use case, we perform two experi-
ments: one with predetermined mapping (E.πφ) and one with
optimised mapping (E.πφA).

The results are summarised in Table IV. Although it takes
significantly more processing time to find the optimal solution
(cf. Section VII-C), a near-optimal solution is often found after
a short time as explained in the next section.

C. Statistics and summary

Table V shows the statistics for our experiments. More
precisely, it shows the number of tasks, cores, chains, and
the system load (utilisation) for our experiments. Note that
a system load of 1.26 indicates that the (multi-core) system
is loaded with 126 % of the maximum single-core CPU
utilisation. Additionally, we listed the number of variables and
constraints (after presolving, i.e. after the solver eliminated

https://www.ida.ing.tu-bs.de/pub2018/schlatow2018dataage.zip
http://scip.zib.de/
http://soplex.zib.de/
https://bitbucket.org/pycpa
http://www.amalthea-project.org

ISR 10

Task 2ms

Task 50ms

Task 10msTask 100ms

Cause-Effect Chain 1
Cause-Effect Chain 2

Figure 5. Task data dependencies in engine-control use case

Table IV
E.πφ AND E.πφA RESULTS (φ AND WCRT IN µs)

E.πφ E.πφA
Task π φ WCRT π φ A WCRT

ISR 9 20 n/a 1395 12 n/a 0 1179
ISR 8 14 n/a 438 19 n/a 2 1090
ISR 7 21 n/a 2340 13 n/a 0 2824
ISR 6 2 n/a 44 3 n/a 0 57
ISR 5 10 n/a 225 17 n/a 2 481
ISR 4 19 n/a 1135 11 n/a 0 897
ISR 10 1 n/a 22 1 n/a 0 22
ISR 11 18 n/a 653 18 n/a 2 696
Angle Sync 9 n/a 5880 20 n/a 2 6543
Task 1ms 3 20 536 9 356 0 618
Task 200ms 17 20 21999 8 116 1 97
Task 20ms 11 2269 13428 6 10492 1 9488
Task 50ms 8 20 2443 5 582 1 2160
Task 5ms 5 4044 936 21 20 0 4336
Task 2ms 4 1697 283 14 259 2 283
Task 100ms 12 174 21523 7 1227 1 8753
Task 1000ms 16 20 21619 10 20 1 96
Task 10ms 6 1737 8199 15 20 3 8199
ISR 2 7 n/a 8212 2 n/a 0 35
ISR 1 15 n/a 8254 4 n/a 0 82
ISR 3 13 n/a 8229 16 n/a 2 300

Chain Data Age Data Age

Chain 1 160415µs 134207µs
Chain 2 5249µs 4683µs

superfluous constraints and variables). Note that the engine-
control use case (E) has about three times as many variables
and about five times as many constraints as the ADAS use case
(A). Furthermore, we recorded the number of solutions and
the time it took the solver to find a first solution (feasibility)
and to determine the optimal among all solutions (optimality).
Feasibility refers to finding a first solution that meets all task
deadlines irrespective of the resulting data age.

As expected for MILPs, the first solution can be determined
in a few seconds whereas solving for optimality may take a
long time (up to 377 s for A and more than 280 h for E).
However, as the primal-dual algorithm [16] implemented by
state-of-the-art solvers always bounds the gap to the optimum
so that it can be interrupted once this gap gets small enough.
For the E use case, we found the first near-optimal solution
(0% gap) after approx. 15min6. In our case, we aborted the
E use case after it already reached a gap <0.01 % for several
hours.

In order to further evaluate the robustness of the MILP with
respect to variations in the input parameters, we randomised
the WCETs of A and evaluated the solving time and gap for
ten variations. Figure 6 depicts the results, the legend shows

6on an Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz

Table V
EXPERIMENT STATISTICS

A.πφ A.πφA E.πφ E.πφA

#tasks 12 12 21 21
#cores 2 2 4 4
#chains 2 2 2 2
system load 1.26 1.26 3.19 3.19

#variables 325 490 1020 1511
#constraints 1425 2027 8579 10991
#solutions 7 118 ≥189 ≥12788
solving time6 (feasibility) 14 s 17 s 0.8 s 431 s
solving time6 (optimality) 29 s 377 s >7647 m >280h

the system load of the corresponding task set. Each line starts
at the time where the solver found the first solution and ends
at the optimum solution (i.e. 0 % gap) and hence shows how
fast the solver was able to close the gap to the optimum. In
summary, the first solution was found after 16 s to 44 s whereas
the optimum was reached after 54 s to 503 s. Although there
is a tendency for the MILP to take longer for systems with
higher load, the orange line represents a counterexample. For
this system as it took 272 s to find the optimum despite a
system load of only 1.04.

0 100 200 300 400 500
Time [s]

1

10

100

1000

Ga
p

[%
]

1.00
1.04

1.11
1.18

1.28
1.29

1.37
1.42

1.44
1.49

Figure 6. Solving progress for ten randomised variations of A.πφA with
different system load.

VIII. CONCLUSION

Motivated by a real-world automotive use case we identified
the problem of bounding data-age latencies for cause-effect
chains. Note that, although we focused on data age in this
paper, our method can be analogously applied to reaction
time as well as it only changes the latency semantics. We
presented a data-age analysis for periodic offset-synchronised
tasks that takes scheduling priorities and task-to-processor
mapping into account. Based on this, we formulated MILP
constraints that cover the response-time and data-age analysis
for this kind of systems, which allows us to find and select
the design parameters (priorities, offsets, mapping) such that
the data age is minimised. Due to the exponential complexity
of MILPs, however, we need to clarify the main question of
its applicability, i.e. whether typical problem instances can be
solved in limited time. For this purpose, we performed an

experimental evaluation of our use case as well as of a similar
publicly available benchmark. Our evaluation demonstrated
that feasibility is rather easy and fast, i.e. a good solution
is found in short time, however, optimality is significantly
harder and takes much more computing time. Given that in
most realistic cases it is sufficient to fall below a certain
data age threshold, feasibility is typically more important than
optimality. We therefore believe that the MILP approach is
applicable to real scenarios either as a design methodology or
as a method to estimate how close the current solution is to a
global optimum. On the other hand, there exist a great body
of research regarding techniques to improve MILP efficiency
such as approximations in the analysis that eliminate integer
variables [6].

ACKNOWLEDGEMENT

This work was partially funded within the DFG Research
Unit CCC, funding number FOR 1800, and partially by Hitachi
Ltd. We further thank Thorsten Koch for providing ZIMPL
[15].

REFERENCES

[1] AUTOSAR, “Specification of Timing Extensions, Release 4.3,”
http://www.autosar.org/, Nov. 2016, release 4.3.

[2] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” Work. on Compositional Theory and
Technology for Real-Time Embedded Systems CRTS, 2008.

[3] A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst, and D. Ziegen-
bein, “Waters industrial challenge 2017,” in International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), Dubrovnik, Croatia, jun 2017.

[4] K.-B. Gemlau, J. Schlatow, M. Möstl, and R. Ernst, “Compositional
analysis for the waters industrial challenge 2017,” in International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), Dubrovnik, Croatia, jun 2017.

[5] J. Martinez, I. Sanudo, P. Burgio, and M. Bertogna, “End-to-end latency
characterization of implicit and let communication models,” in Interna-
tional Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), Dubrovnik, Croatia, jun 2017.

[6] A. Biondi, P. Pazzaglia, A. Balsini, and M. D. Natale, “Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores,” in International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
Dubrovnik, Croatia, jun 2017.

[7] F. Boniol, J. Forget, and C. Pagetti, “Waters industrial challenge 2017
with prelude,” in International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems (WATERS), Dubrovnik,
Croatia, jun 2017.

[8] J. M. Rivas, J. J. Gutierrez, J. L. Medina, and M. G. Harbour, “Compar-
ison of memory access strategies in multi-core platforms using mast,”
in International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), Dubrovnik, Croatia, jun
2017.

[9] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, no. Supplement C,
pp. 104 – 113, 2017.

[10] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, “A review
of priority assignment in real-time systems,” Journal of Systems Archi-
tecture, vol. 65, no. Supplement C, pp. 64 – 82, 2016.

[11] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–
35:44, Oct. 2011.

[12] A. Wieder and B. Brandenburg, “Efficient partitioning of sporadic real-
time tasks with shared resources and spin locks,” in Proceedings of
the 8th IEEE International Symposium on Industrial Embedded Systems
(SIES 2013), Jun. 2013, pp. 49–58.

[13] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, no. 2-3, pp. 117–134, Apr. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0165-6074(94)90080-9

[14] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
2015.

[15] T. Koch, “Rapid mathematical prototyping,” Ph.D. dissertation, Technis-
che Universität Berlin, 2004.

[16] G. B. Dantzig, L. R. Ford, and D. R. Fulkerson, “A primal-dual algorithm
for linear programs,” Linear inequalities and related systems, vol. 38,
pp. 171–181, 1956.

http://dx.doi.org/10.1016/0165-6074(94)90080-9

	Paper title: Data-Age Analysis and Optimisation for Cause-Effect Chains in Automotive Control Systems
	Article reference: J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka and R. Ernst, "Data-Age Analysis and Optimisation for Cause-Effect Chains in Automotive Control Systems," 2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES), Graz, Austria, 2018, pp. 1-9.
	DOI: 10.1109/SIES.2018.8442077
	Copyright notice: ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

