INVITED
PAPER

Platform-Centric
Self-Awareness as a Key
Enabler for Controlling
Changes in CPS

This paper addresses the challenges in managing the continuous change and evolution
of CPSs and their operation environment. It presents two frameworks, controlling con-
current change (CCC) and information processing factory (IPF), for building self-aware
CPSs that have the capabilities of self-modeling, self-configuration, and monitoring.

By MISCHA MOSTL

, JOHANNES SCHLATOW, ROLF ERNST, NIKIL DUTT, AHMED NASSAR,

AMIR RAHMANI, FADI J. KURDAHI, THOMAS WILD, ARMIN SADIGHI, AND ANDREAS HERKERSDORF

ABSTRACT | Future cyber-physical systems will host a large
number of coexisting distributed applications on hardware
platforms with thousands to millions of networked compo-
nents communicating over open networks. These applications
and networks are subject to continuous change. The current
separation of design process and operation in the field will
be superseded by a life-long design process of adaptation,
infield integration, and update. Continuous change and evo-
lution, application interference, environment dynamics and
uncertainty lead to complex effects which must be controlled
to serve a growing set of platform and application needs.
Self-adaptation based on self-awareness and self-configuration

Manuscript received July 26, 2017; revised May 2, 2018; accepted May 25, 2018.
Date of current version September 14, 2018. This work was supported by the
Marie Curie Actions of the European Union’s H2020 Programme, Deutsche
Forschungsgemeinschaft (DFG) under Grants FOR1800, ER168/32-1, and
HE4584/7-1; and by the U.S. National Science Foundation (NSF) under Grant
CCF-1704859. (Corresponding author: Mischa Méstl.)

M. Méstl,). Schlatow, and R. Ernst are with the Institute of Computer and
Network Engineering, Technische Universitat Braunschweig, Braunschweig
38106, Germany (e-mail: moestl@ida.ing.tu-bs.de; schlatow@ida.ing.tu-bs.de;
ernst@ida.ing.tu-bs.de).

N. Dutt, A. Nassar, and F. J. Kurdahi are with the Center for Embedded &
Cyber-physical Systems, University of California at Irvine, Irvine, CA 92697-2620
USA (e-mail: dutt@uci.edu; anassar@uci.edu; kurdahi@uci.edu).

A. Rahmani is with the Center for Embedded & Cyber-physical Systems,
University of California at Irvine, Irvine, CA 92697-2620 USA, and also with the
Institute of Computer Technology, Technische Universitat Wien, 1040 Vienna,
Austria (e-mail: amirrl@uci.edu).

T. Wild, A. Sadighi, and A. Herkersdorf are with the Chair for Integrated
Systems, Technische Universitat Miinchen, Munich 80290, Germany (e-mail:
thomas.wild@tum.de; armin.sadighi@tum.de; herkersdorf@tum.de).

Digital Object Identifier 10.1109//JPROC.2018.2858023

has been proposed as a basis for such a continuous in-field
process. Research is needed to develop automated in-field
design methods and tools with the required safety, availability,
and security guarantees. The paper shows two complementary
use cases of self-awareness in architectures, methods, and
tools for cyber-physical systems. The first use case focuses
on safety and availability guarantees in self-aware vehicle
platforms. It combines contracting mechanisms, tool based
self-analysis and self-configuration. A software architecture
and a runtime environment executing these tools and mech-
anisms autonomously are presented including aspects of self-
protection against failures and security threats. The second
use case addresses variability and long term evolution in
networked MPSoC integrating hardware and software mecha-
nisms of surveillance, monitoring, and continuous adaptation.
The approach resembles the logistics and operation principles
of manufacturing plants which gave rise to the metaphoric
term of an Information Processing Factory that relies on incre-
mental changes and feedback control. Both use cases are
investigated by larger research groups. Despite their different
approaches, both use cases face similar design and design
automation challenges which will be summarized in the end.
We will argue that seemingly unrelated research challenges,
such as in machine learning and security, could also profit from
the methods and superior modeling capabilities of self-aware
systems.

KEYWORDS | Cyber-physical systems; design automation;
embedded systems; self-awareness

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE I[EEE 1543

https://orcid.org/0000-0002-5486-4870

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

I. INTRODUCTION

A future cyber—physical system (CPS) will host a large
number of coexisting distributed applications on hard-
ware platforms with thousands to millions of networked
components communicating over open networks. These
distributed applications will include critical tasks, such as
road-traffic control involving communicating autonomous
cars and infrastructure, or smart energy controlling the
energy grid down to the individual device. Often, distrib-
uted applications follow common design objectives, such
as energy-efficiency, and guarantees for high availability,
real-time or safety.

Such CPS reach far beyond classical embedded system
design processes controlled by a single owner. They are
subject to permanent change, environment dynamics and
application interference. Applications using self-adaptation
or machine learning dynamically change their properties
and their resource requirements. Resulting short adapta-
tion cycles of CPS applications would introduce system
dynamics never experienced in the history of electronic
design automation (EDA) before. Given the rapidly grow-
ing number of such CPSs and applications, there would
not be enough engineering, service and maintenance per-
sonnel for user directed integration.

Communication has long adapted to this develop-
ment by standardizing protocols and dynamically adapt-
ing the networks and resource assignment to changing
user requests. From this perspective, the Internet-of-Things
appears as a natural extension of the approach taken
in communication. However, CPS design goes further,
addressing complex side effects of such an approach
on distributed applications. Even more so, the approach
used in communication counters the established design
processes for safety-critical and high-availability systems
that assume static design processes organized in prede-
fined, well-structured steps from concept all the way to in-
field maintenance, and require highly predictable behavior
as a basis of worst case guarantees. These requirements are
formulated in safety standards, e.g., the generic standard
IEC 61508 [1], the automotive standard ISO 26262 [2], or
the avionics standard DO 178C [3].

To comply with these requirements, designers partition
the system into noncritical and critical parts. The design
idea behind this approach is to keep the critical parts
static, which is currently a prevalent approach for mixed-
criticality systems [4]. The approach resulting from the
partitioning is to apply methods for static systems to the
critical part of the system. Among these methods are
techniques that promise strong isolation, such as static
time driven scheduling [5, Ch. 10] or static system configu-
rations as, e.g., in AUTOSAR. Static time slicing—a specific
form of time-driven scheduling—is, for example, applied
in the ARINC 653 standard for avionics equipment [6]. It
dictates that, if a CPU shall be shared among software with
heterogeneous certification requirements, the partitions
for the software must be fully isolated through static time-
slice scheduling. In the ideal case, this is possible, e.g., if

1544 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

software from different time partitions does not commu-
nicate. However, implementing ARINC 653 systems, e.g.,
on multi-core architectures where software communicates
across cores, is already a complex issue. Challenging design
issues arise if software with dynamic behavior, which
according to the applied design paradigm must be assigned
to the noncritical domain, must communicate with crit-
ical applications in the static part. While static budget
assignments (e.g., time-slicing) might be feasible for sys-
tems deployed and maintained by an original equipment
manufacturer (OEM) as the “single owner” (e.g., aircrafts)
if all variables are known in sufficient detail, it is much
more complicated in multi-owner systems. In any case,
ARINC 653 and AUTOSAR both do not provide answers
on how change—i.e., change of software, hardware, goals,
paramaters, environment, etc.—can be managed under the
constraints introduced by multi-ownership and dependen-
cies such as communication between static and nonstatic
system parts.

Hence, handling change is a first class problem in future
CPS. The current separation of design process in the lab
and operation in the field will be superseded by a life-
long design process of adaptation, in field integration, and
update. Like most other system design processes, safety
standards use the V-model to structure the system design
process [2]. While the left branch of the V defines the
design and implementation steps from requirements to
implementation, the right branch defines the test and inte-
gration steps. The objective is to migrate part of the right
branch to the field, such that in-field integration can incre-
mentally accommodate changes. This does not necessarily
mean that in-field integration becomes an online design
process, but it requires right-branch design automation
which can be applied in the field. Unfortunately, the right
V branch is less automated than the design steps on the
left. Important methods like the Failure Mode and Effects
Analysis (FMEA) [7] are currently executed by the user
with little formal and tool support, much like the inte-
gration verification that uses simulation and often has to
resort to prototyping due to lack of complete and accurate
models from the design steps. So, the EDA challenge of
this approach is to provide a suitable model basis and
appropriate algorithms and methods to support in-field
integration.

For clarification in this paper, we distinguish several
terms for methods executed in the field. At-runtime meth-
ods are executed while an application under change is
active, i.e., concurrent to the application. They are also
called online methods. At-downtime methods are executed
while the application under change is not active. All these
methods are subsumed under in-field methods. In-field
methods have in common that they become part of the
overall system function, in contrast to traditional lab-based
methods following a separated design process. Here, we
avoid the term “design-time” usually denoting all activ-
ities before deployment, because in this paper, design is
extended beyond deployment.

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

A possible foundation for in-field EDA methods is the
concept of self-awareness as will be explained in the
next section. After the discussion of self-awareness in
Section II, we will elaborate on two different use cases
for the application of self-awareness in CPS design and
maintenance. The first use case in Section III elaborates on
the controlling concurrent change (CCC) approach, which
aims to automate functional changes. This use case focuses
on application change and integration. It relies on model-
based contracting methods as well as automated analysis
of platform interdependencies, and is exemplified based
on an automotive systems example. The second use case
is introduced in Section IV. It is a concept for efficient,
autonomous, and adaptive multiprocessor system-on-chip
(MPSoC) platform control under aging and changing oper-
ating conditions which shall enable long lifetime for mixed
criticality applications. We present cyber—physical system-
on-chip (CPSoC) as an exemplar self-adaptive MPSoC with
a sensor-actuator-rich platform deploying a closed-loop
paradigm emulating large-scale CPS. This presented exam-
ple addresses the interplay of load profile, platform physics
and model-based platform self-control in an information
processing factory (IPF). In our conclusion in Section VI,
we will utilize the use cases to summarize topics for EDA
research into self-aware CPS.

II. SELF-AWARENESS

Self-awareness is well known in computing systems and
includes a wide-range of capabilities, such as adaptivity,
autonomy, self-modeling, etc. In particular, many research
fields have been using self-awareness or related concepts
in the past such that a variety of definitions can be found
for this. This section therefore clarifies our generalized
understanding of self-awareness and introduces it as a key
concept for controlling changes in CPS.

A. Status

More than a decade ago, self-awareness was proposed
for autonomic computing. In their seminal 2003 paper [8],
Kephart and Chess from IBM envision “computing sys-
tems that can manage themselves given high-level objec-
tives from administrators.” Required capabilities already
included self-configuration, self-optimization, self-healing,
and self-protection against defined security attacks. Auto-
nomic computing addresses large scale computer systems,
as used in enterprise computing which are continuously
controlled and maintained by humans, the administrators.
Autonomic computing supports administration by auto-
mated diagnosis and offloads from detailed knowledge
of functions and dependencies. Since then, many new
contributions extended the role of maintaining these sys-
tems in an application-centric way. Applications interact
with networked computing systems using control-theoretic
mechanisms to optimize quality of service (QoS) for a
variety of objectives. Self-awareness was used in the for-
mation of virtual platforms supporting systems integration,

increased system dynamics, and openness [9] preparing
the basis for today’s big data applications.

Meanwhile, this principle of self-awareness can be found
in many research fields from control engineering [10]
and autonomic computing [8] to traffic psychology [11].
Hence, many definitions of self-awareness can be found
in literature, emphasizing different aspects of the targeted
contexts [12]. We therefore resort to a very basic definition
that generalizes the overall concept.

Definition 1: Self-awareness is the ability (of a comput-
ing system) to recognize its own state, possible actions and
the result of these actions on itself, its operational goals,
and its environment (including physics).

A major step in the development of self-aware solu-
tions was the extension to networked embedded systems
which are not supervised by humans. New paradigms,
such as organic computing were proposed emphasizing
self-control based on objectives derived from complex
models of self-awareness or leading to emergent behav-
ior [13], [14]. Physical system properties, such as media
quality, automatic control quality, or energy consumption
were added to account for embedded systems functions
and resource constraints [15], [16]. Most recently, self-
awareness in computing systems has been described as
a shift from a reactive to a proactive operation that is
achieved by a model-based loop of learning, reasoning and
acting as an architectural concept [17]. In this context,
group-awareness is defined as the ability of a subject to
distinguish between itself, the environment and the peer
group. The latter is treated differently by associating it with
peer-group-specific expectations and goals [18].

Most of the previous work, however, proposes specific
self-aware solutions for individual applications. In-field
application integration and networked system control
require platform-centric self-awareness that is flexible
enough to handle very different types of applications. In
the following we propose such an approach.

B. Self-Awareness as a Modeling Basis

Definition 1 assumes that system self-awareness requires
an implicit or explicit self-model that not only describes
its current state but also the possible next states. In a
manual design and maintenance process, this knowledge
is encoded in design documents and in the competence of
the integrator. Migrating parts of the integration process to
the field requires formalization of this knowledge to derive
appropriate, formally applicable methods. In practice, doc-
umentation is not complete, might be partly imprecise, and
uncertain. Due to dynamics, the data change over time.

With self-awareness, self-modeling becomes an inde-
pendent EDA research goal. This includes methods for
setting up, maintaining and verifying a self-model under
the concerns of uncertainties and inaccuracies.

Definition 2: Model uncertainty is a set of structural
properties and parameters of a model that are undecidable
or ambiguous.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1545

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

As an example, consider thread mapping on a multi-
core processor. If the scheduler decides thread assignment
at runtime, the model cannot ultimately specify on which
core of the processor the thread will execute. Furthermore,
the speed of a core may vary, if power-saving techniques
such as frequency scaling are applied—hence the worst
case execution time (WCET) of a task can vary depending
on the power-state of the processor.

In self-modeling, models of different design aspects
can be combined. The fusion of such partial models can
reduce uncertainties or help to detect inconsistencies. This
can include physical sensory data as in the IPF example
in Section IV. Such “uncertainty management” can help
to improve design efficiency. Model semantics can be
extended to handle different kinds of uncertainties from
sensor data, possible errors in sensor interpretations, or
data with limited trustworthiness.

While uncertainty is part of the model semantics, inac-
curacy describes the deviation of the model from physical
reality.

Definition 3: Model inaccuracy is the result of insuffi-
cient approximation of a model to the realities,

for instance, the inappropriate application of a lin-
ear model to nonlinear behavior. Such inaccuracies can
arise from unobservable state changes, modeling errors or
deviations, or undetected software errors. Besides these
safety relevant aspects, inaccuracies can also originate
from intentionally incorrect models, which may become a
security issue. There are many approaches to detect and
often quantify inaccuracies: experimental plant character-
ization known as system identification in control theory
[19], execution time monitoring [20] or profiling, to name
a few which are applied in the use cases as follows.
Handling model inaccuracies is a necessity: while possible
inaccuracies could generally be captured as model uncer-
tainties, the resulting large uncertainty bounds will make
design with such general models unfeasible.

Fig. 1 shows how we structure self-modeling for
CPS w.rt. three different aspects. The function self-
representation models the coexisting and interacting appli-
cations and their logical architecture. The platform self-
representation models the platform components and their

use case CCC

function

self-representation

use case IPF ’I

=

platform
self-representation

physical
representation

Fig. 1. Self-representation in CPS.

1546 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

interaction while the physical representation models the
physical environment and the physical properties of the
CPS. This structure was chosen to reflect the world of
existing EDA models and shall open the door for applying
EDA methods in the field. However, in current design
practice, these models are used in separate verification
steps, usually based on simulation and/or prototyping. By
applying these models in completely separate phases, it is
only required that the models represent the same static
design. Yet, using unrelated models is not sufficient for
self-awareness, as changes in one model must be reflected
in the other models to know the consequences on the
system state, actions and environment (cp. Definition 1).
Although there exist techniques such as sandboxing [21]
which constrain these consequences, they can only cover
part of the possible effects—they are certainly helpful
but not sufficient. Instead, we require knowledge about
relations between objects of different models in order to
establish a coherent and self-aware view on a CPS. Note
that this can be achieved by applying a holistic modeling
methodology where the models follow a clear abstrac-
tion hierarchy, which is sufficient but not necessary for
model coherence. More precisely, model coherence does
not require a strict specialization/abstraction relation as
found in holistic meta-models; the necessary and sufficient
property is that related models are free of conflicting
information, i.e., are coherent.

Hence, automated in-field integration requires more for-
mal methods and dependencies between models become
crucial. As an example, an FMEA for distributed CPSs (see
Section III) can reveal dependencies between functions
extracted from a combination of function and platform
models. Such a dependency can arise from timing inter-
ference on a processor core or from a clock frequency that
is influenced by the ambient temperature. Therefore, new
in-field methods and respective EDA tools require model
coherence. The two use cases of this paper exploit coher-
ence between two model types each, as shown in Fig. 1.

The goal of self-awareness in the use cases is to ensure
self-modeling and monitoring to maintain an accurate
image of the system state. Through these self-awareness
capabilities automatic design steps are possible, that would
traditionally be lab-based and carried out by engineers.
Our goal in both use cases is to move automated steps
into the field. The in-field EDA tasks are then subject
to the same verification and validation as the traditional
lab design, with the only difference that it is performed
automatically. In the following two use cases, we focus
on different challenges when applying (platform-centric)
self-awareness to enable in-field EDA for CPSs: The CCC
use case follows an analytical approach with contracting,
dependency analysis, formal safety analysis, and monitor-
ing for handling functional changes. It primarily focuses
on dealing with model uncertainty in both (functional
and platform) worlds. The challenge here is to automat-
ically maintain coherent models that capture and monitor
safety and other nonfunctional properties of the entire

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

system that result from platform sharing. The IPF use
case relies on incremental changes and feedback control
of (physical) effects of the platform, i.e., system iden-
tification and model coherence from platform models
upward is the primary goal. Dealing with the complexity
of modeling physical effects and the involved uncertainties
and inaccuracies becomes a major challenge in this use
case. With respect to self-awareness, both approaches are
challenged by the platform complexity of CPSs (e.g., het-
erogenity, architectural complexity) as well as the ubiqui-
tous nonfunctional requirements in this domain. The latter
must not be neglected but rather dealt with at design
time and by self-awareness in combination, i.e., at design
time, the room and boundaries (design corridor) should be
specified and leave room for self-awareness to cope with
uncertainties and inaccuracies at runtime.

III. SELF-AWARE ARCHITECTURE
FOR CONTINUOUS CHANGE
AND EVOLUTION

Updates for commodity embedded systems, such as smart-
phones, have nowadays become an established technique.
They either bring new applications to the device or
change existing applications or functionalities. Updating
has become an integral part of the life cycle and is done
while devices are in the field and in the possession of
consumers. The enabler for this is the shift towards deploy-
ing the devices as an open platform rather than a closed
product such that third-party updates do not need to be
channeled through the device’s OEM. On the contrary,
designing and deploying updates and new applications for
other embedded systems and especially CPSs remains a
difficult and challenging task, which is addressed by the
German DFG Research Unit CCC (eight faculties, six years
funding) at TU Braunschweig.

When trying to answer the question, why continuous
updates and lifetime (software) maintenance are rarely
done for embedded systems that carry out safety-critical
functions, one has to take a look at the design process of
these systems and their applications. The classical V-model
as depicted in Fig. 2 is the prevalent method to structure
the design process of these systems. In the V-model, every
system—which is a set of functionalities, carried out by a
defined set of applications—is designed by starting with a
requirements specification at the left top of the V. During

Concept Phase Operation Phase

System Validation and
Verification

Requirements &
Architecture Definition

Detailed Subsystem
Design

Subsystem Integration
Tests

Implementation

Fig. 2. V-Model for system-level development.

traversal of the V, these are refined on the descending
branch and culminate in the hardware and software imple-
mentation at the bottom of the V. On its ascending branch,
integration of individual functions and subsystems takes
place such that extensive testing or validation can be
applied to verify whether the initial requirements are met.

The V-model design object can range from a single appli-
cation to a complete vehicle integration with many inter-
dependent applications. In the context of safety-critical
application domains, the understanding of system is rather
holistic, taking the platform with all its functionalities into
account. In other domains, it is also common to understand
individual functions as the system under development, as
for instance done with smartphone apps. In the latter case,
as the individual functions are developed in isolation, such
a process would require total isolation of functionalities on
the platform, which is not achievable for CPS. This can be
easily understood with the following example: Consider a
vehicle as an example for a CPS. The functions of braking
and accelerating for longitudinal guidance are two integral
functions of any vehicle. Both require the wheels of the
vehicle to carry out their task, i.e., they share elements of
the CPS. Consequently, there must be a mutual exclusion or
a strict hierarchy between the two functions to operate cor-
rectly, which is impossible to realize if the functionalities
are to be totally isolated. As in the given example, many
functionalities of CPSs can be safety critical, i.e., can cause
harm to humans or their environment. Therefore, com-
mon safety standards, such as ISO 26262 in the automo-
tive domain or IEC 61508 for general electric/electronics
(E/E) or programmable-electronic (PE) systems, require
the V-model as a system-level process. Individual function
designs can also follow the V-process, but the overarching
and holistic V-process for the system is essential, as—
besides careful implementation—safety guarantees are a
direct result of this process guiding the system’s integra-
tion. In this process, methods like FMEA [7] or fault tree
analysis (FTA) [22] are applied to reveal dependencies
introduced through the implementation, as these can cause
(harmful) interference between functions. Because of such
side effects, the results of these methods are only valid for
exactly one configuration/parametrization and allow no
variances within the functions and their implementation.
Furthermore, as a system is a static set of functionalities
and their implementation, any update, upgrade or other
change forms a new system. As a consequence, this new
system has to undergo the complete process again if
safety must be ensured for any element in the systems.
Enforcement of properties that technically enable func-
tional safety in the original system can certainly provide
partial isolation, however, are not necessarily sufficient as
it is not guaranteed that other introduced dependencies
can undermine the isolation.

With respect to allowing in-field changes to safety-
critical systems—which is one of the main goals of CCC—
we therefore need to automate the essential steps of
this design process. This particularly includes the steps

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1547

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

that enable, e.g., safety assurances as a property of the
process. Hence, in-field changes, such as software updates,
become an EDA problem as these changes must undergo
the system-level design process to be integrated into the
system. In the scope of CCC, we develop such an auto-
mated integration process that not only approaches safety
requirements but also security, availability and real-time
aspects in applications for the automotive domain and
avionics. In this context, we further use the term change to
consolidate all aspects of intended alterations of a system’s
platform or functional representation. Such changes can,
for instance, not only originate from user input but also
from a new operation environment that triggers a func-
tional adaptation, or from a degrading platform.

In the remainder of this section, we elaborate on how
this EDA problem is approached in the scope of CCC,
and also provide insights into the architectural approach
that enables the in-field application of such an EDA. In
particular, we describe a modified design process that is
tailored for a continuous life-cycle management of CPSs.
We also elaborate on what particular methods are applied
in order to automate design decisions and still provide
strong guarantees on nonfunctional requirements such as
safety and security. With the architectural approach in
CCC, we further emphasize the role of self-awareness as
a key concept to close the gap between model-based EDA
methods and the actual CPS.

A. Cross-Layer Modeling and Dependency
Analysis

As any EDA method relies on suitable modeling, we
now summarize the important aspects of modeling for
automated integration in the design process. We extend
the idea of self-representation of systems introduced in
Fig. 1 by a more detailed cross-layer model that picks up on
modeling function as well as its platform. An example for a
cross-layer model can be found in Fig. 3, which is formally

Logical
Architecture

Function
Architecture

Functional Model

Platform Model

Software
Architecture

Hardware
Architecture

Physical
Architecture

Fig. 3. Cross-Layer modeling.

1548 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

represented as a graph. At the top layer of the functional
model (light blue box), we find a logical architecture of
the system, describing the high-level logical elements of
a system (dark blue blocks). These logical elements map
to individual functions (red circles) which are necessary
to carry out the intended actions described by a logi-
cal element. This mapping is indicated in Fig. 3 by the
blue dashed arrows between logical elements and func-
tions. Interactions and dependencies between particular
elements are expressed by solid black arrows. Note that
one functionality can have mapping ties with more than
one logical element and can thus be shared within the
system, e.g., f4 in Fig. 3 which is a shared function.

Although logical elements appear as independent ele-
ments in the logical architecture, coupling of these can
already exist on the function layer by sharing a com-
mon function. In general purpose systems, changing and
modifying logical elements of a system is comparatively
easy, as all functional dependencies are known and can be
tested in advance. This test can, e.g., follow the V-model
process. However, in CPS design one faces a number of
additional nonfunctional requirements such as functional
safety, isolation for better security, real-time, reliability,
availability, and many more. As these requirements are
tied to platform- and implementation-specific knowledge,
the architecture layers in the platform model from Fig. 3
provide a detailed view on these aspects. The software
architecture describes the implementation of functions
in software, as well as the interaction within the soft-
ware system. The elements of the software architecture
itself are deployed on several (logical) hardware elements
(processors, memories, peripherals, etc.) as described by
the mapping relations between software and hardware
architecture. Again, the hardware architecture captures
hardware dependencies. The mappings from hardware to
physical architecture describe on which particular chip
hardware elements are integrated.

We can see that each architecture layer within the
functional model and the platform model has distinct prop-
erties that it describes and which are typically abstracted in
hierarchical models. Nevertheless, the dependencies that
are explicit in lower layers affect elements in higher layers,
as dependencies are only hidden by abstraction but not
eliminated, for instance, by sharing a common hardware
element such as a processor (in the hardware architecture)
or an operating system service/function (in the function
architecture).

By introducing mapping relations between the architec-
ture layers, a cross-layer model of the system is derived.
This model enables tracking dependencies resulting from
a multitude of effects on the different modeling layers.
One can identify cross-layer dependencies that are not
present in the architecture of the affected elements, i.e.,
the elements’ architecture model suggests that both ele-
ments are independent. In order to do this, the Functional
Model alone does not suffice, and possible dependencies
within the implementation, hence the platform model,

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

must be considered as well. Consider the system sketched
in Fig. 3. Dependencies either appear directly in an archi-
tecture model between two elements, or via mapping to
an element in another layer. Consequently, also paths that
traverse multiple layers can construct a dependency path
for elements that have no direct dependency in their own
architecture.

As a first example we illustrate that already the function
architecture can procure dependencies that are abstracted
on the logical architecture. On the Logical Architecture we
see three independent elements in Fig. 3. Due to the map-
ping relations, we can, however, track that the logical ele-
ment 2 is implemented by function f5, which resorts to the
shared function f,. However, f4 is also used by fs, which
creates a dependency between the two functions and thus
also between the logical element 2 and 3. Further, and as
a second example highlighting the importance of the Plat-
form Model, we have to consider that the implementation
of f3 is realized in software component s3. We can track
a path in the graph given by Fig. 3 from s3 via CPUy, so,
to f2, which maps to logical element 1. In consequence,
also elements 1 and 2 must be assumed dependent on each
other, as long as no reasoning whether all dependencies
are relevant has been performed. Note that, in order to
assume two elements as independent under all relevant
dependencies, no path of relevant dependencies must exist
between them in the cross-layer model. This implies that,
in the case of fs, f4, and f5, from the first example we must
also show that there is no relevant dependency between f3
and f5 on other architecture layers.

These examples highlight the necessity of cross-layer
modeling as a prerequisite for exposing dependencies, that
otherwise would be hidden by abstraction and possibly
neglected. However, it also carves out that, besides expos-
ing the dependencies, an evaluation of them is necessary
due to their sheer number. Evaluation thus implies that
dependencies must be quantified to be assessed as either
relevant or negligible for a certain functional or nonfunc-
tional property in the context of the system.

We refer to the discovery, quantification, and assess-
ment of dependencies in the cross-layer model as depen-
dency analysis. This requires for cross-layer modeling that
coherency of the models must be ensured at any time, i.e.,
if change happens, the implications must be reflected in all
respective models, and dependency analysis must assess
the resulting cross-layer model.

While seemingly solving the dependency analysis prob-
lem, application of such a cross-layer model faces two
main challenges. While individual layer models are usually
available, at least in critical designs, the mapping relations
between layers are often only known late in the design and
are likely to be updated in case of changes on any of the
levels. That is the rationale behind the holistic approach
of fault analysis. In case of dynamic mapping, such as
in case of task migration or dynamic scheduling in the
runtime system, dependencies can even change at run-
time. So, mapping and dependency analysis must be able

to handle uncertainties and underspecified systems. This
is addressed by defining sets of possible mappings and,
hence, sets of possible dependencies [23]. The second chal-
lenge is relevance. When following all possible dependency
paths in Fig. 3, it becomes obvious that all elements depend
on each other. This is an overly pessimistic result which
is useless for safety critical systems design. Therefore,
the dependencies must be classified by relevance for the
effects under analysis. Usually, such classification requires
dependency quantification. Well known examples include
error probabilities or timing interference. Today, relevance
is determined by a human expert in a time-consuming
and error-prone process. The current lack of appropriate
models and automated methods is a main obstacle for a
useful cross-layer design analysis and, consequently, for
automated change management for safety critical systems.

For a design process, that particularly aims at
incrementally changing a system, a suitable formulation
of change is necessary. In the CCC approach, change
requests are formalized that specify a modification
based on models, i.e., every change request includes the
“new” executable software along with a suitable model,
describing it. An important prerequisite for software
changes is a certain modularity and interchangeability.
In software engineering, this is well-known as separation
of concerns. More specifically, component-based software
engineering is one approach that emphasizes this principle
by composing a software system from components that
solely interact over well-defined interfaces. The interfaces
generalize from the actual implementation and therefore
keep the components interchangeable.

In CCC, we aim for component-based models of CPS—
including software as well as hardware components—as
they reduce dependencies in the architecture to the explic-
itly modeled interfaces and thereby keep the dependency
analysis tractable. The components are generic building
blocks of the system that is composed from these compo-
nents such that they implement the desired functionality
and fit to the particular target platform. Each change to
the system must be coherently representable in a system-
wide model for analyzing any potential cross-layer depen-
dencies, as well as for other analyses to ensure freedom
from interference for the individual functions that a set of
(software) components create.

B. Architectural Approach

In the scope of CCC, an architecture is developed that
implements the aforementioned life cycle of CPSs, partic-
ularly with applications in automotive vehicles and space
robots. This architecture is composed of two segregated
domains: the model domain and the execution domain.

Fig. 4 depicts the resulting system architecture. The
execution domain is based upon existing operating
systems and runtime environments that execute on
multiple (networked) platform components and host
several application components. It is further augmented by
application and platform shaping/monitoring capabilities

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1549

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

that allow parameter enforcement and the observation
of the application and platform components at runtime.
All changes to the execution domain are managed by the
model domain, which is implemented by the multichange
controller (MCC). The MCC therefore performs the
integration of changes and deploys the corresponding
configurations to the execution domain. The interface
between execution domain and model domain is built on
a contracting formalism. Contracts can be seen as sets
of assumptions and resulting guarantees if the specified
assumptions are fulfilled. In the CCC setup, contracts are
negotiated between the model and the execution domain,
i.e., if the execution domain’s behavior complies with the
model domain’s assumptions, the system provides the
negotiated guarantees.

In the ideal case, contracts are executed properly, i.e.,
the model assumptions are faithful and the execution
domain behaves accordingly. However, this is an idealized
view on systems, assuming complete and correct knowl-
edge. In real systems, inaccuracies in the form of a devia-
tion of model and corresponding observation are the norm.
To cope with these inaccuracies, the interface of model
and execution domain in Fig. 4 provides the model domain
with metrics observed in the execution domain. This inter-
face allows the model domain to interpret the metrics and
detect deviations of actual behavior from model knowl-
edge. Knowledge about deviations is the basis for adjust-
ing models to make them coherent with observed behav-
ior. This self-modeling ability is a prerequisite for self-
awareness in the CCC system. To achieve self-awareness,
the model domain must further be able to negotiate new
contracts on the refined self-model of the system. Note that
the execution domain’s operation is independent from this
refinement and negotiation whereas its configuration may
only be changed at (function) downtime.

evolving contract Software Software
ﬂ Component | “*° | Component
/\ . . .
_/| Application Shaper/Monitor |
i figurati
Mggﬂ%gﬁg?e o Run-Time Environment
(MCC) e (including OS)
O| Platform Shaper/Monitor |
Hardware . Hardware
Component Component
Network
O model domain | execution domain
2 at down time w_— at run time

Fig. 4. CCC architecture comprising a model domain (red), an
execution domain (green) as well as changing software/hardware
components (gray).

1550 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

1) Model Domain: The CCC model domain is imple-
mented by the MCC (cf., Fig. 4), which takes full control
over the configuration of the execution domain. Such a
configuration specifies all relevant parameters that are
necessary to set up the execution domain. In order to
guarantee an uninterrupted operation, we only permit con-
figuration changes at downtime of the execution domain,
i.e., in a safe state. Nevertheless, the MCC may operate
as a (budgeted) background process at runtime of the
execution domain, as long as normal operation of the
system is not impaired.

One objective of the MCC is to find a suitable config-
uration for a specified set of integration contracts. These
contracts are a formalization of parameters and require-
ments of, e.g., a software or hardware component. More
specifically, the MCC guarantees that all the contracted
requirements (e.g., response time) are satisfied by the
resulting configuration under the assumption that the com-
ponents adhere to the specified parameters (e.g., execution
time). In realistic systems, the contracted requirements
will depend on parameters from other integration con-
tracts. For instance, a response time constraint can only be
guaranteed if the given execution times of all interferers
are accurate and conservative. Cross-layer dependency
analysis allows us to discover all relevant parameters that
act as assumptions for a certain requirement. We formalize
this relation as tuples of assumptions and guarantees and
thereby create derived contracts which we use to establish
the contracting interface between the model domain and
execution domain. This contracting interface effectively
closes the gap between models and implementation as
it enables the MCC to react to changes in the assump-
tions. This becomes particularly relevant in the presence of
model uncertainties and inaccuracies, for which we must
question the quality of the provided guarantees.

In general, any change will trigger the MCC to perform
an automated design process in reaction to the changed
integration contract or derived contract. For this purpose,
the MCC must keep a coherent cross-layer model of the
supervised system covering software and hardware com-
ponents, operating system (OS) and runtime environment
(RTE), as well as shaping and monitoring mechanisms.
As previously stated, we separate functional and platform
aspects in the model (cf. Fig. 3) due to the fact that the
functional model depends on the application domain and
the platform model on the target platform.

For the platform, we apply a component-based and
service-oriented model in which the platform hosts sev-
eral software/hardware components that communicate
via service-oriented interfaces. Given a functional model
of the system, the MCC must decide which components
need to be part of the system in order to integrate the
modeled functionality and how these components must
be connected. For this, we differentiate between applica-
tion components and repository components: An application
component implements (a part) of a particular function
and can therefore be directly related to the functional

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

model. Repository components, on the other hand, per-
form more generic tasks such as relaying access to hard-
ware devices or networks. Both types of components may
require or provide certain services. The MCC must there-
fore solve pending service requirements—for instance by
inserting repository components—in order to generate a
consistent network of communicating components [24].
Note that nonfunctional requirements, such as memory
and response-time requirements, will additionally con-
strain the solution space. The parameters of this solu-
tion space are not only the selection and interconnection
of components but also the mapping of components to
processors and scheduling parameters. The MCC must
therefore make automated design decisions such that all
requirements are satisfied and appropriate contracting
interfaces can be established. For this purpose, we resort
to an automated model transformation and refinement
from implementation- and platform-independent models
to implementation- and platform-specific solutions [25].
This process is assisted by analysis engines that pro-
vide expert knowledge about particular design decisions
and check for constraint violations. As constraint viola-
tions might only be detectable on lower model layers,
this process may require iterations by backtracking to
the conflicting design decision. By applying a backtrack-
ing algorithm—which guarantees termination—for this
design-space exploration, a solution is found in limited
time if it exists. Although it may take a very long time
to search the entire design space, we do not have any
requirements for this as we focus on feasibility of the
design automation rather than efficiency or even optimal-
ity. More precisely, as the MCC only performs EDA, we do
not require the MCC to find a solution within a particular
time limit or to find a solution at all. The analysis engines
allow reusing established analyses and evaluating specific
aspects in isolation without the need of a holistic view. This
reflects the fact that diverse requirements arise in differ-
ent application domains. For instance, such analyses may
focus on security threats in vehicles [26], byzantine agree-
ment in cooperating vehicles [27], optimized resource
assignment for FPGAs [28], hard response-time constraints
[29], [30], or weakly hard timing constraints [31]. Note
that the design-space exploration is centrally managed
to ensure consistency of design decisions from multiple
analysis engines.

Furthermore, dependency analysis [23], [32] is
employed as an overarching method, which serves two
purposes. First, it separates relevant from nonrelevant
dependencies and, secondly, it determines neuralgic points
where relevant dependencies need to be contained. These
neuralgic points either result from inappropriate design
decisions or from model uncertainties and inaccuracies. If
necessary for establishing a sound contracting interface,
shaping mechanisms can be applied at those points
in order to supervise and enforce particular contract
parameters. As mentioned earlier, detected parameter
changes are also fed back to the MCC in order to

renegotiate the contracting interfaces. As the dependency
analysis provides the information which parameters are
influenced by a changed contract parameter, it enables
an incremental consideration of these changes such that
the MCC can react with a reconfiguration of the execution
domain. In consequence, this supervision and feedback
mechanism equips the system with self-awareness.

2) Execution Domain: As indicated above, the execution
domain must build a solid foundation for dealing with in-
field changes in terms of a continuous life-cycle manage-
ment for CPSs. In this section, we give a more detailed
account of the particular mechanisms and solutions to
which we resort in regard to this.

The main purpose of the execution domain consists of
providing the RTE (and OS) for the applications. This RTE
must permit changes (configurability) and likewise allow
the MCC to keep control over any changes. Ideally, such
an RTE will already provide strong isolation between soft-
ware components and enable fine-grained access control in
order to enforce the modeled behavior.

With respect to configurability, we can differentiate
three paradigms: static, dynamic and reconfigurable. With
static, we denote systems whose configuration is set at
compile time (e.g., typical AUTOSAR/OSEK systems).
Dynamic systems, on the other hand, can be configured at
runtime. Typical examples are general-purpose OSs (e.g.,
Linux) that allow the user to start arbitrary processes,
which often requires rather lax access restriction. The
third paradigm, reconfigurable, stands for systems whose
configuration may only change at boot time or down-
time. By design, this paradigm thus enables the best
control over changes, which is an essential prerequisite
for the CCC approach. Moreover, in order to apply the
model-based methods, we must also have fine-grained
control over access permissions such that dependencies
can be restricted to a minimum. We therefore pursue
the principle of least privilege, i.e., a white-list approach
of access control that only grants the minimum set of
required permissions to a software component. Note that,
in general-purpose systems, this approach is usually hard
to employ as it quickly impedes the usability. On the
other hand, in conjunction with an automated integra-
tion/configuration process, it becomes manageable and
a key concept for guaranteeing an explicit structure of
runtime dependencies.

In order to control changes and access permissions
by the MCC, CCC resorts to—but is not limited to—
microkernel-based systems which allow both by design,
fine-grained access control as well as reconfigurability. In
these systems, software components are operating in dis-
tinct address spaces in order to establish a spatial isolation.
Communication between these components is therefore
made explicit for which the microkernels typically provide
interprocess communication (IPC) and signaling mecha-
nisms. This effectively mitigates side-effects between com-
ponents as memory accesses and interactions are restricted

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1551

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

to the necessary extent (principle of least privilege). With
this concept, microkernels intend to minimize the trusted
computing base (TCB), i.e., the amount of code on which
an application must rely. As the TCB not only comprises
the kernel and the application itself but may also include
other applications, minimizing the application-specific TCB
becomes an important element of security-focused archi-
tectures [33]. A major achievement of these minimiza-
tion efforts is that they enable the formal verification of
microkernel implementations as in the case of seL.4 [34] or
MUEN [35]. Apart from spatial isolation, temporal isola-
tion is another important aspect in CPS in order to provide
freedom from interference. Common concepts are time
partitioning as in ARINC 653 [36], [37] or budget-based
scheduling [38], which have also been recently adapted by
microkernel implementations [39], [40].

The main concept of microkernels is the separation of
policy and mechanism, i.e., the kernel should be kept clean
from any particular policy but only provide the pure mech-
anisms. In consequence, applying and enforcing policies
becomes an issue of the RTE. In the scope of CCC, we
particularly use the Genode OS Framework [41], which pro-
vides a strictly component-based RTE with service-oriented
interfaces, and aims at minimizing the application-specific
TCB. Component-based (operating) systems are a straight-
forward continuation of the microkernel approach [42]
and particularly suitable for formal verification [43]. Note
that a clean and homogeneous application/component
model simplifies the EDA.

Detailed knowledge about the RTE becomes an impor-
tant aspect when establishing the corresponding mod-
els. In particular, it must be known to which extent the
defined policies are enforced by the RTE. Where necessary,
the RTE is augmented with shaping mechanisms as a
contract enforcement to strengthen the assumptions that
can be made by the model domain. It also equips the
execution domain with self-protection capabilities against
potentially harmful behavior. For instance, shaping of
interrupt frequencies or execution times may be required
to safely bound the interference on critical tasks. As a
contract-enforcement mechanism, shaping can also guar-
antee integrity of network communication [44], [45],
enforce assumptions in the timing model [20], provide
fault detection and recovery [46], [47], or even avoid
unaccounted interference in wireless communication [48].
In consequence, shaping is the main technique to address
model uncertainties.

Nevertheless, contract enforcement alone does not
equip a CPS with self-awareness. It only becomes self-
aware if we add a feedback loop to the model domain
that allows self-assessment of the system’s behavior. By
this, the system can learn from observations, reason about
necessary changes, and act/adapt upon these. Monitoring
acts as supervision and observation of a managed system
and is a well-known concept in self-aware architectures
[49], [50] or self-adaptive systems [51], [52]. This mon-
itoring is especially relevant for model properties that

1552 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

cannot be accurately modeled, such as the presence of
security leaks for which anomaly detection has been shown
to be a feasible countermeasure [53]. In consequence,
runtime monitoring also serves as a technique to addresses
model inaccuracies.

As the name suggests, runtime monitoring and shap-
ing always come with a runtime overhead. However,
event-tracing frameworks have already become a common
infrastructure in microkernel RTEs [41], [54] and act as
an enabler for the efficient instrumentation of component
interactions at runtime.

C. Example

Having discussed the cross-layer modeling and architec-
tural approach of the CCC project, this section illustrates
these methods by means of an example. For this purpose,
we have a look at the integration of an automotive subsys-
tem that performs lateral and longitudinal guidance of a
road vehicle. Lateral guidance primarily uses the yaw rate
provided by an inertial navigation system (INS) in order
to control and correct the steering and ensure stability of
the vehicle. Optionally, it also uses a reference trajectory
calculated by a camera-based lane detection as a secondary
input. Longitudinal guidance controls the vehicle speed
based on the measured acceleration which is provided by
the INS based on accelerometers and wheel-speed sensors.
As an optional secondary input, it uses radar-based dis-
tance detection that implements an adaptive cruise control
(ACQ).

Due to the similarity in their sensor usage, both func-
tions are typically implemented in the same subsystem.
From the CCC perspective, we suppose that both func-
tions have been developed independently, e.g., by using
software-engineering techniques such as interface- or
service-based design. However, as lateral guidance can be
considered more critical than longitudinal guidance [55],
we must show independence of both functions in the
scope of an automated model-based integration process.
Furthermore, we must also show their independence from
other functions that share or connect to the vehicle plat-
form, e.g., infotainment, navigation, etc. In the remainder
of this section, we give a more detailed account of how
this can be achieved by cross-layer dependency analysis.
We specifically focus on timing dependencies for brevity,
however, handling other dependencies, especially physical
ones, follows the same principle.

1) Subsystem Setup and Implementation: The conceptual
software and hardware architecture for the subsystem is
illustrated in Fig. 5. It shows the distributed implemen-
tation on two electronic control units (ECUs), a switched
Ethernet network, and dedicated camera and radar mod-
ules; other components (software as well as hardware)
of the vehicle platform are omitted for simplicity. The
INS is implemented by three sensor components (red)—
i.e., Gyro., Accel., and WheelSpeed —and the INS com-
ponent. The Gyro. component performs sensor fusion of

Mostl et al.:

lateral
guidance

longltudmal

Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

,,,,,, ECU2]______ ,,,ﬁ

" - |

i TrajectoryCalc. ||

| j Y/ i Camera i
Nie&\i/yi(i)il?,‘-i L’\Network\}

guidance

1
|
|
T —
)
1
|
1

Fig. 5.

Software/hardware architecture of the INS example with lateral and longitudinal guidance consisting of several interacting

software components that execute on networked hardware components (ECU1, ECU2, CAM, RADAR).

three gyroscopes for yaw, pitch and roll, while the Accel.
component fusions the readings for three accelerometers in
X, y, and y orientation. Further, the WheelSpeed component
processes readings from the vehicle’s wheel-speed sen-
sors into current speed and acceleration. Resulting values
from the three sensor components are reported to the
INS component and aggregated. It subsequently provides
the current angular velocity and linear acceleration as
distinct services. The subscribed clients (Lat. and Long.) are
notified whenever new values are available. Note that the
gyroscopes are sampled with a much higher frequency than
the accelerometers and wheel-speed sensors as the latter
two are more precise and less affected by drift. A camera
sends raw image data to ECU2 over the network. Similarly,
the radar performs object recognition and also transmits
the results to ECU2. On ECU2, trajectory calculation and
ACC are performed based on the data received over the
network, which is interfaced by the NIC (network interface
controller) component. The results are periodically sent to
ECU1.

On ECU1, the reference trajectory and target velocity is
received and placed into read-only shared memory. Lateral
guidance is then implemented by the Lat. component,
which reads the INS and trajectory data from shared
memory and calls the Steering component that provides
an interface to the vehicle steering actuators. Similarly,
longitudinal guidance (Long.) reads the INS and cruise
control data from shared memory and calls the SpeedCtrl
component to control the speed with the corresponding
vehicle actuators (motor and brake).

As mentioned above, the lateral guidance is a critical
function as it ensures stability of the vehicle and has
respective safety goals associated with it [55]. The safety
goals, e.g., are expressed in tolerable control overshoot,
which is dominated by maximal tolerable dead time expe-
rienced by the control algorithm component. This can,
for instance, be derived through functional analysis of the
control algorithm. As dead time corresponds to reaction
times of component paths, they can be specified together
with the safety requirements in the integration contract
describing the change and as a mapping in the supplied
models.

2) Dependency Analysis: Considering the function in
the context of a cross-layer model of the vehicle, it is

obvious that numerous cross-layer dependencies exist. In
the excerpt of the overall system in Fig. 5 alone, we can
easily see that a number of software components map
to the same ECU, and that the processing chains starting
at the camera and radar sensors utilize the vehicle’s net-
work. The network is assumed to be shared with functions
such as navigation and passenger entertainment. The lat-
ter are typical QM functions (not safety relevant), which
must not interfere with functions that have an Automotive
Safety Integrity Level (ASIL) requirement [2]. From the
structure alone, all functions must be assumed transitively
dependent, hence defeating the safety concept. As laid out
above, the relevant dependencies must be distinguished
from the nonrelevant ones.

Since the lateral guidance operates with a rather high
frequency compared to other dynamic vehicle functions, it
is sensitive to timing interference, i.e., the dependencies
that possibly generate interference on the timing of the
component paths must be evaluated for relevance. In
order to detect and quantify any timing dependencies, the
timing model (task graph) for ECU1 as depicted in Fig. 6
must be considered, since all interference paths with other
functions traverse ECU1, as a common point of interfer-
ence. The task graph models the ECU’s workload by tasks

external

interrupts "~ ' ‘_>
10ms - - -

20ms --- ___

40ms - - -‘—>
e _> ”@_"

ECU1
Fig. 6.
for lateral guidance (orange) and longitudinal guidance (green).

from
network

Timing model for ECU1 in Fig. 5 illustrating the task chains

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1553

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

(circles) and their precedence constraints (solid/dashed
arrows) and can be extracted from the software archi-
tecture given appropriate knowledge about the service
interfaces [30]. Orange and green tasks in the figure
represent the timing-critical part of the lateral and longi-
tudinal guidance as two separate task chains. Note that
the longitudinal and lateral guidance tasks are triggered
from ins; and inss respectively in order to process the
updated values. Furthermore, the task graph contains a
task chain indicated in gray in which the wheel-speed
sensor processing and reporting to the INS is performed
by the task ins;. Note that each ins, task represents a
different path in the INS component, i.e., depending on
which interface of the INS is used, a different functionality
is provided. The remaining tasks can be considered as
interference in this example as they result from sensor
preprocessing (pre), network stack (nic), and other higher
priority load (irq). To resolve the dependencies on the ECU
we must investigate its scheduling.

As we use static-priority preemptive scheduling on this
ECU, we must determine a priority assignment that sat-
isfies both schedulability and freedom from (unbounded)
interference. The latter gains relevance if we include model
uncertainties such as the quality of WCET parameters. For
critical functions (here: lateral guidance), we must ensure
that every (timing) dependency can be safely bounded.
This includes the task chain itself—as it contains service
dependencies—as well as higher priority interference and
lower priority blocking.

With respect to schedulability, a rate-monotonic priority-
assignment (higher rate = higher priority) is optimal but
potentially adds timing dependencies. In this example,
we therefore employ a “criticality as priority” scheme
that reduces timing dependencies by design but requires
schedulability analysis.

As lateral guidance is the most critical function in this
example, we assign its task chain the highest priorities and
perform a response-time analysis in order to calculate an
upper bound on the chain’s latency [30]. However, the
acquired bound is only safe if all parameters on which it is
based are safe. In this example, we particularly notice that
the tasks ins, and ins3 appear as lower priority blockers to
the lateral-guidance chain (orange) because they belong
to the same software component and thus cannot be pre-
empted by ins; (cf. [30]). Note that these tasks represent
another path in the INS component and are not necessarily
verified or carefully tested as is required for the criticality
of the lateral-guidance function.

In consequence, three conditions must be ensured
to mark timing dependencies on ECU1 as irrelevant:
First, the required response times can be met with the
assumed/specified execution rates and execution times so
that timing guarantees can be given. The relevance thresh-
old here is whether the response-time requirement can be
met. Second, all parameters utilized for this conclusion
are known with the same level of assurance, e.g., the
parameters for inse and inss are known with the same level

1554 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Table 1 Contract Negotiation Results

iteration

contract dependencies #0 #1 #2 #3

Worst-Case Execution | 0! o' o' v/

Times (WCETs): gyroq,

. ns1, gyrog, laty, steer,

};af;sponse Lime lata, pre, IRQ, nic, traj,

insa, inNs3

Activation Patterns (ACTs):

IRQ, nic
WCET inso, ins3 | ECU1, WCET determination | — X% /°
remaining WCETs | ECUI, WCET determination — ot ot v
ACT IRQ environment — X v 0
ACT nic network — X o v
ECU1 — —
network v°

! acceptable if contracts for WCETs and ACTs can be negotiated

2 WCET determination process does not deliver the required assurance
for the critical chain

acceptable after applying shaping to guarantee WCET with the same
assurance as for the critical lat chain

acceptable if contract for ECUI can be negotiated

5 ACT controlled by external source

6 acceptable by applying shaping to guarantee ACT

7 acceptable if contract for network can be negotiated

8 acceptable because hardware fault probability of ECU1 is below the
required ASIL threshold

acceptable because the corresponding network stream is controlled at
the source and interfering streams are shaped in the network

3

4

9

of confidence as those for the tasks in the orange chain
itself. The threshold for this dependency is the assurance of
the parameter, which typically depends on the method how
the parameter is obtained. Third, other cross-layer paths
these parameters depend on can be considered irrelevant
as well.

Table 1 shows the results of four iteration steps (0-3)
based on dependency analysis for ECUL. It indicates in
which step a dependency can be accepted (), i.e., can
be considered irrelevant. Furthermore, it also exemplifies
that, to determine relevance thresholds, further contracts
must be negotiated in order to accept a dependency (O).
For instance in iteration 0, in order for the response time
lat to be accepted, we need to negotiate the dependent
contracts for WCETs and ACTs first. Moreover, if a con-
tract cannot be accepted (X), countermeasures must be
applied. For instance the dependence on the Worst Case
Execution Time analysis parameters for inss and inss can-
not be considered irrelevant in iteration 1 as the process
for determining the Worst Case Execution Time is not as
stringent as for ins;. It only becomes irrelevant in iteration
2 after shaping enforces an upper bound on the worst case
execution time parameters.

Timing dependencies on the network and other hard-
ware elements require similar steps: For the camera and
radar data that share the network with other traffic,
analysis also suggests that shaping mechanisms in the
execution domain can be used to guarantee QoS even in
the presence of unpredictable traffic, e.g., from brought-in
devices that are granted access to the network. However,
note that this only addresses the timing dependency, other
cross-layer effects must still be assessed for relevance. For

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

instance, both guidance functions and the entertainment
would depend on the same Ethernet network, i.e., the
network and its configuration still pose as a single-point-
of-failure. The relevance of this depends on the effects that
are expected for the system and the failure rates that can
be expected under the assumed operational conditions.
For brevity, we only sketch the idea behind the further
analysis here. If, e.g., transient hardware faults are to be
expected, suitable fault-tolerance protocols can be applied
and subsequently their timing implications included in the
timing analysis [56]. On the other hand, for permanent
hardware faults redundancy measures are necessary, i.e.,
the dependency is not acceptable as the rate for permanent
faults is above the accepted threshold.

3) Contracting Aspects: Any configuration of the execu-
tion domain must satisfy the initially specified contract
requirements of all functions in order to be valid. For this, it
is required that all dependencies are classified in relevance
and that no unacceptable relevant dependency remains. To
achieve this, revealed dependencies are iteratively broken
down into derived contracts such that their acceptance can
be determined and negotiated.

In this example, we focused on the initially specified
latency bound of the longitudinal and lateral guidance,
which are supposed to be integrated as depicted in Fig. 5.
The contracts that are necessary due to the dependency
analysis’ steps, can be derived from parameters that spec-
ify the integration, e.g., on which ECU components are
implemented and how the priorities are assigned on ECU1
to perform a response-time analysis. Despite focusing on
timing contracts in this example, other types of contracts
need to be formulated in order to cover other types of
requirements. Note that how to efficiently formulate and
specify such contracts and system properties is an orthog-
onal problem and not in the scope of this paper.

Besides validating the configuration, the derived con-
tracts in Table 1 implicitly select the metrics that can
be evaluated by the model domain, and which shall be
observed by the execution domain. The example high-
lighted that the model-based guarantees depend on the
execution time of ins, and ins3;. Consequently, observing
whether these model properties actually hold at runtime
also checks the validity of the contracts between execution
and model domain, and whether renegotiation is necessary
to reduce shaping interventions.

This approach could even be extended such that certain
integration parameters which become necessary during
dependency analysis are automatically synthesized by the
MCC. For instance the MCC could compute possible com-
ponent deployments based on the given hardware platform
and subsequently assigning priorities based on further
dependency analysis steps.

D. Conclusion

CCC automates the integration process for CPS by copy-
ing many aspects of the existing engineering process, i.e.,

how and when design decisions are made, reasoning about
requirements, etc. In CCC, the MCC implements this EDA
methodology that replaces the lab-based integration and
testing while the execution domain is kept self-contained
(operational without the MCC) thereby equipping the CPS
with the ability to apply design changes in place of the
OEM. In particular, the CCC methodology exploits strong
guarantees (contracts) that can be formulated for lab-
tested software components and the microkernel archi-
tecture. For instance, our example illustrated how the
integration of components for a safety-critical function
is performed on these contracts and how requirements
and dependencies are reasoned about. However, weaker
guarantees (model uncertainty) can also be dealt with by
using dependency analysis to expose neuralgic points and
synthesize possible countermeasures. When it comes to
model inaccuracy, runtime monitoring (and its feedback to
the MCC) is essential.

IV. IPF

With decreasing feature size, semiconductor technologies
expose higher parameter variation. In several national
research priority programs, such as the NSF Variability
Expeditions [57] or the German SPP Dependable Comput-
ing [58], new solutions have been developed to address
these challenges, ranging from the circuit level all the way
up to the software and applications layers. These solutions
are applicable at design time, at downtime, at runtime or a
combination thereof. On-chip sensors are used to identify
the hardware health status including automatic control of
current temperature or to mitigate aging effects. Redun-
dancy in many forms has been proposed to guarantee con-
tinued performance, real-time constraints and integrity for
safety critical and high availability embedded and cyber—
physical applications. Sensor networks have profited from
dynamic energy control which will support the pervasive
use of very-large-scale integration (VLSI) in the up-coming
Internet of Things (IoT). More and more of these on-chip
control loops and higher level platform scheduling and
management strategies have been employed to operate
complex applications executing efficiently on an integrated
circuit. Yet, these mechanisms (that span multiple levels of
abstraction, and which address different goals) are largely
uncorrelated and targeted to control individual effects.
While acceptable for today’s circuits and applications, the
number and impact of effects to be controlled increases
and requirements to dependability, resilience and longevity
grow. Therefore, a holistic approach which covers VLSI
circuit operation as well as runtime OS and application
software is needed.

In this section, we introduce a concept that addresses
these challenges and highlight how EDA can profit from
control oriented self-aware platform management; we
illustrated this with aspects from four examples of prelim-
inary work and motivate the overall concept with a highly
topical use case.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1555

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

A. TPF Concept

Future microelectronic systems can be compared to
factories. To keep factory production running effectively
and efficiently, the production itself, the logistics of supply
(material, energy, water, waste), the machinery and trans-
port, the facility control including heating or illumination
are all adapted to the current workload, while at the same
time considering maintenance and continuous operation.
Future microelectronic systems face comparable require-
ments. Much like in a factory, there will be a platform
operation layer that controls the performance and health
status of a microelectronic system based on an on-chip
sensor network, considering the many different targets of
temperature, energy, aging, reliability, security and long
term systems evolution when it schedules the application
functions, the memories, 1/0s, and possibly micromechan-
ics (where applicable). That platform operation layer will
not only focus on the current status, but also predict
the future state of a microelectronic system including the
expected development of the platform. Where possible,
it will communicate with other platforms to identify the
development of the processing load and act accordingly.
The platform layers will use their own IT infrastructure
and reach a level of autonomy that is far beyond what is
possible today.

Such holistically controlled autonomous microelectronic
systems can be considered information processing fac-
tories (IP factories). The transformative vision is that
these “IP factories” could become the dominant micro-
electronic platform beyond the current age of many
core processors because of their flexibility, controllability,
longevity, and evolution potential. They could adapt to
modes of extremely low energy consumption and high-
est performance, as well as changes in other operational
characteristics.

The IP factory is not only suitable to meet the chal-
lenges of future microelectronic systems, it is also a per-
fect platform for future autonomous systems. All major
trends—networked embedded systems, CPS, systems-of-
systems, or the loT—assume higher subsystem autonomy
to reach the required scalability. Due to its sensory capabil-
ities, its flexibility and adaptability as well as the built-in
autonomous control, an IP factory provides the conceptual
basis for system level autonomy. Its capabilities can be
utilized to enable self-awareness and context-awareness of
the subsystem and to support system level collaboration for
group awareness as well as to enable and control emergent
system behavior. Together, component and system-level
autonomy will form a hierarchy which separates concerns
and appears to be eminently suitable for the design of large
scalable systems.

Even though the IPF concept addresses all levels of
CPS, the main focus is the “factory,” i.e., the platform
that processes information including its hardware and
operation. The IPF concept is currently elaborated and
investigated by an international research group of UC

1556 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Irvine, TU Munich, and TU Braunschweig. The joint project
is funded by the DFG and the NSE

B. Objectives of Self-Aware Information
Processing Factory

The central objective of a self-aware information
processing factory in this specific context is the effec-
tive exploitation of self-awareness and self-organization
in order to provision complex, MPSoC-based hardware-
software CPS with a holistic information processing run-
time control infrastructure for optimizing performance,
power dissipation and system resilience.

The motivational metaphor of the information process-
ing factory clearly indicates that bundles of component-
specific, uncorrelated control instances are inadequate to
orchestrate multicriterial objective functions of complex
systems. Equally true, a strictly centralized controller for
such systems has to fail due to lack of scalability. Therefore,
a hybrid—as much modular and distributed as possible, as
much centralized as necessary—and hierarchical approach
must be developed that is viable, cost-/overhead-efficient
and scalable.

In order to achieve the stated objective, the following
conceptual design principles and mechanisms (see also
Fig. 7) can be deployed. Sensor information will be tapped,
fused and merged into SO/SA control processing entities
at various abstraction levels of the hardware/software
architecture of an MPSoC-based CPS system. The control

? Environment T
/ I
| |
¥ h |
SO/SA |« + SO/SA
b i
"?PP_I \ LAPP_2 *L-"App_nu
\ i
‘Applications
\\ /i
\1* I
SO/SA I

- 30, 4 1 e N 4

SO/5A e » SO/BA |« >

[& 4 T \
fff 05 / Middleware tﬁ,l \
/ " 1
fuif [LA
[y @ [y \ ¥
<+ SO/SA 1+ SO/SA w— SO/SA |
& | + &
: MPSoC Arichitecture t l

[N B v * e
Hardware devices/circuits

Fig. 7. Self-organization/self-awareness (SO/SA) MPSoC stack.

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

processing entities generate actuation directives to affect
the MPSoC system constituents at the same or lower levels
of abstraction. Individual control processing entities shall
be delegated well-defined degrees of autonomy in opera-
tion [self-organization, self-awareness (SO/SA)] to locally
optimize the entity-specific performance, power consump-
tion and reliability. Correlation among multiple control
processing entities, either at the same or among different
abstraction levels, shall be established through the aware-
ness for the “actuation-to-implication causalities” caused
by an applied action (e.g., how an increase in frequency
affects entity performance and power dissipation, or how
a task scheduling policy affects energy consumption and
application performance).

Self-organized, autonomous control, especially when
applied by multiple hierarchical entities at different
abstraction levels and with different control cycle peri-
ods, may lead to divergent or even contradictory con-
trol directives. Such forms of destructive emergence must
be avoided. They can be detected by observing sys-
tem interaction and controlled by monitoring and jointly
enforcing global constraints and objectives. Self- and
group-awareness provide a suitable modeling basis for
the resulting globalized interaction and control. This is
especially important in critical systems as will be discussed
in the following.

The viability of such an approach can be assessed in
terms of optimality of the achieved system performance,
power efficiency and resilience relative to a state-of-the-
art reference approach. Cost can be quantified in terms
of fractional overhead of the SO/SA sense-control-actuate
entities in comparison to the pure functional CPS hard-
ware/software components. Scalability can be assessed in
terms of numbers of architectural entities up to how many,
as well as with how few, the approach is plausible.

C. EDA Perspective of IPF

Just as in the case of CCC, in-field methods for IPF
extend current design steps to the field. But, the design
goals change and so do the EDA tool challenges. The IC
is no more optimized for the best operating point but it
is optimized to efficiently adjust the operating point to
changing operating conditions. This goal change affects
verification and (online) test. It might be useful to extend
testing by elements of system identification (see above)
observing the influence of parameter change on circuit
behavior under parameter change. EDA should support
synthesis of control stacks for robust learning (cp. Fig. 7)
using suitable architectures.

Furthermore, research on the self-aware IPF paradigm
must address a whole host of fundamental problems that
pose new challenges to EDA. How to ensure robust,
predictable CPS system performance, power consump-
tion and resilience through a combination of self-aware
layers of autonomous, heterogeneous hardware/software
(self-organization based) control on the one hand side

and hierarchical top-down control resembling an IPF?
How can self-awareness of individual system constituents
or subsystems be transferred and combined into higher
level group-awareness? What cost/overhead for a holistic
SO/SA control infrastructure can realistically be achieved?
Is it possible to bound this cost/overhead of the equivalent
functional MPSoC layer complexity?

All these are open problems for architecture and related
EDA research.

D. Preliminary Work on IPF

Although many related aspects have been explored
earlier, they lack awareness and hierarchical, cross-layer
autonomous management in MPSoCs through a relevant
and comprehensive conceptual framework such as the pro-
posed IPE The following subsections provide an overview
on preliminary works to IPF where self-awareness and self-
adaptivity have been exploited at individual but different
abstraction levels of MPSoC systems: autonomous system-
on-chip (ASoC) uses hardware-based machine learning to
control operation parameters of processor cores at the
hardware architecture level, CPSoC introduces an adap-
tive and reflective middleware software stack for self-
aware computing and communication control based on
multi-layer sensing, and non-uniform verification architec-
ture (NUVA) provisions a distributed runtime verification
infrastructure utilizing self-replicating, low overhead run-
time verification (RV) monitors and checkers.

1) ASoC Platform With Machine Learning-Based Control:
ASoC platform [59], [60] deploys hardware and software
reinforcement machine learning techniques (learning clas-
sifier systems) [61] on homogeneous multicore processors
for optimizing workload balancing, power consumption
and resilience against intermittent core failures in a self-
aware/self-organizational manner. The general idea is that
parts of today’s and future abundant chip capacity, in form
of MOSFET transistors, shall be dedicated for generic self-
awareness/self-organization purposes in order to flexibly
react to changing system and environmental operating
conditions at runtime. The ASoC platform, as shown in
Fig. 8, can be considered as a forerunner for the envisaged
layered IPF MPSoC Architecture depicted in Fig. 7. The
ASoC architecture augments the conventional functional
or plant layer of a SoC by a so-called autonomic layer,
consisting of interconnected autonomic elements (AEs).
This separation of the ASoC architecture in two layers
is only a conceptual view; physically, functional elements
(FEs) and AEs will be realized intertwined on the same die.
Preferably, FEs are existing IP library blocks such as CPU
cores, NoC building blocks, on-chip memories, dedicated
accelerators and I/O blocks. The idea is to use them
untouched or “as is” in order to maximize reuse and pre-
serve earlier investments in IP library development. Self-
aware control and autonomous at-runtime optimization of
key MPSoC operation parameters (e.g., CPU core supply
voltage and frequency, task mapping to individual cores)

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1557

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

AUTONOMIC Layer

Autonomic
Element

Meniter

Evaluator
Actuator

Communication I/F

Network I/F

Functional
Element

FUNCTIONAL Layer

Fig. 8. ASoC architecture layering.

is achieved through closed “monitor-evaluate-act” control
loops between individual FE-AE pairs.

In order to grant individual AEs awareness of the oper-
ation states in other AEs (and their FEs), AEs are inter-
connected at the autonomic layer through a dedicated ring
network.

An AE consists of four building blocks: 1) the monitor,
for collecting status information from the supervised FE;
2) the actuator, to issue FE operation parameter changes;
3) the communicator, to interface to the mentioned ring
exchange network; and 4) the evaluator, to analyze the
monitored status information and to propose potential
actions. The evaluator obtains self-awareness of what is
going on in its local FE and neighboring FEs, formally
speaking the capacity for introspection and the ability
to recognize oneself as an individual separate from the
environment and other individuals, via its monitor and
communicator. The analysis of monitor data within the
evaluator followed by the deduction of actions on the
local FE is performed by means of reinforcement-based
machine learning classifier tables (LCTs). At this point it
is important to note that these local actions may represent
parts of the desired means to counteract at-runtime appli-
cation interference, environmental dynamics and model
uncertainties on processing resources. Generally speaking
they address an EDA problem typically found in the right
branch of the V-model as part of test and verification steps
(cp. Fig. 2). Partial means because the ASoC FE-AE all-
hardware control loop only strives to tackle control tasks
that require ultimately short, i.e., few CPU clock cycles,
loop latencies. At-runtime actions that are less timing criti-
cal will be accomplished by OS/Middleware or application
layer techniques of the anticipated IPF architecture. An
example of which, the CPSoC system, will be presented in
Section IV-D2.

The two application scenarios described in the sequel
will use the same three-core LEON3 Open RISC proto-
type with identical objective and reward functions (to
demonstrate generic applicability). In the video processing

1558 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

application the frame rate of the I/0 interface was picked
such that one core can merely handle the entire workload if
it operates at maximum frequency. When all three cores are
available, each can run at corresponding lower frequencies
and supply voltage, resulting in a more homogeneous
temperature and power density distribution across the
architecture. All cores have the same frame processing
program loaded in their caches.

Fig. 9 shows how individual cores adjust their oper-
ation frequency in the presence of emulated randomly
intermittent core failures (a maximum of two cores has
been switched off in random patterns and intervals). What
at first glance looks like random fluctuations in plotted
frequency and CPU utilization, exhibits a trend when more
closely examined. The longer the intermittent core switch
off/on lasts, the less do individual cores extend the fre-
quency range to the ultimate limits for operation with only
one, respectively three, core(s) operational. LCT fitness
evaluation assigned rules which more gradually follow the
new system operation points over more aggressive rules.
Resulting consequence at system level is that fewer frames
get lost through “trapping” the multicore in operating
conditions not adequate for the workload.

In the IP packet forwarding application, packet for-
warding is partitioned into five tasks which can each
be mapped to any core. Upon system initialization, all
tasks are assigned to one and the same core (see right
side of Fig. 10). The core that initially was assigned all
tasks immediately runs into saturation while the other two
cores are idling. The overloaded core starts issuing task
migration requests to the RTE.

Task migration is accomplished by eliminating one task
in the scheduling ring of one core and enabling scheduling
on another core. No code copy operations are necessary,
as the core-local memories (caches) host copies of all
tasks. Over time we see tasks migrating among all cores
with corresponding frequency adjustments to accomplish
the corresponding workload. The system settles in a quasi

The more often we switch cores off/on,
0.06 the lower becomes the frame drop rate

| I\ A

Frame Drop Rate

Frequency[GHz] /
Utilization[x100%]

0s
38s
76s
114s
152s
190s
228s
266s
304s
342s
380s
456s
494s
532s
570s
608s
646s
684s
722s
760s
798s
836s
874s
912s
950s
988s

Fig. 9. Video processing with intermittent core failures.

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Avg. packet latency

2 3

S

i
e
JE__‘

TSP TS AT AT

Frequency
=] u
(=
=
<
e}
\'U
c
w
e}
g
(=
N
-
e
-«
m* g |
5
||
=
m &
=

Interrupt
Control MAC

Fig. 10. IP packet processing with automated task partitioning.

static task partition (see left side of Fig. 10). The multi-
core figured out by itself how to map tasks such that no
further improvement in the objective function is found. Or,
expressing it differently, the self-aware multicore proces-
sor did an automated online task partitioning on parallel
resources, a problem which is known to be NP hard. This
time, the system level benefit expresses itself as a mini-
mization of the overall packet processing latency. When
looking carefully, we see that the system saturates in a local
optimum as an even lower packet latency was experienced
earlier during the partitioning process. Hence, there is no
guarantee that the described approach finds the optimal
solution, but a solution close to it.

We want to finish the discussion of machine learning-
based self-organization of MPSoCs by discussing an
important related property known as emergence. Emer-
gent behavior occurs when system constituents (e.g.,
CPU cores) perform local actions (adjusting their oper-
ation parameters) which influence global system behav-
ior through hidden causalities between the various local
actions [62]. Or in short, local actions lead to global
effects. Thus, emergent behavior complies with the defin-
ition of self-organization, which describes a process where
some form of overall order or coordination arises out of
the local interactions between smaller component parts
of an initially disordered system. In this sense, self-
awareness, based on which local actions are triggered,
is a necessary precondition for self-organization and self-
adaptation [63]. The phenomenon of emergent behavior
can represent both a huge potential as well as a serious
threat for system control.

The huge potential is that complex system-level behav-
iors (e.g., multicore failure resilience control or task par-
titioning onto parallel resources) typically result from
few, fairly simple local actions (e.g., increase/decrease
frequency, issue migration request for random task). Little
program space, rule table size and relatively low com-
pute performance/finite state machine control are nec-
essary to stimulate behaviors that otherwise would be
way more complex, e.g., when specified in a declarative

programming language. There are several examples where
the exploitation of emergent behavior can be found in
nature to control complex organisms or organizations such
as fish schools, flocks of birds, ant colonies, etc. In nature,
evolutionary selection by the law of “survival of the fittest”
did let the species with the “right” local rules survive.
Organizations or organisms with “wrong” rules are extin-
guished, which brings us to the downside or threat of emer-
gence. Emergent behavior may result in chaotic, instable
control. There is a good base of scientific investigations
that address the differentiation between constructive or
controllable emergence [64], [65] and how to build trust-
worthy systems that inherit emergent control OC trust.!
In technical systems, time-to-market does not allow for
many-generation evolutionary selection, nor does it allow
for oscillating or unstable behavior as a consequence of
emergence. In technical systems, machine learning adopts
the role of evolution and rapidly explores rules, separating
them by fitness values. In the end, few, effective LCT rules
are sufficient to “personalize and customize” a generic
multicore processor for optimized usage in different appli-
cation domains.

2) Cyber—Physical System-on-Chip: CPSoC [66], [67] is a
smart embedded system paradigm that combines a sensor-
actuator-rich self-aware = computing-communication-
control (C3) centric paradigm with an adaptive and
reflective middleware (a flexible hardware-software
stack and interface between the application and OS
layer) to control the manifestations of computations
(e.g., aging, overheating, parameter variability etc.) on
the physical characteristics of the chip itself and the
outside interacting environment. Inspired by the adaptive
and learning abilities of autonomous computing [8]
and C3 paradigm of CPSs [68], CPSoC provides a
computing framework that assures the dependability of
the cyber/information processing (i.e., the cyber aspects
such as integrity, correctness, accuracy, timing, reliability
and security) while simultaneously addressing the physical
manifestations (in performance, power, thermal, aging,
wear-out, material degradation, and reliability and
dependability) of the information processing on the
underlying computing platform. CPSoC aims to coalesce
these two traditionally disjoint aspects/abstractions of
the cyber/information world and the underlying physical
computing worlds into a unified abstraction of computing
by using cross-layer virtual/physical sensing and actuation,
forming an ideal platform for IPFs.

The CPSoC architecture consists of a combination of
sensor-actuator-rich computation platform supported by
adaptive NoCs [communication NoC (cNoC) and sensor
NoC (sNoC)], introspective sentient units, and an adaptive
and reflective middleware to manage and control both the
cyber/information and physical environment and charac-
teristics of the chip [66], [67]. The CPSoC architecture is
broadly divided into several layers of abstraction. Unlike

Uhttp://gepris.dfg.de/gepris/projekt/66598707

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1559

Mostl et al.:

ao

Physical
Sensors/Actuators

e
:
‘I‘i

Vi rtual
Sensors/Actuators

Network/Bus
nication Archltecture

o

‘N

Fig. 11. Cross-layer virtual sensing and actuation at different
layers of CPSoC.

traditional MPSoC, each layer of the CPSoC can be made
self-aware and adaptive, by a combination of software
and physical sensors and actuators as shown in Fig. 11.
These layer specific feedback loops are integrated into
a flexible stack which can be implemented either as
firmware or middleware. The CPSoC framework supports
three key ideas. 1) cross-layer virtual and physical sensing
and actuation—CPSoCs are sensor-actuator-rich MPSoCs
that include several on-chip physical sensors (e.g., aging,
oxide breakdown, leakage, reliability, temperature) on
the lower three layers as shown by the on-chip-sensing-
and-actuation (OCSA) block in Fig. 12. On the other
hand, virtual sensing is a physical-sensorless sensing of
immeasurable parameters using computation [69]. Sim-
ilarly, virtual actuations (e.g., application duty cycling,
algorithmic choice, checkpointing) are software/hardware
interventions that can predictively influence system design
objectives. Virtual actuation can be combined with physical
actuation mechanisms commonly adopted in modern chips
[66], [67]. 2) simple and self-aware adaptations: Two key
attributes of the self-aware CPSoC are adaptation of each
layer and multiple cooperative observe—decide-act loops.
As an example, the unification of an adaptive computing
platform (with combined dynamic voltage and frequency
scaling (DVFS), adaptive body bias (ABB), and other actu-
ation means) along with a bandwidth adaptive NoC offers
extra dimensions of control and solutions in comparison to
traditional MPSoC architecture. 3) Predictive models and
online learning: Predictive modeling and online learning
abilities enhance self-modeling abilities in the CPSoC par-
adigm. The system behavior and states can be built using
online or offline linear or nonlinear models in time or
frequency domains [19]. CPSoC’s predictive and learning
abilities improve autonomy for managing system resources
and assisting proactive resource utilization [66], [67].

3) Non-Uniform Verification Architecture (NUVA): NUVA
[70] is a scalable distributed monitoring architecture that

1560 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

enables low-overhead monitoring for parametric specifica-
tions over multiprocessor systems in the form of parame-
terized finite-state automata, intended for embedded and
general-purpose multiprocessors deployed within CPSs
and IoTs. The core of NUVA is a coherent distributed
automata transactional memory that efficiently maintains
states of a dynamic population of automata checkers orga-
nized into a rooted dynamic directed acyclic graph concur-
rently shared among all processor nodes. NUVA comprises
five ingredients: 1) a specification language based on self-
replicating finite automata (SR-DFAs) introduced in [70];
2) a naturally distributed representation [70], [71] of
RV checkers and auxiliary information; 3) decision algo-
rithms; 4) a low-overhead RV architecture; and 5) a spec-
ification mining tool called ParaMiner. The distributed RV
architecture is the centerpiece, and namesake, of NUVA. It
is intrinsically distributed and scalable, minimizes conflicts
among concurrent RV transactions over shared RV data,
and is loosely coupled and minimally invasive to current
CPU architectures. Many RV frameworks have been pro-
posed with varying degrees of success. NUVA is the first
attempt at solving two open problems. 1) Most RV frame-
works lacked a naturally distributed structure that scales
RV to arbitrarily large multiprocessor systems. 2) Pure
software RV frameworks sustain substantial performance
and power overheads. As shown in Fig. 13, NUVA tackles
both problems through architectural support for RV of
parametric specifications. A vital quality of NUVA is that
parametric (or data-carrying) event streams are so general
as to possibly stand for many different aspects of pro-
gram executions, user behavior, environment conditions
(battery, temperature, GPS, sensory data, text, video, etc.).
NUVA is able to handle all of these event streams in the
same specification.

Specification Mining: In general, automated software
verification decides correctness of a design against a for-
mal specification. Unfortunately, formal specifications, like

On-Chip Sensing & Actuation (OCSA)

Application
Layer

/ Observe Decide \

Cross-Layer Sensors Declslons & Learning
(Virtual & Physical) (Controller)

Actuation (suﬁwan:
and hardware)

Traditional Operating System

/===

CPSCore

Fig. 12.
observe-decide-act loop as adaptive, reflective middleware.

CPSoC architecture with adaptive Core, NoC, and the

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

API Spec.

Source Code

|

Compiler

Trace Recorder

!

Traces

1

Specification Miner

Safety and
security
properties

Executable B .I?#.?éif

NUVA
= N Annotations

1 | BETER S

L2 Cache

' fsw|
| || BT
A T

Fig. 13. Hardware-assisted cross-layer, specification-based
monitoring infrastructure.

SR-DFAs, are notoriously hard to formulate and main-
tain for evolving complex distributed systems, especially
at the level of precision mandated by such applications
as host-based intrusion detection. This difficulty hinders
formal specifications from coping with agile, fast-changing
computing environments. Additionally, specifications of
existing software systems are needed to verify (or secure)
new systems built on top of them. Therefore, specification
mining [72] emerged as an automated technique used
to discover formal specifications of computing systems
from samples of their executions. Inferred properties can
take many forms, such as value invariants, finite-state
machines, temporal properties, or sequence diagrams. The
NUVA framework includes ParaMiner, a tool that discov-
ers software properties (in the form of SR-DFAs [70])
of arbitrary, tunable complexity and precision from large
execution traces. ParaMiner relies on a novel specifica-
tion mining technique that is the first to introduce and
use parametric multiple sequence alignment (pMSA) that
extends classical MSA [73] to handle parameterized alpha-
bet. In [74], we presented sound theoretical underpinnings
of using MSA as a language learning tool for the case
of classical finite automata. Using MSA, ParaMiner can
reconstruct properties with abstract state spaces which
do not merely duplicate the hidden program state space
and whose sizes are dictated solely by the complexity of
observed execution traces.

E. Exemplar Design Driver: Autonomous Mobile
System

In the following, we use a smart phone use case to
outline how platform control and management of the IP
factory concept can be applied to complex systems. For
smart phones, the IPF concept spans through multiple
abstraction levels of the device, including hardware, OS
and application layers (cp. Fig. 7) and interacts within

and outside itself as part of an ecosystem comprising the
device, the mobile infrastructure and the cloud. Tradition-
ally, power consumption is a primary goal but other con-
siderations are also important such as size, cost, security
and privacy. The latter two become especially important
as much of our information is now accessed through these
devices. As mobile systems become increasingly powerful
and diverse in their scope, the ability to foretell all the
possible scenarios they will go through in their lifetime
quickly diminishes, which could lead to problems of mas-
sive nature. Nowhere is that more apparent than in the
recent recall of Samsung’s Note 7 which is estimated to
have cost Samsung close to $17 billion in lost revenue.
As smart phones become more complex and empowered
with additional capabilities, the IP factory model becomes
indispensable in making these devices more self-aware,
and in doing so, making them more energy efficient but
at the same time increasing their resiliency to different
“anomalies” such as security (intrusion), aging, etc. The
key issues in this self-awareness is to be able to encompass,
manage and evolve the interactions between layers of
abstraction as well as the interactions within one layer.

For illustration, consider a smart phone SoC where
voltage overscaling (VOS) is applied at the hardware layer
to control power consumption. The goal is to allow the
hardware to contribute to the noise floor of the system in a
controlled manner as long as that leads to minimizing the
cost in terms of power and deviation from QoS metrics.
For example, if VOS is used at the physical layer (for a
WCDMA radio link), errors gradually start to appear in
the hardware. These errors will then propagate through
the system and manifest themselves at the application
layer.

At the platform level, VOS can be applied to both the
modem and the application processor (an H.264 video
decoder in this case) separately (cases A and B) or jointly
(case C). Fig. 14 shows the results of these three policies,
concluding that although more involved, a joint policy
can achieve better tradeoff between power and video

30% ; - -

> Case A
: : O CaseB
25% + CaseC
T iy
‘gzo% : : : 1
: -
"‘15%. : .
o om wﬂ-t

0,
10/"|5 20 25 30 35 40
Y PSNR (dB})

Fig. 14.
exploration.

Combined modem and application processor design space

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1561

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

quality. The situation is not as simple as one might imag-
ine, though. There exists a complex relationship between
power, performance (i.e., frequency) and reliability (i.e.,
probability of errors) factoring in temperature in a SoC
Upscaling voltage achieves higher noise immunity and
higher performance, but results in increased power con-
sumption, which raises the chip temperature, thereby
increasing leakage power, which further increases chip
temperature until the package dissipation limit is reached.
This increased temperature results in decreased reliability
and potentially offsetting expected gains in resilience orig-
inally sought by increasing voltage.

Tradeoffs at different layers can be exploited to optimize
power and reliability. At the modem layer, it is possible
to use a hybrid adaptive modulation control scheme to
tradeoff modulation (i.e., bitrate) versus power at different
signal-to-noise ratio (SNR) levels. At the network layer,
we will assume that selective protection and UDP-Lite
implementations are available. At the application layer
we can use probability-based power aware intrarefresh
(PBPAIR) [75]. The PBPAIR scheme inserts intracoding
(i.e., coding without reference to any other frame) to
enhance the robustness of the encoded bitstream at the
cost of compression efficiency. Another technique at the
application ecosystem layer is video transcoding which
requires a cooperation with the remote video server in the
cloud to generate an encoded video specifically tailored to
each hardware’s defect map. By controlling the macroblock
sizes, it is possible to limit the error propagation, thus
enabling higher peak SNR at reduced power levels.

In the IP factory context, a coordination across all layers
and within each layer is necessary. Developing such a
capability requires sensing and actuation across both the
physical and cyber domains at the interface level, and self-
awareness within the system. In this illustrative example
a particularly challenging task is the development of an
intelligent cross-layer power management policy that can
adaptively tune itself based on the current state of the
system. For instance, given a system running at a certain
level of performance, power and reliability, the policy
will need to react to changes in the environment (e.g.,
channel conditions, noise, user input, temperature, etc.).
There may be a number of alternative actions that can
be explored at different abstraction levels. At the physical
layer: V44 scaling and/or Vs, (substrate voltage) scaling,
which may increase or decrease power with side effects
on performance, temperature. At the architectural layer:
processor frequency scaling, migration of jobs between
processors (e.g., to eliminate hot spots on the chip) or
throttling communication between processors to reduce
temperature. This can, e.g., be achieved systematically
by dynamic resource management [76], [77] and at the
application layer by changing the mode of operation, for
example reducing the frame rate in video or reducing the
resolution by dropping the enhancement layers. Addition-
ally, one may choose to apply any of these techniques to
one application or to multiple applications simultaneously

1562 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

as illustrated in the video-over-wireless case study. The
big question is: which of these alternatives should be
employed for a given set of circumstances? The main
premise of this thrust is to practically demonstrate that
instead of having separate, narrowly scoped policies, much
more benefit can be reaped by approaching the problem
comprehensively. The cost, of course, is an increase in
the policy complexity, but this is something that can be
mitigated by the fact that today’s chips have significantly
more space and computing power than before. With that
premise in mind, enabling the horizontal (i.e., within a
layer) and vertical (cross layer) coordination requires the
chip itself to be cognizant of much more than a limited
set of parameters or facets. This broad-based perception
can be thought of as platform self-awareness. The self-
aware IPF paradigm provides a conceptual framework
under which these challenges of cross layer and within
layer cognizance can be explored and addressed.

E IPF in Critical Systems

Up to here, the IPF approach lacks the rigorous handling
of critical requirements. In fact, at the current state there
is no enforcement of timing or safety constraints in this.
Unlike the CCC use case, where possible platform changes
are included in safety and availability margins reflect-
ing the established approach to critical systems design,
IPF handles significant long-term platform changes and,
therefore, must actively control platform components and
their parameters to safeguard critical requirements. Pos-
sible methods include constraint-driven dynamic resource
management [76], [77], which gives preference to critical
tasks when needed, and fast error detection and recovery
mechanisms when errors have occurred [78], [79]. Safety
standards as discussed above, however, not only require
functional guarantees but also preservation of safety mar-
gins to cope with short term error effects across a sys-
tem stack like in Fig. 7. Such “margin guarantees” could
possibly be provided by automated methods as developed
for the CCC use case, but assessment of margins requires
model accuracy which is unknown beyond the current
operating point of a critical system. This limitation is a
general challenge of current approaches to self-awareness
and must be overcome if IPF methods shall be used for crit-
ical functions, as well. Here, system identification could be
applied as introduced previously; by controlled operating
parameter change (voltage, load, etc.), system behavior
could be explored in the neighborhood exploiting (but not
impacting) the available margin. Once the current model
accuracy has been investigated this way, similar monitoring
mechanisms as in the CCC use case could be applied.
Both cross-layer margins and models with a wider range
of guaranteed accuracy remain relevant but open research
issues.

V. EDA CHALLENGES

The two use cases elaborated in the preceding sections
are, to a large extent, complementary. Using different

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

architectures and methods they have illustrated the oppor-
tunities arising from self-awareness in CPSs. But the use
cases also show some key challenges that entail new EDA
problems.

A. Model Validation

While the current design process assumes correct mod-
els or, at least, the capability to validate model correctness
in the lab, a self-aware system must cope with model
uncertainty and incorrectness. In the IPF case, we assume
that system changes lead to model deviation and hold
the system itself responsible for model adaptation. IPF
uses system identification techniques but such techniques
are limited to few parameters that are controllable and
observable, and they require sufficient system margin to
be applicable. For larger systems, we need research how
to partition a system for identification. Partitioning should
eventually be executed in the field because the system
structure might change over time. In the CCC case, model
correctness stays a designer responsibility while the self-
aware system is responsible for model integration. Initially
trusting the designer provided model, the self-aware sys-
tem focuses on dependencies and formal analysis coupled
with self-configuration. While in IPE model uncertainty is
the rule, in CCC it is considered an exception requiring
protective mechanisms. Both methods of IPF and CCC can
be combined opening a large new area of self-modeling
and model prediction for large systems with online model
validation.

B. Designing the Self-Aware Design Process

With self-awareness moving part of the design process
to the field, the designer develops a system that con-
tinues designing itself. Decisions at design time includ-
ing objectives and constraints have an indirect effect on
the resulting behavior and structure. Controlling such a
process requires a new form of system specification that
does not define a single behavior, but constrains and guides
the expected system behavior. Specifying and controlling
such a “design corridor” is another new EDA problem of
high importance not only to self-aware systems but to
autonomous systems in general.

C. Critical Systems Design Automation

Currently, critical systems design is highly user driven
leaving many opportunities for EDA research. Definition
of safety cases, application of error models, dependency
determination and error propagation are still genuine
engineering tasks. While the definition of safety cases
requires profound knowledge of application functions and
their effects, dependability analysis uses more systematic
formal methods, such as FMEA, which could be automated
and executed in the field. One of the main automation
challenges is the determination of relevant dependencies
in a complex system as demonstrated in the CCC use case.

Automation of this design step would be helpful in a tra-
ditional design process, but is an essential requirement for
changing and autonomous systems. While self-awareness
alone does not solve that challenge, its cross-layer mod-
eling capabilities provide a good basis for formal depend-
ability analysis. Such dependability analysis could, then,
be used for self-configuration to improve or restore guar-
anteed margins. Here, integration in the CCC use case
is closer to a solution, because the IPF approach faces
the additional challenge of system self-identification as
explained above. System self-identification for dependabil-
ity analysis is an important research topic in itself, because
it could be used for early detection of latent degradation
or defects in general. Thus, system self-identification could
become the foundation of a new generation of monitor-
ing and self-diagnosis functions greatly improving CPS
dependability.

D. Software Architectures and Efficiency

The CCC use case demonstrates the need for new
software architectures and runtime environments. Embed-
ding the model domain, protocols for the software
“self-management”, the generation of monitors, CCC gives
implementation examples from a wide range of possible
solutions that are largely unexplored. While dependability
and IT security can profit from additional information and
methods provided by such a self-awareness infrastructure,
this infrastructure itself becomes a primary functional
safety concern and arises as an object of IT security attacks.
CCC could only provide initial results which fit the use
case, but more research is necessary for larger and open
CPSs. Algorithm efficiency and frequency of execution
determine the required runtime and energy overhead for
self-awareness. This is another research field with impact
on the practical feasibility and acceptance of self-aware
systems.

E. Self-Awareness and Machine Learning

Self-awareness can favorably be used for machine learn-
ing in many forms. It can improve predictability and
dependability by monitoring input data uncertainty and
controlling the effects of learned behavior by predicting
the consequences of actions. The self-modeling and predic-
tion infrastructure could even be used to support training
(“self-reflection”). There seem to be many opportunities in
combining self-awareness and machine learning.

E Self-Awareness, Emergence, and Scalable
Control

Coupling several self-aware systems for cooperative con-
trol has shown to be an effective mechanism for distributed
control, at least on a smaller scale [49], [80]. In the IPF
use case, many layers of different types must be coupled
vertically, while in the CCC example, many participants
interact on the same level (horizontally). Large interacting

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1563

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

self-aware systems show emergent system behavior which
can be intended to achieve new functionality but must
be controlled to stay within the intended design corridor.
Hence, heterogeneity, emergence, and scalability will arise
as general challenges for self-aware systems collaboration
requiring closer investigation of the resulting behavior.

VI. CONCLUSION

Managing change and evolution is a major challenge for
future CPSs, particularly for the methods used to design
them. Self-awareness is the ability (of a computing system)
to recognize its own state, possible actions and the result
of these actions on itself and its environment.

The two complementary use cases in this paper employ
different architectures and methods and have illustrated
the opportunities arising from self-awareness in CPSs. Both
share the principles of self-modeling, self-configuration,
and monitoring. They maintain a continuously updated
image of the system state, but differ in the objectives and
the concrete approach to meet the design goals. While
the IPF use case relies on incremental changes and feed-
back control to track the evolution of system parameters
and optimize system properties, CCC follows an analytical
approach with contracting, formal system analysis, self-

configuration and contract enforcement. While IPF targets
flexible platform adaptation for changing CPS require-
ments, CCC mainly addresses critical CPSs using a rigorous
process following the principles of current critical systems
design. Both approaches could be combined. They intro-
duce new methods that effectively extend design processes
from the lab to the field adding new system capabili-
ties that are not achievable in current lab-based design
processes. This feature extension opens a new dimension
of systematic CPS control and management thereby heavily
relying on design automation. This results in a variety of
opportunities for EDA research as outlined in the paper.
Notably, two major concerns of future CPSs, control of
machine learning and improvement of systems security,
can profit from this research. []

Acknowledgments

The authors would like to thank J. Zeppenfeld and
A. Bernauer for their valuable contribution to the ASoC
project, and S. Sarma for his valuable contribution to the
CPSoC project. M. Mostl, J. Schlatow, and R. Ernst were
part of the CCC project. N. Dutt, A. Nassar, A. Rahmaniy,
E J. Kurdahi, T. Wild, A. Sadighi, and A. Herkersdorf were
part of the IPF project.

REFERENCES

[1]

Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-Related Systems,
Standard IEC 61508, 2nd ed., Int. Electrotechnical
Commission, Apr. 2010.

[14]

H. Schmeck, C. Miiller-Schloer, E. Gakar, M. Mnif,
and U. Richter, “Adaptivity and self-organization in
organic computing systems,” ACM Trans. Auton.
Adapt. Syst., vol. 5, no. 3, p. 10, Sep. 2010.

integration of component-based automotive
software systems,” in Proc. 43rd Annu. Conf. IEEE
Ind. Electron. Soc. (IECON), Beijing, China, Oct.
2017, pp. 8425-8432.

[2] Road Vehicles—Functional Safety, Standard ISO [15] H. Hoffmann, ‘JouleGuard: Energy guarantees for [26] M. Hamad, M. Nolte, and V. Prevelakis, “Towards
26262, International Organization for approximate applications,” in Proc. 25th Symp. comprehensive threat modeling for vehicles,” in
Standardization, Apr. 2011. Oper: Syst. Princ. (SOSP), 2015, pp. 198-214. Proc. Workshop Secur. Dependab. Crit. Embedded

[3] Software Considerations in Airborne Systems and [16] H. Hoffmann, “CoAdapt: Predictable behavior for Real-Time Syst. (CERTS), 2016, pp. 31-36.
Equipment Certification, RTCA, Washington, DC, accuracy-aware applications running on [27] W. Xu, M. Wegner, L. Wolf, and R. Kapitza,

USA, Dec. 2011. power-aware systems,” in Proc. 26th Euromicro “Byzantine agreement service for cooperative

[4] R.Ernst and M. Di Natale, “Mixed criticality Conf. Real-Time Syst., Jul. 2014, pp. 223-232. wireless embedded systems,” in Proc. 3rd Int.
systems—History of misconceptions?” IEEE Design [17] H. Giese, T. Vogel, A. Diaconescu, S. G6tz, and Workshop Saf. Secur. Intell. Vehicles (SSIV), Denver,
Test, vol. 33, no. 5, pp. 65-74, Oct. 2016. S. Kouney, “Architectural concepts for self-aware CO, USA, Jun. 2017, pp. 10-15.

[5] H. Kopetz, Real-Time Systems: Design Principles for computing systems,” in Self-Aware Computing [28] A. Dorflinger, B. Fiethe, H. Michalik, P Keldenich,
Distributed Embedded Applications, 2nd ed. Systems. Cham, Switzerland: Springer, 2017. and C. Scheffer, “Resource-efficient dynamic partial
Springer, Apr. 2011. [18] A.Jantsch and K. Tammemée, ‘A framework of reconfiguration on FPGAs for space instruments,”

[6] ARINC Specification 653 Parts 1-2, ARINC, awareness for artificial subjects,” in Proc. Int. Conf. in Proc. 11th NASA/ESA Conf. Adapt. Hardw. Syst.
Annapolis, MD, USA, Aug. 2015. Hardw./Softw. Codesign Syst. Synthesis (CODES), (AHS), Pasadena, CA, USA, Jul. 2017, pp. 24-31.

[7] Analysis Techniques for System Oct. 2014, pp. 1-3. [29] J. Schlatow and R. Ernst, “Response-time analysis
Reliability—Procedure for Failure Mode and Effects [19] L.Ljung, “System identification,” in Signal Analysis for task chains in communicating threads,” in Proc.
Analysis (FMEA), Standard IEC 60812, 2nd ed., Int. and Prediction (Applied and Numerical Harmonic 22nd IEEE Real-Time Embedded Technol. Appl. Symp.
Electrotechnical Commission, Jan. 2006. Analysis), A. Prochédzka, J. Uhli¥, P W. J. Rayner, (RTAS), Apr. 2016, pp. 1-10.

[8] J. O. Kephart and D. M. Chess, “The vision of and N. G. Kingsbury, Eds. Boston, MA, USA: [30] J. Schlatow and R. Ernst, “Response-time analysis
autonomic computing,” Computer, vol. 36, no. 1, Birkhauser, 1998. for task chains with complex precedence and
pp. 41-50, Jan. 2003. [20] M. Neukirchner, K. Lampka, S. Quinton, and blocking relations,” in Proc. ACM Int. Conf.

[9] P Padala, “Adaptive control of virtualized resources R. Ernst, “Multi-mode monitoring for Embedded Softw. (EMSOFT), Seoul, South Korea,
in utility computing environments,” in Proc. 2nd mixed-criticality real-time systems,” in Proc. Int. Oct. 2017, p. 172.

ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst. Conf. Hardw./Softw. Codesign Syst. Synthesis, [31] W.Xu, Z. A. H. Hammadeh, A. Kroller, R. Ernst, and
(EuroSys), 2007, pp. 289-302. Sep. 2013, pp. 1-10. S. Quinton, “Improved deadline miss models for

[10] R.Isermann, Fault-Diagnosis Systems: An [21] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, real-time systems using typical worst-case
Introduction From Fault Detection to Fault Tolerance. “Sandboxing controllers for cyber-physical analysis,” in Proc. 27th Euromicro Conf. Real-Time
Springer, Jan. 2006. systems,” in Proc. IEEE/ACM 2nd Int. Conf. Syst., Jul. 2015, pp. 247-256.

[11] A. Morin, “Levels of consciousness and Cyber-Phys. Syst. (ICCPS), Apr. 2011, pp. 3.1-3.12. [32] M. Moestl and R. Ernst, “Handling complex
self-awareness: A comparison and integration of [22] Fault Tree Analysis (FTA), document IEC 61025, 2nd dependencies in system design mischa,” in Proc.
various neurocognitive views,” Consciousness Cogn., ed., Int. Electrotechnical Commission, Dec. 2006. Design, Automat. Test Eur. (DATE), 2016,
vol. 15, no. 2, pp. 358-371, Jun. 2006. [Online]. [23] M. Moestl and R. Ernst, “Cross-layer dependency pp. 1120-1123.

Available: http://www.sciencedirect.com/ analysis for safety-critical systems design,” in Proc. [33] H. Hartig, “Security architectures revisited,” in Proc.
science/article/pii/S1053810005001224 Archit. Comput. Syst., Mar. 2015, pp. 1-7. 10th ACM SIGOPS Eur. Workshop, 2002, pp. 16-23.

[12] PR. Lewis, M. Platzner, B. Rinner, J. Torresen, and [24] J. Schlatow, M. Moestl, and R. Ernst, ‘An extensible [34] A.J.G. Klein, “seL4: Formal verification of an
X. Yao, Self-Aware Computing Systems—An autonomous reconfiguration framework for operating-system kernel,” Commun. ACM, vol. 53,
Engineering Approach. Springer, 2016. complex component-based embedded systems,” in no. 6, p. 107-115, Jun. 2010.

[13] P R. Lewis, “A survey of self-awareness and its Proc. Int. Conf. Autono. Comput. (ICAC), Jul. 2015, [35] R. Buerki and A.-K. Rueegsegger, “Muen—An
application in computing systems,” in Proc. Conf. pp. 239-242. x86/64 separation kernel for high assurance,” Tech.
Self-Adapt. Self-Org. Syst. Workshops (SASOW), [25] J. Schlatow, M. Nolte, M. Mostl, 1. Jatzkowski, Rep., Aug. 2013.

Oct. 2011, pp. 102-107. R. Ernst, and M. Maurer, “Towards model-based [36] P J. Prisaznuk, “ARINC 653 role in integrated

1564 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

modular avionics (IMA),” in Proc. IEEE/AIAA 27th
Digit. Avionics Syst. Conf., Oct. 2008, pp. 1-3.
PikeOS Hypervisor. [Online]. Available:
https://www.sysgo.com/products/pikeos-rtos-and-
virtualization-concept/

M. Beckert, K. B. Gemlau, and R. Ernst, “Exploiting
sporadic servers to provide budget scheduling for
ARINC653 based real-time virtualization
environments,” in Proc. Desing Automat. Test Eur.
(DATE), Lausanne, Switzerland, Mar. 2017,

pp. 870-875.

A. Lyons and G. Heiser, “Mixed-criticality support in
a high-assurance, general-purpose microkernel,” in
Proc. Workshop Mixed Criticality Syst., Dec. 2014,
pp. 9-14.

M. Stein, “A kernel in a library: Genode’s Custom
kernel approach,” in Proc. FOSDEM, Brussels,
Belgium, Feb. 2017. [Online]. Available: https://
fosdem.org/2017/schedule/event/microkernel _
kernel_library/

N. Feske, “GENODE. Operating system framework
18.05. Foundations,” Tech. Rep., 2018. [Online].
Available:
http://genode.org/documentation/genode-
foundations-18-05.pdf

J. Song, Q. Wang, and G. Parmer, “The state of
composite,” in Proc. Workshop Oper: Syst. Platforms
Embedded Real-Time Appl., 2013.

M. Fernandez, G. Klein, I. Kuz, and T. Murray,
“CAmKES formalisation of a component platform,”
NICTA UNSW, Sydney, NSW, Australia, Australia,
Tech. Rep., Nov. 2013.

M. Hamad, J. Schlatow, V. Prevelakis, and R. Ernst,
“A communication framework for distributed access
control in microkernel-based systems,” in Proc.
Oper: Syst. Platforms Embedded Real-Time Appl.,
2016, pp. 11-16.

V. Prevelakis and M. Hamad, ‘A policy-based
communications architecture for vehicles,” in Proc.
Int. Conf. Inf. Syst. Secur. Privacy (ICISSP),

Feb. 2015, pp. 155-162.

J. Song, J. Wittrock, and G. Parmer, “Predictable,
efficient system-level fault tolerance in C3,” in Proc.
IEEE 34th Real-Time Syst. Symp., Dec. 2013,

pp. 21-32.

J. Song, G. Bloom, and G. Parmer, “SuperGlue:
IDL-based, system-level fault tolerance for
embedded systems,” in Proc. 46th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Networks (DSN),

Jun. 2016, pp. 227-238.

L. Thiele, E Sutton, R. Jacob, R. Lim, R. Da Forno,
and J. Beutel, “On platforms for CPS-adaptive,
predictable and efficient,” in Proc. Int. Symp. Rapid
Syst. Prototyping (RSP), Oct. 2016, pp. 1-3.

H. Hoffmann, M. Maggio, M. D. Santambrogio,

A. Leva, and A. Agarwal, “SEEC: A general and
extensible framework for self-aware computing,”
Tech. Rep., 2011.

H. Giese, State of the Art in Architectures for
Self-Aware Computing Systems. Cham, Switzerland:
Springer, 2017.

A. Bennaceur, “Mechanisms for leveraging models
at runtime in self-adaptive software,” in
Models@Run.Time (Lecture Notes in Computer

ABOUT THE AUTHORS

Mischa Mostl received the B.S. and M.S.
degrees in computer and communication
systems engineering from the Technische
Universitat Braunschweig, Braunschweig,
Germany, in 2011 and 2013, respectively,
where he is currently working toward the
Ph.D. degree at the Institute of Computer
and Network Engineering (IDA) under Prof.
R. Ernst and a member of the CCC project.

His research interests are in-field safety validation for systems
under concurrent change and self-aware mechanisms for safety.

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Science), N. Bencomo, R. France, B. H. C. Cheng,
and U. Assmann, Eds. Springer, 2014.
B. H. C. Cheng, “Using models at runtime to

virtual sensing and actuation,” in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE),
Mar. 2015, pp. 625-628.

address assurance for self-adaptive systems,” in [67] S. Sarma, N. Dutt, N. Venkatasubramanian,
Models@Run.Time (Lecture Notes in Computer A. Nicolau, and P Gupta, “Cyber

Science), N. Bencomo, R. France, B. H. C. Cheng, Physical-System-on-Chip (CPSoC): Sensor-actuator
and U. Assmann, Eds. Springer, 2014. rich self-aware computational platform,” Univ.

J. Song, G. Fry, C. Wu, and G. Parmer, “CAML: California, Irvine, CA, USA, Tech. Rep., 2013.
Machine learning-based predictable, system-level [68] E. A. Lee, “Cyber physical systems: Design
anomaly detection,” in Proc. Workshop Secur. challenges,” in Proc. 11th IEEE Int. Symp. Object
Dependability Crit. Embedded Real-Time Syst., 2016, Compon.-Oriented Real-Time Distrib. Comput.

pp. 12-18. (ISORC), May 2008, pp. 363-369.
(2001-2017).QNX Neutrino RTOS. [Online]. [69] S. Sarma, N. Dutt, and N. Venkatasubramanian,
Available: “Cross-layer virtual observers for embedded
http://www.qnx.com/products/neutrino- multiprocessor system-on-chip (MPSoC),” in Proc.
rtos/neutrino-rtos.html 11th Int. Workshop Adapt. Reflective Middleware,

T. Stolte, G. Bagschik, A. Reschka, and M. Maurer, 2012, p. 4.

“Hazard analysis and risk assessment for an [70] A. Nassar, E J. Kurdahi, and W. Elsharkasy, “NUVA:
automated unmanned protective vehicle,” CoRR, Architectural support for runtime verification of
vol. abs/1704.06140, Apr. 2017. parametric specifications over multicores,” in Proc.
P Axer, D. Thiele, and R. Ernst, “Formal timing Int. Conf. Compil., Archit. Synthesis Embedded Syst.,
analysis of automatic repeat request for switched 2015, pp. 137-146.

real-time networks,” in Proc. 9th IEEE Int. Symp. [71] A. Nassar and E J. Kurdahi, “Lattice-based Boolean
Ind. Embedded Syst. (SIES), Jun. 2014, pp. 78-87. diagrams,” in Proc. 21st Asia South Pacific Design
L. Wanner, “NSF expedition on variability-aware Automat. Conf. (ASP-DAC), 2016, pp. 468-473.
software: Recent results and contributions,” Inf. [72] G. Ammons, R. Bodik, and J. R. Larus, “Mining
Technol., vol. 57, no. 3, pp. 181-198, 2015. specifications,” in Proc. 29th ACM SIGPLAN-SIGACT
[Online]. Available: https://www. Symp. Princ. Program. Lang. (POPL), 2002,
degruyter.com/view/j/itit.2015.57.issue-3/itit- pp. 4-16.

2014-1085/itit-2014-1085.xml [73] R.Durbin, S. R. Eddy, A. Krogh, and G. Mitchison,
J. Henkel, “Design and architectures for dependable Biological Sequence Analysis: Probabilistic Models of
embedded systems,” in Proc. 9th IEEE/ACM/IFIP Proteins and Nucleic Acids. Cambridge, U.K.:

Int. Conf. Hardw./Softw. Codesign Syst. Synthesis Cambridge Univ. Press, 1998.

(CODES+1ISSS), Oct. 2011, pp. 69-78. [74] A. Nassar, E J. Kurdahi, and S. R. Zantout, “Topaz:
A. Bernauer, O. Bringmann, and W. Rosenstiel, Mining high-level safety properties from logic
“Generic self-adaptation to reduce design effort for simulation traces,” in Proc. Conf. Design, Automat.
system-on-chip,” in Proc. 3rd IEEE Int. Conf. Test Eur. (DATE), Mar. 2016, pp. 1473-1476.
Self-Adapt. Self-Organizing Syst., Sep. 2009, [75] M. Kim, H. Oh, N. Dutt, A. Nicolau, and

pp- 126-135. N. Venkatasubramanian, “PBPAIR: Probability

J. Zeppenfeld and A. Herkersdorf, “Applying based power aware intra refresh—A new
autonomic principles for workload management in energy-efficient error resilient coding scheme,”
multi-core systems on chip,” in Proc. 8th ACM Int. Center Embedded Comput. Syst., Univ. California,
Conf. Auton. Comput., 2011, pp. 3-10. Irvine, CA, USA, Tech. Rep., 2005.

M. V. Butz, Rule-Based Evolutionary Online Learning [76] A. Kostrzewa, S. Saidi, and R. Ernst, “Dynamic
Systems—A Principled Approach to LCS Analysis and control for mixed-critical networks-on-chip,” in
Design. Springer, 2006. Proc. IEEE Real-Time Syst. Symp., Dec. 2015,

J. Fromm, The Emergence of Complexity. Kassel pp. 317-326.

Univ. Press, 2004. [77] A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst,

M. Salehie and L. Tahvildari, “Self-adaptive “Dynamic admission control for real-time
software: Landscape and research challenges,” ACM networks-on-chips,” in Proc. 21st Asia South Pacific
Trans. Auton. Adapt. Syst., vol. 4, no. 2, p. 14, Design Automat. Conf. (ASP-DAC), Jan. 2016,

May 2009. pp. 719-724.

C. Miiller-Schloer, H. Schmeck, and T. Ungerer, [78] E.A.Rambo, C. Seitz, S. Saidi, and R. Ernst,
Organic Computers—A Paradigm Shift for Complex “Designing networks-on-chip for high assurance
Systems. Basel, Switzerland: Springer, 2011. real-time systems,” in Proc. IEEE 22nd Pacific Rim
D. Fisch, M. Janicke, B. Sick, and C. Miiller-Schloer, Int. Symp. Dependable Comput. (PRDC), Jan. 2017,
“Quantitative emergence—A refined approach pp. 185-194.

based on divergence measures,” in Proc. 4th IEEE [79] E.A.Rambo, S. Saidi, and R. Ernst, “Providing

Int. Conf. Self-Adapt. Self-Organizing Syst., Sep. formal latency guarantees for ARQ-based protocols
2010, pp. 94-103. in networks-on-chip,” in Proc. Design, Automat. Test
S. Sarma, N. Dutt, P Gupta, Eur: Conf. Exhib. (DATE), Mar. 2016, pp. 103-108.
N. Venkatasubramanian, and A. Nicolau, [80] H. Hoffmann, “Self-aware computing in the

“CyberPhysical-System-On-Chip (CPSoC): A
self-aware MPSoC paradigm with cross-layer

Angstrom processor,” in Proc. Design Automat. Conf.
(DAC), Jun. 2012, pp. 259-264.

Johannes Schlatow received the M.Sc.
degree in computer and communication
systems engineering from the Technical Uni-
versity of Braunschweig, Braunschweig, Ger-
many, in 2013, where heis currently working
toward the Ph.D. degree.

He is a Researcher in the Embedded Sys-
tem Design Automation Group (IDA) of Prof.
R. Ernst. He is working in the field of design,
modeling, and analysis of component-based mixed-critical systems
and a member of the CCC project.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1565

Mostl et al.:

Rolf Ernst (Fellow, IEEE) received the
Diploma degree in computer science and
the Dr.Ing. degree in electrical engineering
from the University of Erlangen-Nuremberg,
Erlangen, Germany, in 1981 and 1987,
respectively.

After two years with Bell Laboratories,
Allentown, PA, USA, he joined the Technische
Universitaet Braunschweig, Braunschweig,
Germany, as a Professor of Electrical Engineering. He chairs the
Institute of Computer and Network Engineering (IDA) covering
embedded systems research from computer architecture and real-
time systems theory to challenging automotive, aerospace, or
smart building applications. He co-ordinates the DFG Research
Group Controlling Concurrent Change and is a member of the IPF
project.

Prof. Ernst is a DATE Fellow. He served as an ACM SIGDA Dis-
tinguished Lecturer, and is a member of the German Academy
of Science and Engineering (acatech). In 2014, he received the
annual Achievement Award of the European Design Automation
Association (EDAA).

Nikil D. Dutt (Fellow, IEEE) received the
Ph.D. degree in computer science from the
University of lllinois at Urbana-Champaign,
Urbana, IL, USA, in 1989.

He is currently a Distinguished Professor
of Computer Science, Cognitive Sciences,
and Electrical Engineering and Computer
Science at the University of California Irvine,
Irvine, CA, USA. He is also a Distinguished
Visiting Professor in the CSE Department, IIT Bombay, Ind|a Heis a
coauthor of seven books on topics covering hardware synthesis,
memory and computer architecture specification and validation,
and on-chip networks. His research interests are in embedded
systems, electronic design automation (EDA), computer systems
architecture and software, healthcare Internet-of-Things (loT), and
brain-inspired architectures and computing.

Prof. Dutt is a Fellow of the Association for Computing Machinery
(ACM) and recipient of the IFIP Silver Core Award. He received
over a dozen best paper awards and nominations at premier EDA
and embedded systems conferences. He has served as Editor-in-
Chief of the ACM Transactions on Design Automation of Electronic
Systems (TODAES) and as an Associate Editor for the ACM Trans-
actions on Embedded Computing Systems (TECS) and the IEEE
Transactions on Very Large Scale Intergation (VLSI) Systems. He
has extensive service on the steering, organizing, and program
committees of several premier EDA and Embedded System Design
conferences and workshops, and also serves or has served on
the advisory boards of ACM SIGBED, ACM SIGDA, ACM TECS, IEEE
Embedded Systems Letters (ESL), and the ACM Publications Board.

Ahmed Nassar received the B.Sc. degree
in electronics and communications engi-
neering from Alexandria University, Egypt,
in 2002, the M.Sc. degree in electronics engi-
neering from Cairo University, Cairo, Egypt,
in 2010, and the Ph.D. degree in electrical
and computer engineering from the Univer-
sity of California Irvine, Irvine, CA, USA, in
2016.

He is currently with NVIDIA Corp., Santa Clara, CA, USA. His
research interests lie in the area of modeling, design, and verifi-
cation of cyber-physical systems in general, and in verification and
safety validation of automated driving systems in recent years.

Dr. Nassar won a best paper award from ASP-DAC 2016.

1566 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Amir M. Rahmani (Senior Member, IEEE)
received the M.S. degree from the Depart-
ment of Electrical and Computer Engineer-
ing, University of Tehran, Tehran, Iran, in
2009, the Ph.D. degree from the Depart-
ment of Information Technology, University
of Turku, Finland, in 2012, and the MBA
degree jointly from the Turku School of Eco-
nomics and the European Institute of Inno-
vation & Technology (EIT) ICT Labs, in 2014.

He is currently Marie Curie Global Fellow at the University of
California Irvine, Irvine, CA, USA and Technical University of Vienna
(TU Wien), Vienna, Austria. He is also an Adjunct Professor (Docent)
in embedded parallel and distributed computing at the Univer-
sity of Turku. He is the author of more than 160 peer-reviewed
publications. His research interests span self-aware computing,
energy-efficient many-core systems, runtime resource manage-
ment, healthcare Internet-of-Things, and fog/edge computing.

Dr. Rahmani has served on a large number of technical program
committees of international conferences, such as DATE, VLSID,
GLSVLSI, DFT, ESTIMedia, CCNC, MobiHealth, and others, and was
a guest editor for special issues in journals such as the Journal
of Parallel and Distributed Computing, Future Generation Com-
puter Systems, the ACM Springer Mobile Networks and Applications
(MONET) Journal, Sensors, Supercomputing, etc.

Fadi Kurdahi (Fellow, IEEE) received the
Ph.D. degree from the University of Southern
California, Los Angeles, CA, USA, in 1987.

Since then, he has been with the Faculty at
the Department of Electrical and Computer
Engineering at the University of California
Irvine, Irvine, CA, USA, where he conducts
research in the areas of computer-aided
design and design methodology of large
scale systems. Currently, he serves as the Associate Dean for Grad-
uate and Professional Studies at the Henry Samueli School of Engi-
neering, and the Director of the Center for Embedded and Cyber-
Physical Systems (CECS), comprising world-class researchers in the
general area of embedded and cyber-physical systems.

Dr. Kurdahi served on numerous editorial boards, and was Pro-
gram Chair or General Chair on program committees of several
workshops, symposia, and conferences in the area of computer-
aided design (CAD), very large scale intergation (VLSI), and system
design. He received the Best Paper Awards for the IEEE Transactions
on Very Large Scale Intergation (VLSI) Systems in 2002, ISQED
in 2006, and ASP-DAC in 2016, and other distinguished paper
awards at DAC, EuroDAC, ASP-DAC, and ISQED. He also received the
Distinguished Alumnus Award from his Alma Mater, the American
University of Beirut, in 2008. He is a Fellow of the American
Association for the Advancement of Science (AAAS).

Thomas Wild received the Dipl.-Ing. and
Dr.-Ing. degrees from the Department of
Electrical and Computer Engineering, Tech-
nical University of Munich (TUM), Munich,
Germany, in 1989 and 2003, respectively.

He is a member of the scientific staff at
the Chair of Integrated Systems (LIS), TUM,
and is responsible for the activities in the
area of multicore and network processing
architectures. His current research interests comprise multiproces-
sor system-on-chip (MPSoC) architectures, networks-on-chip (NoC)
and memory hierarchies as well as MPSoC diagnosis, system level
design methodologies, and design space exploration.

Armin Sadighi received the B.S. degree
in computer engineering from Amirkabir
University of Technology, Tehran, Iran, in
2013, and the M.S. degree in communica-
tion electronics from the Technical Univer-
sity of Munich, Munich, Germany, in 2016,
where he is currently working toward the
Ph.D. degree in the Electrical Engineering
Department.

Mostl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Andreas Herkersdorf (Senior Member,
IEEE) received the Ph.D. degree from ETH
Zurich, Zurich, Switzerland, in 1991.

He is a Professor in the Department
of Electrical and Computer Engineering
and also affiliated with the Department of
Informatics, Technical University of Munich
(TUM), Munich, Germany. Between 1988 and
2003, he was in technical and management

His research interests include application-specific multiprocessor positions with the IBM Research Laboratory, Rischlikon, Switzer-
architectures, self-aware computing, and autonomous systems. land. Since 2003, he has led the Chair of Integrated Systems

at TUM. His research interests include application-specific multi-
processor architectures, IP network processing, network-on-chip,
and self-adaptive fault-tolerant computing.

Prof. Herkersdorfis a Member of the German Research Foundation
(DFG) Review Board and serves as editor for Springer and De
Gruyter journals for design automation and information technology.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1567

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

