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Abstract—A basic mixed-criticality requirement in real-time
systems is temporal isolation, which ensures that applications
receive a guaranteed (CPU) service and impose a bounded
interference on other applications. Providing operating system
support for temporal isolation is often inefficient, in terms
of utilisation and achieved latencies, or complex and hard to
implement or model correctly. Correct models are, however,
a prerequisite when response times are bounded by formal
analyses. We provide a novel approach to this challenge by
applying self-aware computing methodologies that involve run-
time monitoring to detect (and correct) model deviations of a
budget-based scheduler.

I. INTRODUCTION

In Mixed-Criticality Systems (MCS), a processing platform
hosts applications of different importance for the “mission”
of a cyber-physical system. A high-critical application is
typically developed with high quality standards in order to
assure its correct operation. As this assurance does not hold
for all system parts, such systems must employ the basic
principle of isolating higher criticalities from any influence of
lower-critical application. More precisely, criticality should be
perceived as an attribute of a requirement, i.e. a system-level
constraint, rather than an attribute of an application [1]. When
it comes to (real-)time requirements, temporal isolation must
thus be achieved. As recently stated by Lyons et al., “MCS
require OS support for a form of temporal isolation, where
(lower criticality) high-priority threads can preempt (highly
critical) threads, but cannot monopolise the processor” [2].
Although static-priority scheduling provides temporal isolation
from lower-priority threads, criticalities cannot be used as
scheduling priorities in general. Similarly, fixed time slices are
an inefficient solution for temporal isolation w.r.t. utilisation
and latencies.

Unlike static mixed-criticality scheduling techniques [3] that
are restricted to two criticalities and only provide guarantees
for the highest criticality, we consider MCS from a more
practical perspective. In these regards, scheduling policies such
as sporadic-server scheduling have been proposed but turned
out to be rather complex and hard to implement correctly
[4], [5]. For real-time systems, there are two key properties:
first, the correct (timely) operation of the application itself
(guaranteed service) and, second, the bounded (temporal)
interference from other applications. The latter in particular is
a prerequisite for bounding response times, e.g. by performing
a model-based Worst-Case Response Time (WCRT) analysis,

which is the major requirement in real-time systems. However,
models only capture abstract concepts and assumptions that
may not exactly reflect the actual implementation of the ap-
plications and the Operating System (OS). Particularly for low-
criticality applications, abstractions and approximations are
getting more prominent. Corner cases in regards to temporal
isolation may furthermore only occur under certain load, with
certain applications or with a particular system composition.
Therefore, temporal isolation cannot be guaranteed (and sus-
tained during the system’s life cycle) by WCRT analysis or
by (operating-)system design alone. Instead, we propose a
combined approach for providing temporal isolation, which
is essential for MCS. By bringing the models into the run-
time domain we enable the system to adapt to detected model
changes, which is a basic principle of self-aware computing
systems as we will explain in Section III.

Contributions: We suggest a budget-based scheduling with
an event-based replenishment policy for basic temporal iso-
lation. We augment this by run-time tracing and monitoring
mechanisms to detect model deviations in the scheduling w.r.t.
required budgets and scheduling overheads that result from
inaccurate time accounting. By combining both techniques,
we achieve self-aware scheduling. We implemented our tech-
niques in a microkernel-based system.

Section II states the models that we take as a basis before
we present our contributions in Section III. In Section IV, we
summarise related work in the corresponding research fields.
The evaluation of our approach and its implementation is given
in Section V before we conclude with our final thoughts in
Section VI.

II. SYSTEM MODEL

We base our implementation on the open-source Genode
OS Framework [6]. This framework follows the microkernel
approach and employs a strict decomposition of the system on
application level, resulting in a service-oriented architecture in
which separate components implement and provide services
for other components. While decomposition can already deal
with liveliness issues [7] that arise in mixed-critical systems,
dependencies on the execution time or response time of other
components remain [8] due to imperfect temporal isolation.
Exposing these dependencies requires a timing model of the
entire workload. In order to resolve these dependencies, Möstl
et al. [8] suggest run-time enforcement mechanisms.



In this work, we distinguish between an application-centric
timing model and a kernel-centric timing model. The former
describes the interactions and dependencies between the activ-
ities of communicating components, and serves as a basis for
exposing (timing) dependencies between components as well
as for determining scheduling priorities. The latter models how
the kernel schedules the different schedulable entities.

When integrating mixed-critical systems, both models are
essential. The application timing model provides all the
information required for determining worst-case end-to-end
latencies for particular processing chains and hence enables
verification of application timing constraints. In contrast, the
kernel timing model focuses on scheduling decisions and
overheads, thereby abstracting the actual implementation and
serves as a basis for configuring enforcement mechanisms.

This section summarises the models we apply on both levels
and provides details and assumptions about the existing OS
kernel implementation.

A. System composition

We consider component-based systems that follow the mi-
crokernel approach. A component in such a system is spatially
isolated, i.e. it has its own address space. Components can
communicate with each other using client/server – i.e. Remote-
Procedure Call (RPC) – or sender/receiver semantics. The
communication policy follows the principle of least privilege
such that access rights can be passed on a fine-grained level.
Management of policy is typically performed by a separate
component that delegates resources and access. In the scope
of this work, we assume that components are single threaded.

B. Application timing model

In consequence of our system composition, the application
timing model consists of communicating threads. From a
functional perspective, thread communication is commonly
modelled by sequence diagrams that show the activities of
threads and their interactions. In a timing model, tasks reflect
these activities and their precedence relations, which lead to
task chains [9]. A task is activated by a stimulus, executes for
a certain time and may emit a stimulus when it completes.
A certain instance of a task’s execution is also referred to
as a job. Due to the different communication semantics, we
distinguish two types of precedence relations: Asynchronous
precedence means a task can be activated again right after its
completion. For synchronous precedence (e.g. RPC), a task
must wait for the completion of its successor before a new
job can be executed. A task therefore resembles a sequence
of code within a thread whereas precedence relations reflect
communication between threads.

The OS performs scheduling on a per-threads basis, i.e. a
thread not only delivers the code to be executed but also the
scheduling parameter (e.g. priority or time slice). Hence, there
is a dualism of threads as model entities as they not only reflect
a temporal (scheduling) but also a spatial (shared resource)
property: A thread performing a RPC blocks the address
space of the callee such that all other callers (synchronous

predecessors) of the callee must wait for its completion before
their RPC can be handled. The shared resource aspect of
threads may lead to priority inversion, which is typically
addressed by inheritance protocols [10], [11].

Note, that shaping (i.e. enforcement of execution times)
on basis of the application timing model, would be rather
complex and heavyweight as the kernel/scheduler is not aware
of these model abstractions. It does not appear practical to
match the application timing model with the scheduler’s native
abstractions at run time. Furthermore, Schlatow and Ernst
[12] showed that the run-time efficiency of a response-time
analysis for complex task chains is not suitable for in-field
application and hence not suitable for self-aware scheduling.
In consequence, a simpler analysis approach is required that
goes hand-in-hand with the implementation.

C. Kernel (timing) model

The section below summarises implementation details and
assumptions about the kernel before we specify our kernel-
timing model. The kernel implements RPCs and signals as
inter-component communication mechanisms. These mecha-
nisms directly resemble the client/server and sender/receiver
communication schemes mentioned above. The kernel im-
plements Symmetric Multiprocessing (SMP) with one kernel
stack and one scheduler per core. Concurrent access to kernel
objects is managed by a kernel lock which ensures that only
one core at a time can reside in kernel. The kernel schedules
the threads on each core based on the active scheduling
contexts [2], [13]. A scheduling context has an execution
budget and references the thread that currently executes in this
context. This way, execution budgets can be passed between
threads on RPCs, which effectively implements donation and
helping that are commonly used in microkernels [10] to
mitigate priority inversion. As we do not want to go into
the details of these mechanisms in the scope of this paper,
we rather focus on the implications that these have on the
application timing model.

1) Tasks with synchronous precedence (RPC) are executed
within the same scheduling context (donation).

2) In case of helping, blocked tasks donate their scheduling
context (e.g. priority, time slice) such that the waiting
time is limited (no nested blocking).

Note that the definition and replenishment of the actual ex-
ecution budgets is part of the scheduling policy. Similarly, the
selection of scheduling contexts is also part of the scheduling
policy (e.g. priority based, round robin).

1) Time accounting: The kernel is implemented tickless,
i.e. the scheduler uses a core-private timer in one-shot mode
to perform time accounting and process timeouts based on
the calculated OS time. Figure 1 and Figure 2 depict how
the scheduler performs time accounting using the one-shot
timer. More specifically, a switch from an old job to a new
job is depicted, which involves the invocation of the kernel
and scheduler. Such a switch can be caused by interrupts,
CPU exceptions, syscalls or timer expirations. Note that the
scheduler may select the same job again (old job = new job).



At time tA0 the scheduler reads the timer value to advance
the OS time, processes timeouts and calculates the budget
consumed by the current job. At time tS0, the scheduling
decision was made and the timer is set to the next timeout
(i.e. budget expiration) and started. Some time later, old job
is executing until tK0 where the kernel is entered again.
Similarly, at tA1 the OS time is advanced by tA1 − tS0 and
the timer is set for new job at tS1.
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Figure 1. Time accounting in case of interrupt, CPU exception or syscall.
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Figure 2. Time accounting in case of timer expiration.

We now want to have a more detailed look at how execution
budgets are accounted in order to reveal possible inaccuracies.
As long as the timer is running (decreasing), the passed time
can be accounted as consumed execution budget of the current
job no matter if the time was spent in kernel or user-level.
More specifically, we define tS0/tS1 as the time at which old
job/new job is scheduled. Ideally, we want the time between
tS1 − tS0 being accounted to the execution of old job.

However, as illustrated by Figure 1, the timer is halted
between tA1 and tS1. In consequence, the budget of old job is
subtracted by tA1−tS0, which effectively increases the budget
of old job by tS1− tA1 for every preemption1. We denote this
as preemption overhead.

Moreover, in case the timer runs to zero at any point
between tK0 and tA1 as illustrated in Figure 2, the time
between tK0 and tS1 remains unaccounted in the worst case.
This increases the budget of old job by tS1−tK0. As this may
only happen if old job consumed all its execution budget, we
denote this as budget expiration overhead.

Additionally, due to the kernel lock, in multi-core systems,
kernel entry will be delayed if another core resides in kernel-
mode. As long as the timer keeps running, this is accounted as
consumed budget. If the timer expired, this kernel lock over-
head must be considered as additional unaccounted budget.

We are aware that a careful kernel implementation would
make use of an incrementing counter that never stops in order
to eliminate the preemption overhead. However, such a timer
is not available on all architectures or may rather be used for
other purposes. Hence, in the scope of this work, we focused

1We denote interrupts, CPU exceptions and syscalls as preemptions irre-
spective of whether new job is actually different from old job.

on dealing with such imperfect implementations by means of
self-awareness.

2) Budget scheduling model: As was mentioned in the
beginning of this section, we now define a kernel timing
model. This model shall capture the scheduling behaviour w.r.t.
inaccuracies and overheads of the execution budgets that are
assigned to the scheduling contexts. More specifically, we are
interested in a) the guaranteed service (in terms of CPU time)
that a scheduling context will receive for a given execution
budget, and b) the maximum interference that other scheduling
contexts may experience. Note, that we do not distinguish
between time spent in kernel- or user-level.

Definition 1: The guaranteed service for a scheduling con-
text s is calculated by the granted budget and a non-negative
additive error Q per preemption:

service(s) = granted budget + #preemptions ·Q

Definition 2: The maximum interference from a scheduling
context s is calculated by its granted budget, a non-negative
additive error P per preemption and a non-negative additive
error E:

interference(s) = granted budget + #preemptions · P + E

The errors Q and P are determined by lower resp. upper
bounds for the preemption overhead. The error E combines
upper bounds on the budget expiration and kernel lock over-
head. These can be either derived analytically (by Worst-Case
Execution Time (WCET) analysis) or determined by measure-
ments as we do in Section V. As these measurements typically
do not serve as sound upper bounds, we suggest a monitoring
approach to detect model deviations in Section III-C2. Note,
that we only consider additive errors and exclude multiplica-
tive errors, i.e. errors that depend on the budget value. Our
rationale is that multiplicative errors will be small enough in
the typical time range (from hundreds of microseconds to a
few seconds) so that they can be approximated by additive
errors.

III. SELF-AWARE SCHEDULING

Before elaborating on our approach to self-aware schedul-
ing, it is important to first have a look at how self-awareness is
defined in the literature. Lewis et al. [14] define self-awareness
in computing systems based “on the idea of a conceptual
component called a self-aware node”, which does not need
to correspond to a physical (hardware, software) component:

“To be self-aware a node must:
• Possess information about its internal state (private self-

awareness).
• Possess sufficient knowledge of its environment to deter-

mine how it is perceived by other parts of the system
(public self-awareness).” [14]

Lewis et al. also define self-expression as:
• “A node exhibits self-expression if it is able to assert its

behaviour upon either itself or other nodes.
• This behaviour is based upon the node’s state, context,

goals, values, objectives and constraints.” [14]



In these terms, self-expression denotes the (re)actions that
a system performs based on the knowledge of its own state
and its environment (self-awareness).

Note, that these definitions rather focus on functional as-
pects (behaviour) of computing systems whereas we take a
platform-centric view on these terms in the scope of this paper.
More specifically, we suppose that the scheduling resembles
the self-aware node and that its environment is perceived in
form of the application timing model.
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Figure 3. Architecture overview of our self-aware scheduling approach.
Contributions are highlighted.

The following sections present our approach to self-aware
scheduling, which comprises three building blocks: First, a
shaping mechanism implements an enforcement of assumed
execution-time budgets, which, on the one hand, provides
service guarantees to the shaped thread and, on the other
hand, limits the interference to other threads. Second, a tracing
mechanism instruments the scheduler in order to make the
scheduling behaviour observable and enable monitoring at
user level. Third, monitoring is implemented as a user-level
component that evaluates the traces as well as detects and
corrects model deviations. Figure 3 provides an architectural
overview of this approach.

A. Shaping: enforcement of execution-time budgets

In Section II-C, we modelled the budget-scheduling mecha-
nism of the kernel which, in conjunction with a replenishment
policy, builds our shaping mechanism. This section gives a
more detailed account of our replenishment policy that is
comparatively low in run-time overhead and complexity.

1) Background: Ideally, we would like to have a replen-
ishment policy that follows the sporadic server scheduling
concept [15]. This concept assumes that a consumed amount
of budget is replenished after a time interval Rt after its
consumption, i.e. in any time window of size Rt a thread is
granted a constant budget B. Hence, in real-time analysis, such
a thread can be replaced by an analogous periodic task with
period Rt and execution time B. In contrast, the deferrable
server concept assumes a periodic replenishment with a period
Rt, i.e. every Rt the budget is reset to B no matter how
much and when the budget was consumed. In consequence,
the thread can receive a budget of up to 2B in a time window
of size Rt, which renders real-time analysis conservative as the
thread is guaranteed only a budget of B but it may consume
up to 2B in the worst case.

While deferrable server scheduling is simple to implement,
ideal sporadic server scheduling cannot be implemented as it
requires tracking an infinite number of (time-triggered) replen-
ishments. Hence, in practice, the number of replenishments
must be limited. At the same time, time resolution must be
taken into account. A more practical definition of this concept
is given by the POSIX sporadic server, which, however, is still
complex and as shown by defects discovered and corrected
later [4].

A general drawback of this concept is the replenishment
fragmentation that results from it as every preemption will
lead to a time-triggered replenishment of the consumed budget,
thus causing a timeout (i.e. another preemption) after Rt. Of
course, this can be counteracted at the cost of approximations
(limiting the number of replenishments or the time resolution).
Nevertheless, the more complex such an implementation is
and the more corner cases it contains, the more effort must
be spent for verification tasks such as real-time analysis and
verification/certification of the implementation.

From the application perspective, the configuration of a
sporadic server consists of setting an utilisation (single value)
that allows the thread to be served fast enough and limits
its interference on other threads. However, this does not quite
match the application timing model introduced in Section II-B
that we use to model application workload more accurately.
This is due to the fact that a task/job resembles a certain
sequence of code within a thread. Depending on input data and
inter-thread communication, different job sequences (traces)
can be observed, e.g. traces with a hyper-periodic sequence of
execution times. There exists a large body of research looking
at more exact digraph task models [16], [17] than the periodic
task model. In the scope of this work, we use the execution
time model (ET model) [18] that generalises such traces and
that is comparatively low in complexity when it comes to
implementation.

Definition 3: The execution time model of a task τi consists
of two functions (ET−i , ET

+
i ) such that ∀n ∈ N+ : ET−i (n)

(resp. ET+
i (n)) is the best-case (resp. worst-case) cumulative

execution time of n consecutive instances. [18]
In other words, the ET+

i (n) function bounds the execution
time that can at most be seen from any sequence of n
consecutive jobs of task τi. For instance, the WCET of τi
is given by ET+

i (1) whereas two consecutive jobs of τi
will not execute longer than ET+

i (2). An example of such
a curve is given in Figure 4. Due to its sub-additive nature,
i.e. ET+(a + b) ≤ ET+(a) + ET+(b), the length of such a
curve can be limited to a constant L at the cost of precision.

Wandeler et al. [19] use a similar formulation of ET+,
which they call upper workload curves. According to them, the
ET model can be transformed into a workload arrival function
(cf. [20]) as given by Definition 4.

Definition 4: Let η+
i (∆t) denote an upper bound on the

number of events arriving within the time interval ∆t. Then,
the workload arrival function αi(∆t) = ET+

i (η+
i (∆t)) is an

upper bound on the workload requested by τi during any time
interval ∆t.
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Figure 4. Example of an execution time model of length four (solid line)
and the sub-additive continuation for L = 2 (dashed line).

From this definition, we infer that – given the arrival
function is guaranteed – enforcing execution times according
to ET+(n) is sufficient to limit the workload of a task τi
within a given time interval. The key benefit of using an
event-based rather than a time-based definition of execution
budgets is the simpler replenishment policy resulting from this
(no replenishment fragmentation). Moreover, we argue that
there is basically no additional overhead from enforcing arrival
functions [21]: First, the timer (which activates periodic tasks)
is in control of the OS anyway, hence there is no need to apply
additional enforcement. Second, other tasks are activated by
interrupts (from peripherals), which must always be shaped if
temporal independence is required [22].

Hence, by implementing a replenishment policy based on
the ET model, we can a) keep the implementation complexity
low and b) shape application workload more accurately than
sporadic server scheduling. In particular, this shaping mecha-
nism becomes practical with self-awareness, i.e. if a self-model
is available on which it can be argued that it is sufficient to
apply ET shaping because time sources can be trusted and
interrups are shaped.

2) Implementation: The default scheduler in Genode’s cus-
tom kernel [23] implements deferrable server scheduling with
a common replenishment period for all threads (super period)
[6]. Threads can be assigned a relative share of this super
period (CPU quota). This quota can be delegated following
the hierarchical system composition of Genode. At the begin-
ning of each super period, the scheduler resets the absolute
execution budget for each context which is calculated from
the length of the super period (one second by default) and
the CPU quota. Threads that have some budget are scheduled
based on their static priority. If a thread consumed all its
budget, it must wait until the end of the super period or for
background scheduling. Background scheduling is performed
once no ready thread has budget left and follows the round-
robin scheme.

In order to implement ET-model shaping, we store the
permitted ET+(n) curve and calculate the budget that can
be admitted for a scheduling context upon every activation.
As we cannot store an infinite length curve, we must limit its
length to a constant L (cf. Figure 4). We inject the ET+(n)
curve of a thread into the kernel using the TRACE interface
[6] of Genode.

In Genode, a thread is activated when it receives a signal.
On signal reception, we calculate the budget and grant it to the
scheduling context (replenishment). For calculating the budget,
a history of consumed budgets must be evaluated. Let c(n)
denote the budget that was consumed by the n-th activation
before the current one. Neukirchner et al. [20] have already
proven – for the case of workload arrival functions – that “for
a continued [event] trace we only need to check new events
for satisfaction”. We therefore calculate the granted budget for
new activation as follows:

granted = min
1≤n<L

{ET+(n+ 1)−
∑

1≤i≤n

c(i)} (1)

Eq. (1) calculates the budget that remains when subtracting
the consumed budget over the past n activations from the
budget that is permissible in a window of n + 1 activations.
The minimum over all possible window lengths is the granted
budget.

As we only need to check the past L consumptions, we
store the history in a ring buffer of L+ 1 elements. For every
scheduler invocation, the currently consumed budget is added
to the current position in the ring buffer; on signal reception,
the buffer position is advanced.

3) Configuration: For the correct operation and adherence
to timing constraints of our ET-shaped system, we employ
the following configuration scheme. First, scheduling contexts
must be configured so that they provide guaranteed service
to all tasks. In other words, based on the application timing
model, we want to extract an ET+(n) function for every
scheduling context that guarantees enough budget for the tasks
to complete their work once activated. This eliminates corner
cases in the real-time analysis as we do not need to consider
cases in which tasks exceeded their budget and must thus wait
for background scheduling.

By design, the guaranteed service for a scheduling context
is at least as high as the granted budget (cf. Definition 1). The
budget required by a scheduling context can be analytically
extracted from the task chains that are running within this
context, including the expected number of preemptions so
that the time spent in the kernel can be estimated and added
to the budget. Formulating the corresponding ET+(n) curve,
however, is not in the scope of this paper. Instead, we focus
on extracting the curve from execution traces as Section III-C
describes in detail. The extracted ET+(n) curve is then passed
to the scheduler and enforced by our shaping mechanism.

In order to perform a WCRT analysis of the system, we must
not only consider the granted budget but also the overheads
as mentioned in Definition 2. Hence, let ẼT

+

s (n) denote the
upper bound on the interference from n consecutive activations
of scheduling context s. As shown by Quinton et al. [18], a
WCRT analysis can be performed based on such an ET model.

In conjunction with our tracing mechanism (Section III-B)
and budget monitoring (Section III-C), we can continuously
observe the adherence of a scheduling context to its ET model.
More precisely, on the one hand, we can detect whether a
scheduling context requested more budget than granted (and



adapt if possible and a WCRT analysis admits). On the other
hand and more importantly, we can observe the preemption
and expiration overheads in order to validate whether the
modelled ẼT

+
(n) still provides a sound upper bound. This

enables adjusting the overheads, recalculating the ẼT
+

(n)
curves and repeating the WCRT analysis in order to adapt
to the changed (self-)model in terms of self-expression.

B. Tracing mechanism

For equipping the system with self-awareness w.r.t. schedul-
ing, we require a software-based tracing mechanisms. The
Genode OS Framework already provides an interface for appli-
cation tracing [6], which allows implementing hook functions
as position-independent code (trace policy) that can be injected
into application components at runtime. The trace policy writes
data into a trace ring buffer (as shared memory) that is
provided along with the policy by a monitoring component.
The latter must read the trace buffer periodically in order to
process the trace events. We extended this functionality to
the Genode custom kernel and added single hook function
to the scheduler. We only expose already existing information
to minimise the instrumentation overhead. The hook function
is called by the scheduler at tS (cf. Section II-C) with the
following arguments: old job id, new job id, scheduling context
id, system call id and whether the new job is scheduled
on its execution budget or on background scheduling. Our
kernel trace policy records this information together with the
current timestamp (cycle counter) in the kernel trace buffer. In
order to avoid self-monitoring of the monitor, we separate our
system into monitored cores and a monitoring core such that
the latter only processes the trace events from the monitored
cores. The monitoring core thus hosts unmonitored (uncritical)
components and the budget monitor which is described in the
next section.

C. Budget monitoring

By periodically processing the scheduling traces, our budget
monitoring serves two purposes: First, it extracts the ET+(n)
and detects whenever a scheduling context violates this curve.
Second, it monitors (and corrects) the overheads that must be
assumed in a WCRT analysis.

1) Extraction of ET models: Due to background scheduling,
a scheduling context may execute longer than its granted
budget. We can therefore extract the required budget from
traces of an over- or under-budgeted scheduling context. Note,
that in the latter case, we over approximate the required
budget as background scheduling increases the number of
preemptions and expirations.

Based on the scheduling traces, we first calculate the
execution traces of all scheduling contexts.

Definition 5: An execution trace is a function σ : N+ →
N × N × N where σs(n) = (r, c, p) denotes the requested
execution time r, the consumed budget c, and the number of
preemption p of the n-th activation of scheduling context s.

Definition 6: A window ωr over an execution trace is a
function (σ, L, n) 7→ r where r is the sum of requested

execution time from σ(n) to σ(n + L − 1). Similarly, ωc is
a function for the sum of consumed budgets, ωp for the sum
of preemptions, and ωe for the number of expirations (i.e. the
number of cases for which r > c).

The ET+(n) is extracted from an execution trace by
shifting a window of length 1 to L along the trace to find the
maximum requested execution time (i.e. guaranteed service)
for each length:

ET+(i) = rmax (i) = max
n
{ωr(σ, i, n)} (2)

Using the same principle, we can calculate the maximum
number of preemptions pmax (i) and expirations emax (i) for
every window length i in order to calculate the corresponding
maximum interference:

ẼT
+

(i) = ET+(i) + pmax (i) · P + emax (i) · E (3)

In Definition 3, upper bounds on the preemption overhead
P and expiration overhead E must be estimated by offline
methods (e.g. WCET analysis) or by overhead monitoring as
described next.

2) Overhead monitoring: The goal of overhead monitoring
is to find a P and E that serves as an upper bound on the
preemption overhead and expiration overhead (including ker-
nel lock overhead) respectively for every scheduling context.
We denote these upper bounds by P and E. Over a long term,
P and E will be adapted from past observations to maintain
safe upper bounds on the respective overheads. The challenge
in this regards is to reason about whether a detected budget
overrun is the result of an optimistic P or E. Budget overruns
are detected by comparing the consumed budget to the granted
budget:

Definition 7: A budget overrun function is a
window ωo(ET+, σ, i, n) = ωc(σ, i, n) − ET+(i). A
ωo(ET+, σ, i, n) > 0 is referred to as a detected budget
overrun.
Let Ωp,e denote the set of detected overrun values (samples)
with p preemptions and e expirations. According to our
model (Section II-C2), a detected budget overrun is caused by
preemption and expiration overheads and therefore bounded
by P and E:

∀o ∈ Ωp,e : o ≤ p · P + e · E (4)

From the samples with e = 0, we can build a linear
equation system that can be solved for P to find the maximum
among these samples, denoted P . The remaining samples with
o − p · P > 0, however, build a linear equation system with
two variables and > 2 equations for which there is no exact
solution. We must therefore find a linear regression function
that serves as an upper bound for all samples in order to
estimate P and E. More precisely, we want to minimise
the regression error for each number of preemptions and
expirations. As we are interested in an upper bound, samples
with the same number of preemptions and expirations can be
combined into a weighted sample Ω̂p,e = (max Ωp,e, |Ωp,e|).
The line of thought for this is that sub-maximal samples have



no information other than increasing sample size and hence
being an indicator for the likelihood that the real maximum
was observed. The regression error is thus calculated by:

ε =
∑

p

∑
e

∑
(o,w)∈Ω̂p,e

{
∞ if o > p · P + e · E
(p · PY + e · E − o) · w else

(5)

We can formulate a Linear Program (LP) to solve this
optimisation problem offline. However, as an LP may need
exponential time it is not suitable for (online) monitoring.
Instead, we implement an approximate solution for finding
a P and E that best fits the given sample: First, we apply
the least squares method to find a P and E that minimise the
quadratic regression error. The quadratic error is a function
a ·E2 +b ·P 2 +c ·PE+d ·P +e ·E+f that can be efficiently
solved by calculus.
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Figure 5. Example of our approximate regression function (solid line) for
the weighted samples based on the least squares regression (dashed line).

Figure 5 depicts a scatter plot of samples for a fixed e = 1
from an experiment similar to those presented in Section V;
the size of the markers correlates to the weight of the sample.
The figure also shows the regression function that results from
the least squares method (dashed line), which is not yet an
upper bound for the samples but basically settles the slope P
of the regression function. Second, we can calculate E from
the samples such that the resulting regression function serves
as an upper bound (solid line).

IV. RELATED WORK

The concept of self-awareness in computing systems was
first proposed for autonomic computing in 2003 [24]. Today,
there exists a large body of research in the field of self-
awareness in computing systems [25], [26]. Self-aware com-
puting systems employ architectural concepts that allow the
system to observe (self-awareness) and adapt (self-expression)
itself (cf. [14]). These concepts have been most recently
surveyed and classified by Giese et al. [27], [28], who describe
self-aware computing as a “paradigm shift from a reactive to a
proactive operation that integrates the ability to learn, reason,
and act at runtime [based on models]” [27].

Task graphs are a common vehicle for modelling application
timing in order to perform response-time analyses. Precedence
relations between tasks are reflected in task graphs of different

expressiveness [16]. Yet, although these models may have a
notion of limited preemptability [17], they rarely incorporate
the non-reentrant nature of single-threaded address spaces
that leads to blocking. Modelling precedence and blocking
relations in real-time applications to perform response-time
analyses has been addressed by MAST [29], which bases on
MARTE UML [30]. In MAST, scheduling servers model the
schedulable entity whereas operations model activities that
may lock/unlock a shared resource and that are mapped to
scheduling servers. Transactions are made of operations with
their precedence relations, which are thus executed on differ-
ent scheduling servers (i.e. priorities) so that bounding their
latency requires specialised techniques [31]. Most recently,
Schlatow and Ernst augmented the task-graph model with
scheduling contexts and execution contexts in order to reflect
the thread dualism.

W.r.t. modelling (real-time) workload, Wandeler et al. [19]
have formulated workload curves that are semantically similar
to the ET model [18]. The latter, in contrast, explicitly targets
varying execution times and the extraction from traces. By
transforming these curves into Workload Arrival Functions
(WAFs), a Compositinal Performance Analysis [32] or Real-
Time Calculus [33] can be used to check schedulability and
calculate worst-case response times. In contrast to demand
bound functions [34], WAFs do not include a notion of
deadlines or schedulability. Neukirchner et al. [20] applied
monitoring of WAFs by rejecting incoming events if their
assumed WCET, in conjunction with the trace of previous
executions, will violate the WAF. Violations trigger an excep-
tion that can be handled at application level, which enable
implementation of static mixed-criticality scheduling [3].

Another line of work that provides temporal isolation is
sporadic server scheduling (and similar techniques). First
mentioned by Sprunt et al. [15], it received attention as
efficient and correct implementations are challenging [4], [5],
[35]. Hence, approximate implementations exist that simplify
these issues by assuming the same replenishment period Rt

for all threads [36], [37]. QNX [37] manages replenishments
by dividing the replenishment period into 1 ms slots that
store the consumed budget. Accounting is performed on any
OS tick or syscall. Lyons et al. [2] implemented sporadic
server scheduling for the seL4 microkernel to achieve temporal
isolation and to implement scheduling-context capabilities,
which are temporal capabilities [38]. They use a tickless
implementation based on the algorithm by Stanovich et al. [4].
The implementation can manage 8-10 replenishments at least
whereas the actual replenishment threshold can be increased
by user-level policies as well as the budget and replenishment
period using their concept of scheduling-context capabilities.
They introduce timeout exceptions as a mechanism to handle
budget expirations at user level. Although being a quite so-
phisticated solution, sporadic server scheduling approximates
real-time workload as periodic tasks, which prevents WCRT
analysis of using more exact task models.

Regarding overhead accounting, Stanovich et al. [5] take
the opposite approach to accounting of preemption overheads



Table I
OVERHEAD MEASUREMENTS FROM MANUAL INSTRUMENTATION

name formula cycles µs

min. preemption overhead mini(tSi − tAi) 260 0.4
max. preemption overhead maxi(tSi − tAi) 3580 5.4
max. expiration overhead maxi(tSi − tKi−1) 8052 12.1
max. kernel lock overhead maxi(tKi − tKi−1) 23239 34.9
calculation overhead Eq. (1) with L=10 336 0.5

as they deduct an estimate of the preemption cost from the
budget at run time, i.e. Q ≤ 0 in Definition 1.

W.r.t. tracing, it is worth mentioning that many kernels
provide built-in mechanisms for lightweight instrumentation
and for extracting traces, such as the Ftrace2 for Linux or the
QNX System Analysis Toolkit [39]. Ftrace is, e.g., used by rt-
muse [40] for extracting supply bound functions from different
scheduling implementations in Linux.

V. EVALUATION

We implemented and tested our mechanisms from Sec-
tion III on an ARM Cortex A9 dual-core SoC. Before pro-
ceeding to our experimental evaluation, we first give a brief
account of some noteworthy implementation details.

Internally, the kernel uses timer ticks to measure time so
that a budget, which is provided in microseconds, must be con-
verted into timer ticks. The SoC is running at 666.6666 MHz
based on an oscillator clock of 33.33333 MHz. For time
accounting (OS time), the kernel uses the Cortex-A9 CPU
private timer with a clock divider of 100, which results in
3.333333 MHz or 200 CPU cycles per timer tick.

The kernel converts microseconds into timer ticks by integer
multiplication with 3333 and division by 1000. Due to this in-
teger calculation, in contrast to a multiplication with 3333.333,
we have a systematic time drift of 0.0001, i.e. 100µs per
second. We correct this by adding this fraction to the budget
whenever the budget will be configured.

For reference, we measured the particular overheads men-
tioned in Section II-C by manual instrumentation using the
cycle counter from the Performance Monitoring Unit (PMU).
Table I shows the results taken from several measurements
with different workloads; one microsecond has 666.666 cycles.
Note, that we measured the expiration overhead without the
kernel lock, i.e. after the kernel lock was acquired. Con-
ceptually, the only additional runtime overhead from our
replenishment policy comes from calculating Eq. (1) on signal
reception.

Memory overhead originates from storing a ET+(n) curve
per thread, the history of consumed budgets and the current
budget, which constitutes L · 8 + L · 8 + 1 Bytes as we use
64 Bit integers for each value. We used L = 10 in our
implementation.

We configured our test setup for a maximum rate of 8000
trace events per second, which equates a preemption every

2http://elinux.org/Ftrace

125µs on average. As a trace event takes up 28 Bytes in the
trace buffer, we require at most 224 KiBytes per second.

With the following evaluation we want to demonstrate the
overhead monitoring can deal with different workloads and
also a high rate of trace events. We also show that ET+(n)
curves can be extracted at run-time such that the budget
configuration can be refined (after schedulability analysis).
For these purposes, we defined three conceptually different
workloads.
A) A single task chain with a ET+(n) curve of length

nine. The chain shows synchronous and asynchronous
precedence but there is no interference apart from self-
interference.

B) Ten independently triggered components with a single-
valued ET+(n), which impose a high CPU load. This
scenario focuses on interference.

C) Multiple task chains similar to experiment A. The chains
perform RPCs to a single server component. This scenario
combines the two previous experiments and introduces the
blocking aspect.

For each workload, we evaluated the observed P and E
values from our approximation method and compare these
with the optimum that we calculated offline using an LP
formulation and with the reference values from Table I.

A. Single chain

The workload in this experiment consists of a client that is
periodically activated and calls a server in two out of three
activations as depicted in Figure 6. Every third activation, the
client sends a signal to a receiver instead of calling the server.
Due to scheduling-context donation, the server executes on the
budget of the client.

client

server

receiver

client context receiver context RPC signal/activation

Figure 6. Gantt chart for the task chain used in experiment A.

The client and server are implemented such that the required
budget varies between 80 ms and 1500 ms and repeats every
10th activation. We configured the corresponding ET+(n)
such that the budget is exceeded by up to 200µs in approx.
50% of the times. We also chose a large activation period of
10 s, which is half the sample period of the monitor, in order
to get a notion of how the overhead estimation develops with
a growing sample size.

Figure 7 shows the resulting P and E for different sample
sizes, i.e. the summed weights of all recorded weighted sam-
ples Ω̂p,e. As the sample size grows slowly in this experiment,
it correlates with the iteration number of the monitor. Note,
that there were up to 13 distinct weighted samples (i.e. com-
binations of preemption number and expiration number). The
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Figure 7. Overhead monitoring results from experiment A.

approximate results (markers) from the modified least squares
method are compared to the optimum results (solid lines) that
we calculated offline. The figure also shows the measured
preemption overhead (dashed line) from Table I. Note, that the
maximum E based on these measurements is 47 us (expiration
overhead including kernel lock overhead) and exceeds the
limits of the figure. Although this experiment is rather simple,
it demonstrates the general applicability of ET+(n) shaping
and monitoring, and emphasises how the estimated overheads
develop with a growing number of samples.

B. Independent tasks

This experiment comprises 10 independent tasks with peri-
ods from 3 ms to 10 ms and execution times from 200µs to
900µs for the first eight tasks. In order to provoke preemp-
tions, the two remaining tasks were assigned periods of 100 ms
and 200 ms and execution times of 10 ms and 20 ms. The tasks
have a rate-monotonic priority assignment (smallest period on
highest priority) and impose a load of approx. 85% on the
CPU core. However, due to the signalling implementation of
the OS, activations are dropped in overload situations, i.e. if
the receiver is not ready for receiving a signal. Each task is
configured with ET+(n) of length one; most of the tasks
exceed their budget most of the times. However, as a task that
used its budget cannot preempt other tasks (with budget) any
more, we let the higher-priority tasks adhere to their budget
in order to stimulate multiple preemptions. In contrast to
the previous experiment, this workload produces many events
such that every few seconds the traced execution times are
completely overwritten. Furthermore, it is tailored for testing
our monitoring approach w.r.t. whether it can deal with a high
trace-event rate.

Figure 8 shows the resulting P and E for this use case over
time. Due to the high execution rate, the sample size saturates
very quickly such that the x-axis shows the iteration number
(i.e. the execution of the monitor) instead. Because of the
single-valued ET+(n), our monitoring also shifts a window
of length one over the traces. Thus, the maximum observed
expiration number is always one, such that the samples only
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Figure 8. Overhead monitoring results from experiment B.

differed in the number of preemptions of which there were 21
distinct numbers on average (standard deviation 1.5). As the
samples do not indicate a correlation between the preemption
number and the overrun, the resulting P is zero most of
the times (negative values are forbidden in the model). This
holds for both, our approximation method as well as the LP-
based optimisation. In consequence, most of the overhead
is attributed to E, which still remains below the measured
overheads from Table I.

C. Multiple chains

This experiment basically combines experiments A and B.
We split the chain of experiment A into three chains of similar
structure and execution times between 5 ms and 80 ms. The
resulting workload comprises three clients, three receivers and
a single server that is called by all clients. The clients are
periodically triggered every 100 ms and have a ET+(n) of
length three. We set the execution times such that the system is
transiently overloaded to stimulate preemptions and blocking
at the server. The longest execution time of the server is 11 ms,
which occurs if the lowest-priority client calls the server. In
theory, we should be able to observe that the high-priority
client requires up to 11 ms more budget if it acts as a helper
for the lowest-priority client.
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Figure 9. Configured and extracted ET+(n) curves of the highest-priority
client in experiment C.

In order to demonstrate the self-aware adaptation of budgets,
we started with an ET+(n) that neglects blocking effects



at the server, which underestimates the required budget. By
applying budget monitoring to extract the actual ET+(n),
we can iteratively adapt the configured budget (if schedu-
lability analysis approves) and react to the observed model
deviation. Figure 9 illustrates these adaptations on basis of
the observed ET+(n) curve of the highest-priority client.
After three adaptations, we found the curve that bounds
the required execution time of the highest-priority client. It
requires multiple iterations because once the highest-priority
budget expired, the medium-priority client also acts as a helper.
The result is consistent with our expectation as it can be
calculated by adding the longest blocking time (11 ms) to the
second longest execution of the highest-priority client. Due
to the synchronised hyper-periodic behaviour of the clients,
the blocking cannot coincide for the longest execution. Note,
that – if the application timing model is known – we could
also start with an overestimated ET+(n) by adding the longest
blocking times and extracting the same ET+(n) as above after
the first adaptation.
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Figure 10. Overhead monitoring results from experiment C.

Figure 10 depicts the resulting overheads for this experiment
for the first 100 monitor iterations after the last budget adapta-
tion. As in the previous experiments, the estimated overheads
are below our measurements from Table I. There was an
average of 21 distinct samples (standard deviation 1.6). The
regression still shows significant variations of the estimated
expiration overhead. However, as even the results from our
offline LP optimisation shows variations, it becomes evident
that averaging or maximisation is required over a longer time
frame. For illustration, we added the moving average of E to
Figure 10 (dotted line). These variations can be explained by
the kernel lock overhead that occurs rarely and varies in length.
The estimation is therefore sensitive to whether an occurrence
(sample) with a large kernel lock time resides in the trace or
not. Such an occurrence will eventually be replaced by newer
samples.

VI. CONCLUSION

Latency guarantees in real-time systems are based on mod-
els on which formal analyses are performed. As models always

abstract from a reality, there exists a large body of research for
refining and improving these models in order to capture reality
more accurately and to improve latency bounds. E.g. analyses
should consider implementation overheads and corner cases
that originate from particularities in real implementations.
However, it is commonly known that there is no guarantee
that a model is coherent with the implementation even though
it is an important interface for applying formal methods.
A practical implication of this incoherence is that it highly
impedes the application and acceptance of (i.e. the trust
in) formal methods. We consider self-aware computing as
a practical mitigation to model-implementation incoherence.
In this paper, we suggested applying this concept to CPU
scheduling. For this purpose, we derived a kernel timing model
from an existing budget scheduling implementation. In order
to adapt the scheduling to better suit real-time workloads,
we implemented a novel event-based replenishment policy
based on ET+(n) curves. In contrast to existing policies, our
approach is conceptually lightweight as it eliminates replenish-
ment fragmentation. As as side effect, this reduces the number
of context switches as a correct budget configuration ensures
that a job can complete without running out of budget. On top
of this, we implemented a budget monitoring and overhead
monitoring mechanism based on software-based tracing of the
scheduler. Overhead monitoring checks and guarantees the
adherence of the implementation to our kernel timing model,
which is essential for limiting interference. Budget monitoring,
on the other hand, enables the extraction of ET+(n) functions.

As we showed in our last experiment, the latter can be ap-
plied to characterise applications with an unknown or uncertain
timing model. In order to correctly execute those applications
(but still limit their interference on other applications), the
ET+(n) must be sufficiently large but also tight. For this
purpose, we envision the following use case that is enabled by
our approach: A mixed-critical real-time system can receive an
application update with an unknown timing model. This can be
executed (e.g. using sandboxing techniques) with an overes-
timated budget on a low priority such that other applications
are not interfered. This serves as a first basis for extracting
the ET+(n) using budget monitoring. As this budget is more
tight, we can move the application to a higher priority to
achieve the required latency. Over time, the ET+(n) curves in
the system can be further refined to free up more processing
resources for future changes/updates.

Our evaluation showed that the tracing of scheduling be-
haviour and monitoring of scheduling overheads is feasible
even for high trace-event rate and complex workload. Nev-
ertheless, the regression method requires some improvement
(e.g. averaging) to get more stable results that can be used for
learning from observed behaviour in the long term. We are
confident that our models and mechanisms are applicable to
other (similar) kernels as well. Since our monitoring (on kernel
timing model) includes notions of budgets and overheads only,
the concept of self-awareness should also be applied to the
application timing model, in order to gain knowledge about
from what component a misbehaviour originates.
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