

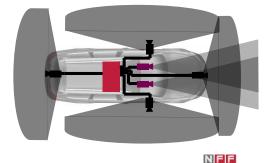

#### **Smart Network Control in Automotive Systems**

#### Adam Kostrzewa and Rolf Ernst

TU Braunschweig, Germany IEEE SAC 4-6 September 2019



- Automotive trends Present and Future
- Automotive Ethernet the safety perspective
- Automotive Networks other challenges
- SDN Promising Preliminary Solution
- Conclusions




# **Automotive Systems - New Challenges**

#### **Trend 1: New applications**

- networks with IP traffic via car-to-X communication
- primarily best effort

#### Trend 2: Quickly growing sensor traffic



- high resolution sensors for autonomous driving (e.g. LIDAR, radars)
- which are redundant
- in consequence high bandwidth communication and limited network latency (system response times)

#### **Trend 3: Complex low latency traffic**

- backbone function: legacy, future drives, highly interactive functions, ...
- Iow to medium volume, low latency traffic







#### **Automotive trends – Present**







# Example – ApolloScape from Baidu



Sensor data:

- Two LIDARS (VMX-1HA modules)
  - 10Hz, avg. 1,6MB per frame
  - 16 MBps == 128 Mbps per lidar
- Six video cameras (VMX-CS6 systems)
  - 30fps, 3384×2710 pixel resolution
  - avg, 2MB per frame, JPG 100% 24bit/pixel
  - 60 MBps = 480 Mbps per camera
- Measuring head with IMU/GNSS
  - below 1 Mbps
- Additional radar data
  - not included in the dataset but still necessary



Source: **Baidu**, P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng and R. Yang, "The ApolloScape Open Dataset for Autonomous Driving and its Application," in IEEE Transactions on Pattern Analysis and Machine Intelligence.





#### **Bus-based communication**



- Straightforward support of publishersubscriber mechanism
  - e.g. CAN msg. received by all nodes, sender is not aware of the readers
- Several application specific standards, CAN, FlexRay, LIN, ...
  - relatively low data rates < 100kbit ...</li>
    10Mbit (FlexRay, CAN FD)
- Predictable scheduling: fixed priority or TDMA or slotted ring (MOST)
- Routing by dedicated gateway (GW)
  - Iow speed allows SW implementation
- Majority of communication constrained to a single domain e.g. chassis, powertrain etc.



Quelle VW

# **Are Bus-Based Architecture Sufficient?**



|          |               | CAN    | CAN-FD  | FlexRay |  |
|----------|---------------|--------|---------|---------|--|
| Sensors  | Req. \ Avail. | 1 Mbps | 10 Mbps | 10 Mbps |  |
| 1 Lidar  | 128 Mbps      | *      | *       | *       |  |
| 1 Camera | 480 Mbps      |        | *       | *       |  |

#### This is an entirely new world!

Reminder, bandwidth requirements per sensor

6 cameras and 2 lidars in Baidu ApolloScape dataset

#### Challenges:

- How can we increase the capacity of the automotive network?
- Without jeopardizing safety? (e.g. ISO26262)
- And rising design costs?



# Why Ethernet in the Automotive Domain?



#### Bandwidth Promise

- bandwidth, bandwidth, bandwidth .....
- 100Mb/s  $\rightarrow$  1Gb/s  $\rightarrow$  10Gb/s  $\rightarrow$  ...
- Other benefits:
  - open network capabilities
    - open protocols, IP protocols
  - shared technology cost
    - standard with high volume across industries
      - no headaches with next generation MOST, FlexRay, ...
    - huge engineering platform experience
      - avionics, industry ....

#### Ethernet -> communication backbone





- Automotive trends Present and Future
- Automotive Ethernet the safety perspective
- Automotive Networks other challenges
- SDN Promising Preliminary Solution
- Conclusions



# **Future Networks in the Automotive Domain**

**ID**A

- Heterogenous network architecture
  - switched networks + legacy bus-based interconnects
- Switched network instead of the bus
  - point-to-point connections with dynamic address handling
- Many configuration parameters
  - higher overhead than CAN
- Consequence for network properties and design?
  - we solve one problem and encounter new ones!



### **Automotive Ethernet Challenges**



#### Lost inherent support for pub/sub mechanism (switch-based)

need to use higher-level protocols

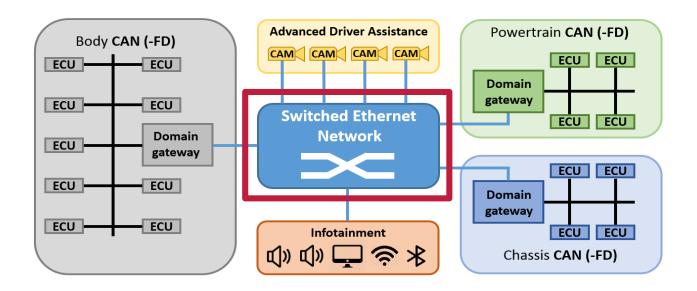
#### Routing necessary

- different routing mechanisms, flow control
- note: Ethernet-bus not suitable

#### Different communication schemes

- unicast, multicast, broadcast
- Freedom from interference?
  - switches (forwarding table eviction example)
  - gateway (packaging example)

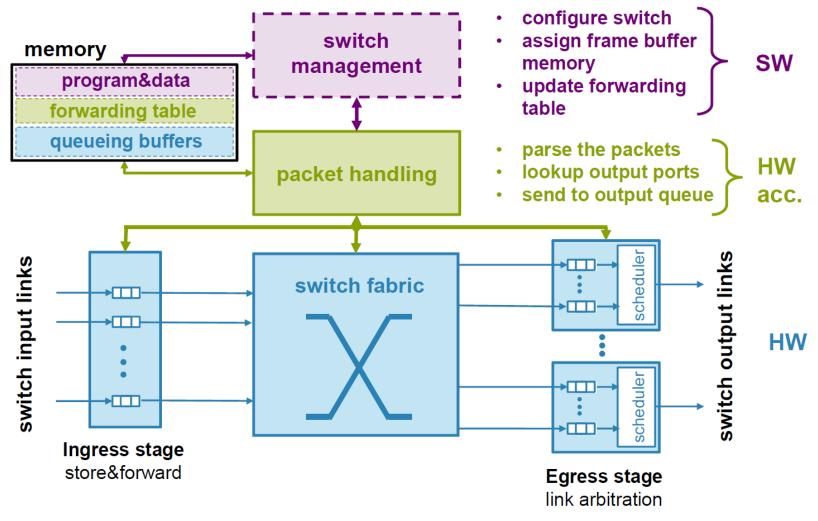
#### Ethernet was not designed for safety!




### **Ethernet in the Automotive Domain**



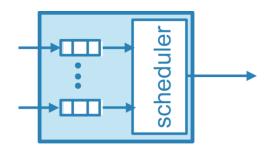
#### Envisioned heterogeneous automotive architecture


Note: Ethernet is a promising candidate for (future) monotechnological networks





#### **Ethernet Switch Structure**








- Forwarding table
  - Imited index space leads to indexing conflicts
    - loss of timing → interference
  - thoughtful MAC address management required
- Queuing buffers
  - Iimited buffer space
    - message drop → interference
  - Flow control
    - same-priority blocking, increased delay & buffer
  - Few queues → few priorities
    - head of line blocking → interference
  - Queuing effects require system-level end-to-end analysis









# **Ethernet IEEE 802.1Q – Standardization**

- Standard Ethernet (IEEE 802.1Q)
  - priority based
  - up to 8 priorities and 4096 VLANs
  - static priority scheduling
- Ethernet AVB (IEEE 802.1Qav)
  - originally defined for streaming applications
  - adds standardized traffic shaping to IEEE 802.1Q
  - 802.1AS: clock synchronization
- Time-Sensitive Networking TSN
  - set of (draft) Ethernet standards addressing real-time requirements







# **TSN Arbitration and Shaping**



- Frame preemption (IEEE 802.1Qbu)
  - reduce blocking time by lower-priority fames
  - allow preemption of lower-priority frames (at certain points)
- Ingress filtering (IEEE 802.1Qci)
  - ensure that traffic streams stay within predefined bounds (fault containm.)
- Timing and synchronization(IEEE 802.1ASbt)
  - extensions to 802.1AS: redundant masters, multiple time domains
- Time triggering(IEEE 802.1Qbv)
  - time aware shaper for low latency, time sensitive traffic
  - more shapers: burst limited,
- Asynchronous traffic shaper(IEEE 802.1Qcr)
- And many more ... (e.g. IEEE 802.1CB FRER)

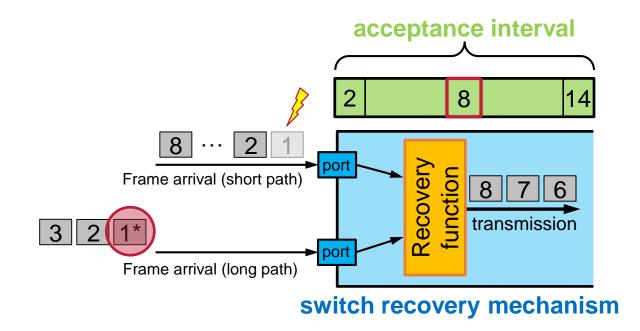




### **IEEE 802.1CB (out of order example)**



- Standard does <u>not</u> prevent out of order transmission of frames
  - key "unlock lock" commands
  - order preservation must be manually implemented






### **IEEE 802.1CB (out of order example)**



- Standard does <u>not</u> prevent acceptance interval misconfiguration
  - possible dropping of valid frames



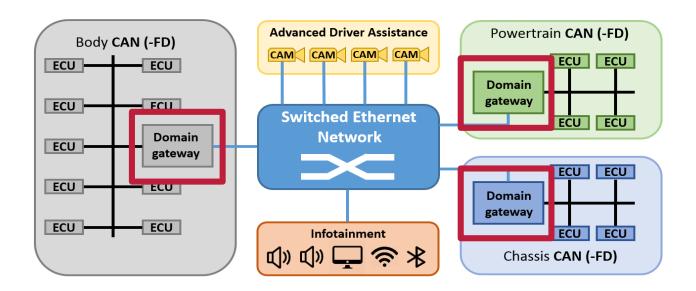


# **Automotive Ethernet Challenges**



- Plethora of configuration and misconfiguration opportunities
  - MAC address management
  - switch management
  - protocol selection

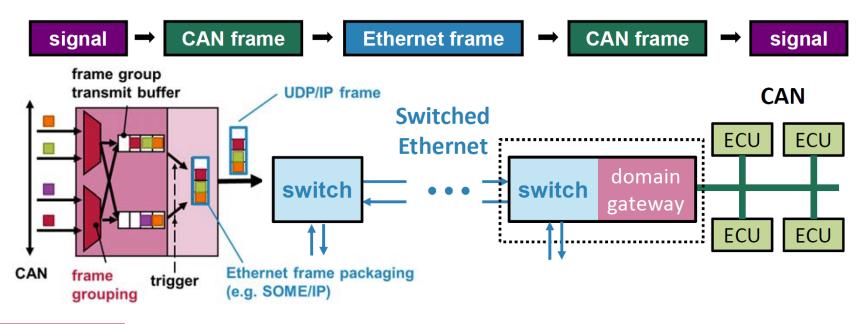
#### • TSN increases the feature set


- standardisation addresses compatibility, does <u>not</u> limit variety
- some additions seem redundant to AVB
- increased protocol and circuit complexity as well as switch cost
- are all TSN features useful?
- Standardised does not necessarily mean safe "out of the box"
  - IEEE 802.1CB (out of order example, acceptance interval example)
  - thoughtful application required!



### **Ethernet in the Automotive Domain**




- Envisioned heterogeneous automotive architecture
  - Note: Ethernet is a promising candidate for (future) monotechnological networks



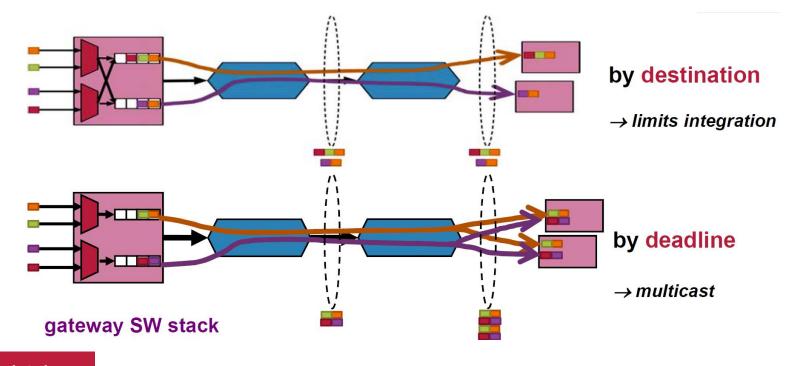


## Gateway (CAN → Ethernet scenario)

- Complex protocol choices
  - SOME/IP UDP IP MAC
  - TCP IP MAC
- Packaging is additional source of interference





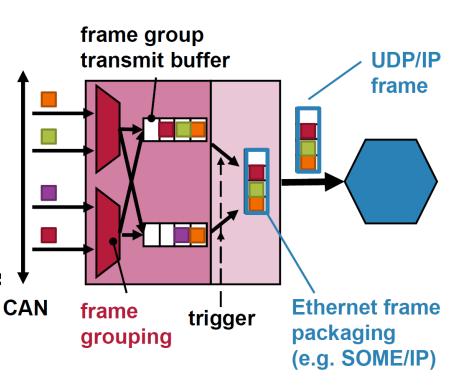



## Gateway (CAN → Ethernet scenario)



#### • Frame grouping:

- by destination minimise multicast overhead
- by priority (e.g. CAN ID) enable QoS for different traffic classes
- by period or deadline minimise sampling delay






Technische Universität Braunschweig

### Gateway (CAN → Ethernet scenario)

- Transmission triggering:
  - buffer timeout (AUTOSAR)
    - Frame is sent periodically
    - No interference
  - buffer full event (AUTOSAR)
    - Frame transmitted if buffer full
    - Interference
  - trigger frames (AUTOSAR)
    - Immediate release of certain frame:
    - Interference
  - per-frame timeout
    - Send upon individual frame timeout







### **Automotive Ethernet Summary**



- Ethernet promising technology for future automotive networks
  - @AN'17: >50% participants foresee fully Ethernet-based in-vehicle networks
- Abundance of standards → growing protocol & circuit complexity and cost
  - quantity ≠ quality
  - lots of configuration and misconfiguration opportunities
- Application requires systematic approach and thoughtful consideration
- How far can TSN take us down the automation path?
  - TSN = Towards Static Networking?
  - Conditional automation (level 3) seems achievable



#### **Automotive trends – Present**







### **Automotive Ethernet Summary**



- Ethernet promising technology for future automotive networks
  - @AN'17: >50% participants foresee fully Ethernet-based in-vehicle networks
- Abundance of standards → growing protocol & circuit complexity and cost
  - quantity ≠ quality
  - lots of configuration and misconfiguration opportunities
- Application requires systematic approach and thoughtful consideration
- How far can TSN take us down the automation path?
  - TSN = Towards Static Networking?
  - Conditional automation (level 3) seems achievable
- What about High automation (level 4) and Complete automation (level 5)?



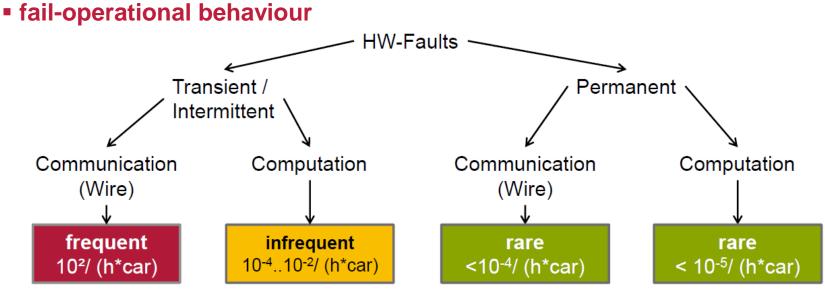


- Automotive trends Present and Future
- Automotive Ethernet the safety perspective
- Automotive Networks other challenges
- SDN Promising Preliminary Solution
- Conclusions





#### Isolation


- how well does Ethernet isolate critical from other traffic?
- "freedom from interference"
- Delivery under transmission errors
  - what timing guarantees are possible under errors?



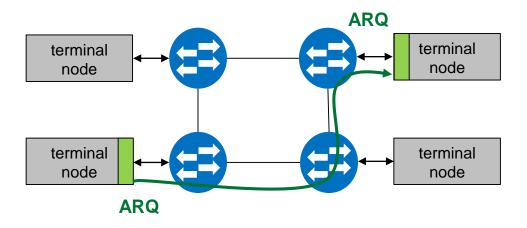
# **Fault Tolerance**



- A system must be able to handle transient/permanent faults
  - fail-safe behaviour



note: resulting computation errors strongly depend on state protection (memory)

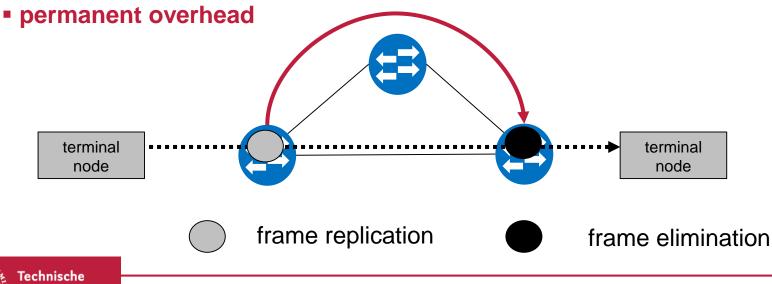

- Transient transmission errors dominate
  - transient error handling must be part of regular communication!



## **Communication under transient faults**



- System must be capable of real-time operation
  - even under occasional transmission errors (cp. CAN, FlexRay, ...)
- Suggest end-to-end error control
  - overhead can be limited to critical messages
  - covers all error types (link, tail-drop, ...)



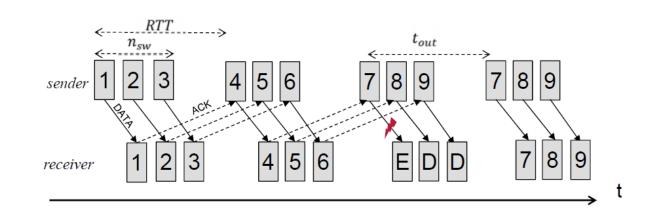



#### **Fault Tolerance**



- FRER (IEEE 802.1CB) one viable approach
  - frame copies via redundant paths (Spatial FRER)
  - alternatively, frame copies via same paths (Temporal FRER)
  - proactive mechanism, requires path redundancy
  - applicable to both transient and permanent faults
  - in case of fault → negligible additional delay






### **Fault Tolerance**



#### Automatic Repeat Request (ACK N)

- Stop and Wait (explicit acknowledgement)
- Go back N (pipeline N transmissions)
- reactive mechanism
- transient faults only
- fault  $\rightarrow$  latency increase
- multicast?



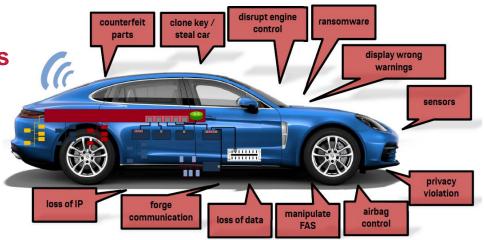




#### Isolation

- how well does Ethernet isolate critical from other traffic?
- "freedom from interference"
- Delivery under transmission errors
  - what timing guarantees are possible under errors?
- Security
  - how to enable complex functions without risk ?




# Security



- Automotive vehicles = highly communicating "software on wheels"
- External systems and networks:
  - enable sophisticated functionalities
  - but also increase risk!
- Internal threats:
  - misbehaving & malicious software
    - not all features thoroughly tested
- External threats:
  - attacks and intrusions via communication:
    - WIFI, V2V, V2I, Charging stations, mobile device, application centers
- Intrusion detection mechanisms necessary, verification?
  - adaptive variant of per-stream filtering and policing (IEEE 802.1Qci)



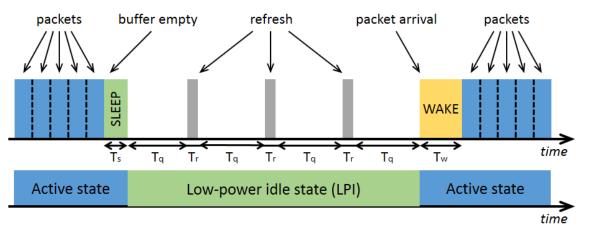
A.Kostrzewa, R.Ernst, Smart Network Control in Automotive Systems, IEEE SAC2019, Cracow, 4-6 September 2019 | Slide 34



Source: Dr. Christian Meineck @ AN'17



#### Isolation


- how well does Ethernet isolate critical from other traffic?
- "freedom from interference"
- Delivery under transmission errors
  - what timing guarantees are possible under errors?
- Security
  - how to enable complex functions without risk?
- Energy Efficiency
  - how to decrease power consumption?



# **Energy Efficiency**



- Energy efficiency considerations:
  - Increasing numbers of hybrid and electric vehicles
  - In functionality requirement: substantial processing and networking power
  - functionality requirement: availability in all modes
  - when turned-off all vehicles "live" on limited battery capacity (accumulator)
- Energy-Efficient Ethernet (EEE) IEEE802.3az
  - so far considered for data centers and home networks, not automotive







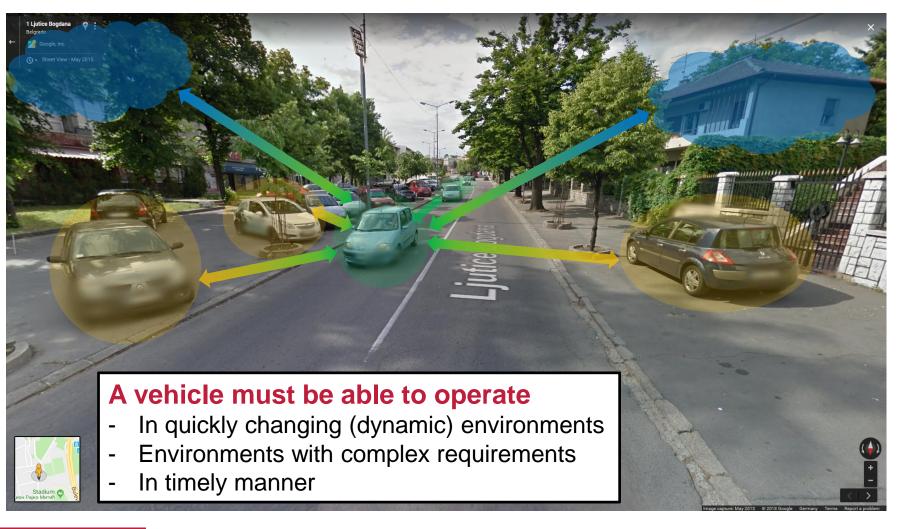
#### Isolation

- how well does Ethernet isolate critical from other traffic?
- "freedom from interference"
- Delivery under transmission errors
  - what timing guarantees are possible under errors?
- Security
  - how to enable complex functions without risk?
- Energy Efficiency
  - how to decrease power consumption?

#### Now we have solved the problem?



### Now we have solved the problem?



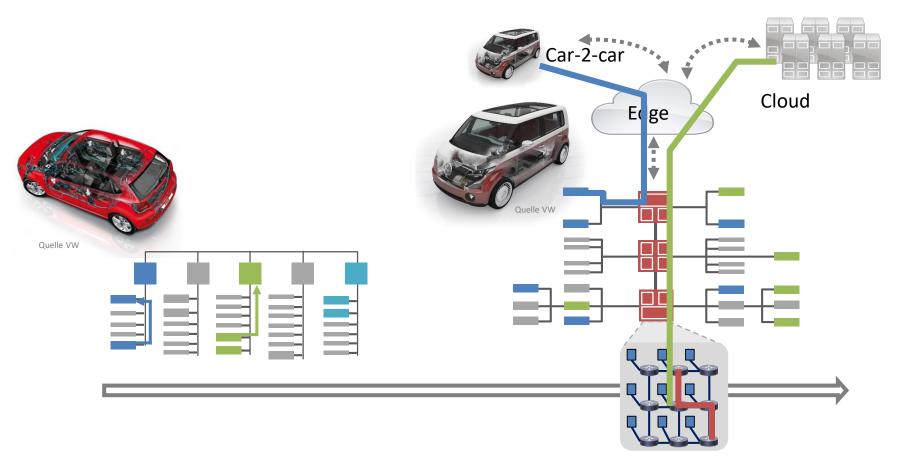





### ... or not???








Technische Universität Braunschweig

A.Kostrzewa, R.Ernst, Smart Network Control in Automotive Systems, IEEE SAC2019, Cracow, 4-6 September 2019 | Slide 39

### But all that is still not enough .....





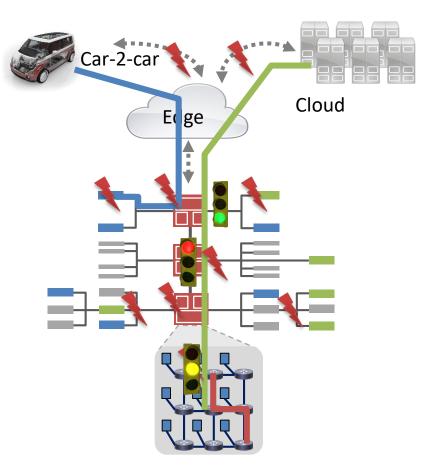


A.Kostrzewa, R.Ernst, Smart Network Control in Automotive Systems, IEEE SAC2019, Cracow, 4-6 September 2019 | Slide 40



#### Dynamic workloads

- quickly changing (dynamic) environments e.g. weather, situation on the road ...
- new security threats and countermeasures!
- ... in a timely and safe fashion!
- How to enable run-time adoption?
  - adjust admission control, sys. reconfiguration & runtime diagnostics
- Hardware architectures and software platforms to accommodate:
  - AI applications
  - deep learning mechanisms


### • The goal : Eventually make human assistance for driving obsolete



## **The New Challenges**



- End-to-end communication
  - vast amounts of data
  - dynamic transfers
  - involved a wide range of parties
- "On-the-fly" synchronization
  - service discovery
- Integration Challenges
  - high costs
  - endangered safety





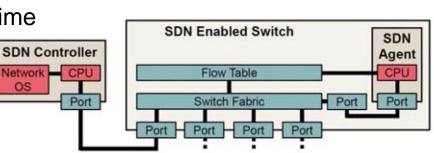
## **Service-Based Protocols**



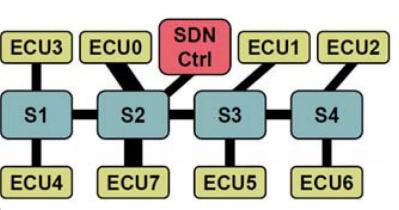
- To facilitate more convenient high-level communication
- AUTOSAR → AUTOSAR AP (since March 2017)
  - automotive software standard (has Ethernet socket adapter)
  - AUTOSAR AP Enables Adaptive Applications
  - allows dynamic linking of services and clients (runtime)
- SOME/IP
  - service-oriented middleware over IP
  - utilises both TCP and UDP
  - compatible with AUTOSAR
  - contains service discovery routine
- Other protocols: DDS, MQTT, 1722.1






- Automotive trends Present and Future
- Automotive Ethernet the safety perspective
- Automotive Networks other challenges
- SDN Promising Preliminary Solution
- Conclusions

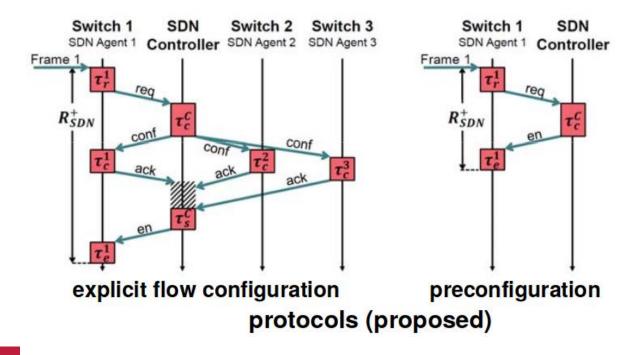



# Software-Defined Networking (SDN)

- Initial approach centralised solution
- Introduce a dedicated control plane
  - switch configs & reconfigs thereupon
  - Step 1: Preconfigured
    - configs for different modes @ design time
    - provision for safe transitions (mode changes)
  - Step 2: Explicit
    - plan & implement new configs @ runtime
    - fully adaptive behaviour
  - In future: control redundancy






### SDN architecture





# **Software Defined Networking - Principle**

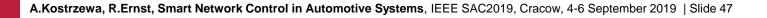
- Uses network to communicate switch configuration
  - access control, reconfiguration, ...
  - explicit control or preconfigured
  - control redundancy must be added

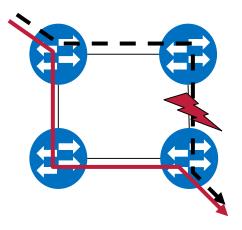




**IP** 

# Example - Handling permanent component failures

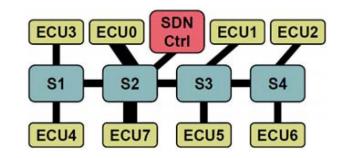

### Introduction and control of component redundancy

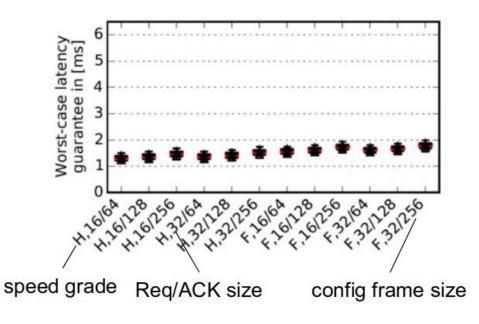

- multipath routing TSN
- zero extra delay
- permanent overhead

### Automated path detection and routing

- standard approach
- Iarge and unpredictable delay
- Alternative: centralized configuration
  - possible solution: Software Defined Networking (SDN)
  - introduces control plane
  - fast enough?






# Feasibility study for SDN [Thiele 2016]



- Protocol timing for access control
  - depends on load, number conf. requests
  - explicit configuration: 1ms ...6ms
  - preconf: < 1.3ms</p>
  - feasible approach for automotive







A.Kostrzewa, R.Ernst, Smart Network Control in Automotive Systems, IEEE SAC2019, Cracow, 4-6 September 2019 | Slide 48

### Outline

- Automotive trends Present and Future
- Automotive Ethernet the safety perspective
- Automotive Networks other challenges
- SDN Promising Preliminary Solution
- Conclusions



### Conclusions



- **Ethernet** = **promising** future automotive networking technology
- Many opportunities & pitfalls, careful application necessary
- TSN beneficial but not panacea (static)
- Autonomous vehicles: Lot of work remaining
  - especially for automation levels 4 (High) & 5 (Complete automation)
- Enabling adaptive behaviour key requirement for:
  - service-based communication
  - fault tolerance (e.g. fail-operational behaviour)
  - security
  - energy efficiency
- SDN = favourable platform for further investigations

