
Contract-based Dynamic Task Management for
Mixed-Criticality Systems

Moritz Neukirchner, Steffen Stein, Harald Schrom, Johannes Schlatow, Rolf Ernst
Institut für Datentechnik und Kommunikationsnetze

Technische Universität Braunschweig
Email: neukirchner|stein|schrom|johanness|ernst@ida.ing.tu-bs.de

Abstract—The use of models is becoming increasingly promi-
nent in the development processes for safety and time critical
systems (e.g. in automotive or aerospace). However, oftentimes
the models of a component, its implementation properties and
execution parameters are only loosely coupled. This missing
association complicates system maintainability and becomes an
issue with increasing system flexibility.

This paper presents a runtime environment closely coupling
design-time component models with the execution parameters
of the specific component also enabling runtime monitoring
of implementation properties. Together with a previously pub-
lished admission control scheme, this enables tight coupling
of component-wise design-time modelling, system analysis and
runtime configuration, enabling software flexibility also in mixed-
criticality systems.

I. INTRODUCTION

In many embedded systems, safety and time critical appli-
cations share resources with non-critical applications leading
to mixed-criticality systems. In such systems components of
low criticality must be prevented from affecting the function
and timing of critical functions (also required by safety stan-
dards, such as ISO 61508). This can be addressed by strict
segregation in function and timing (e.g. through TDMA) or by
runtime controllers that throttle or stop software components,
that exceed their specification.

Reconfiguration of such complex embedded systems is
common practice today, e.g. software updates of automotive
systems. If no strict segregation between different software
components can be assured (e.g. use of a shared CAN bus)
complex interdependencies between different software compo-
nents may exist. As a consequence every update necessitates
a verification of the complete system. In addition to the
verification, update capabilities require methods to exchange
software. In current practice entire binaries are exchanged to
update an ECU. In contrast to this practice typical design
flows of complex embedded systems follow a component-
based approach. Thus, it would be desirable if methods for
software replacement also allowed to exchange single software
components rather than entire binaries of the affected ECUs.
Due to the typical resource limitations (e.g. energy and code
size) this has to be done at low overhead. Thirdly, irrespective
of the reconfiguration, faults that may occur in single system
components, need to be detected and contained to protect
other components. This is of particular relevance for mixed-
criticality systems, where lower critical applications may be

ill-specified but nontheless must not influence highly critical
applications. Thus, for reconfiguration of mixed-criticality
embedded systems means for verification, reconfiguration and
isolation are required.

In current practice these three mechanisms are uncoupled
to a large degree. Typically the verification is performed at
design-time in the lab. After successful verification, the system
is updated in the field. However, this update procedure does
not provide the verification model along with the update.
Thus, it cannot be ensured that the parameters used for the
reconfiguration and isolation mechanisms are consistent with
the model used for the design-time verification. Furthermore,
it does not allow to check whether the actual implementation
of the software component is consistent with the model, that
was verified. Thus, if a lower critical application is specified
incorrectly the effects on highly critical applications may cause
catastrophic failure.

A possible solution is to provide the verification model
along with an update and let the embedded system itself check
and ensure consistency. In [1] we have already presented a
contract-based scheme for admission control that performs a
verification of the timing behavior of a system prior to any
reconfiguration - thus moving the verification process into the
system itself.

In this paper, we aim at coupling such a verification with
methods for reconfiguration and fault containment and thus
close the gap of current design processes. We show how the
verification model, that is used for the admission control, can
be closely integrated with the system (re-)configuration and
isolation capabilities. We provide a mechanism that configures
the system based on the verification model. This coupling
ensures that the effects of ill-specified components are properly
contained and thus allows safe reconfiguration of mixed-
criticality systems. Specifically, we propose a methodology
that provides
• dynamic code replacement
• realtime communication
• fault containment in memory and timing

based on the verification model that is used during admission
control.

The remainder of this paper is structured as follows. We
will first review the admission control scheme of in-system
contracting as implemented in the EPOC framework (sec-
tion II). This admission control scheme provides the system



model which we use for task management. In the following
we derive key requirements for dynamic task management
of mixed-criticality systems and describe the general system
architecture (section III). In the three main sections of this
paper we will explain the architecture of the communication
middleware (section IV), the approach to task management
and dynamic linking (section V), and to fault containment
(section VI). All these aspects are regarded with respect to
data contained in the system model. We will then provide a
conclusion (section VII).

II. ADMISSION CONTROL WITH IN-SYSTEM
CONTRACTING

In this section, we review the principles of in-system
contracting and an architecture implementing this admission
control scheme.

Current design methodologies, as e.g. specified by AU-
TOSAR [2], allow the design of software components mainly
independent of the underlying hardware platform. Software is
partitioned into tasks (or Runnables in the case of AUTOSAR),
i.e. pieces of executable code that can be scheduled on a
computational resource, i.e. a processor. Furthermore, com-
munication dependencies (task links) between these tasks are
specified (similar to Connectors across the virtual functional
bus of AUTOSAR). In a later design step tasks are mapped
to processors and task links to communication resources (i.e.
busses or networks). To ensure compliance with realtime
requirements, scheduling strategies have to be specified for
each resource and timing properties are assigned to each
task and task link. A typical characterization of timing is by
specification of period and jitter (P,J) in combination with best-
case and worst-case execution time (BCET and WCET). With
this specification realtime properties can formally be verified
using state of the art analysis tools [3], [4].

In the admission control scheme of in-system contracting
a software application that shall execute on the platform
has to provide its verification model as described above.
I.e. in the scope of realtime systems this includes the task
graph (i.e. tasks and task links), the timing description (e.g.
period, jitter, BCET and WCET) and realtime constraints
(e.g. path latency). Based on this specification and a model-
based verification [5], the admission control mechanism can
decide whether all constraints of all software components
are satisfied in the presence of that application. If so, the
admission control guarantees, that all constraints will be met
given that all applications adhere to their specification. The
combination of an application specification, its constraints and
the guarantees from the admission controller are referred to as
a contract. Contract-based analysis is an established approach
to reduce the verification effort in component-based design
[6]. In our case, contract analysis and task management must
potentially include the whole system, because of component
and task dependenies and because of global constraints such
as end-to-end timing. This also requires that all component
characteristics are available in the field and are accessible,
either directly or by interaction of components.

Fig. 1: Framework Architecture

In the following we review the admission control scheme
of the EPOC framework [1], which provides the basis for the
reconfiguration mechanisms presented in this paper.

A. EPOC Framework

Fig. 1 shows the EPOC framework architecture. Application
updates are inserted into the system via the Update Controller.
Such an update comprises the actual code and the model
of the software application. The model is first inserted into
the Model Management component within the model domain
of the framework [1]. The Model Management component
performs a verification based on the supplied model [5]
and determines feasibility of the configuration change. If the
system determines feasibility of the update, the contract is
stored in the Contract Repository and returned to the Update
Controller. The Update Controller then loads the executable of
the software application into the Task Management component
within the Execution Domain. Here the tasks and communica-
tion channels are configured according to the model contained
in the contract information.

In this paper we focus on the actual reconfiguration process
within the Execution Domain based on the data contained
in the Contract Repository. Specifically we show how task
binaries can be inserted into the system without a dynamic
linker, how communication between tasks can be established
based on contract data, and how faults occuring in memory
accesses and timing can be detected and contained. We will
regard these implementation-centric aspects w.r.t. the overall
in-system contracting scheme.

B. Contract Information

In this section we present the data stored within contracts.
This data is used to configure tasks and task links, as will be
explained in following sections.

Tasks are represented by a structure as shown in table I.
Each task is associated with a unique ID (taskId) and
a timing description as required by the admission control
scheme (actPeriod, actJitter, wcet, bcet). Further-
more the processor the task is executed on is specified by
a unique resource ID (resId). Additionally the necessary
scheduling parameters are provided (in this case a priority for
priority-based scheduling prio). Communication dependen-
cies with other tasks are modelled as task links (*pInLinks,



int taskId; // task ID
int actPeriod; // activation period
int actJitter; // activation jitter
int bcet; // best-case execution time
int wcet; // worst-case execution time
int resId; // resource ID
int prio; // scheduling priority
tList *pOutLinks; // list of outgoing task links
tList *pInLinks; // list of incoming task links
tList *pServices // list of used services
tTSDescr *pTSDescr; // task slot description pointer

TABLE I: Struct for task description

int linkId; // task link ID
int srcTaskId; // source task ID
int trgTaskId; // target task ID
int commId; // communication resource ID
int prio; // communication priority
int msgSize; // size of a message
int msgCount; // number of messages in buffer
tMsgQ *pMsgQ; // message queue
tTDescr *pTDescr; // task description pointer

TABLE II: Struct for task link description

*pOutLinks). Furthermore a task can specify a list of
services (*pServices) it requires to execute. As last entry
a pointer to a descriptor of the task slot exists. The specific
meaning of the task slot pointer will be explained in section V.

Also task links are managed in a similar data structure
(table II). Task links are identified via a unique ID (linkId)
and the task IDs of source and target task (srcTaskId,
trgTaskId). In case the communication is established via
a communication medium, the resource mapping is specified
by a communication resource id (commId) and scheduling
parameters are provided (prio). The message size and the
number of messages that can be buffered are specified via
msgSize and msgCount, respectively. These parameters
determine the best-case and worst-case transmission times
and the required message buffer, which we will discuss in
section IV. The pointer *pMsgQ will point to a message queue
that organizes that buffer memory. The description struct for
a task link exists twice – once at the source task and once at
the target task. *pTDescr points to the task description of
the task the task link belongs to.

The specification of timing properties, communication de-
pendencies, resource mapping and scheduling parameters is
available from the system model, that is used in today’s design
processes. This data is required for the admission control test.
The remaining data can be derived during admission control.
It remains static throughout the execution. Thus contract data
only changes during system reconfiguration.

In this paper we will show how the execution environment
can configure the system based on the above contract informa-
tion. This ensures that execution parameters are actually set as
specified in the system model. Furthermore fault containment
and monitoring facilities are configured from contract data.
Thus, applications that deviate from their specified behavior
are identified and appropriate measures can be taken. This
approach guarantees that verification, configuration and im-
plementation are consistent across the system. The presented
methodologies are analyzed w.r.t. the overhead they impose.

Fig. 2: Architecture Stack

III. EXECUTION DOMAIN ARCHITECTURE

In this section, we derive requirements for dynamic task
management and introduce our architectural approach. The
single components are discussed in more detail in the sub-
sequent sections.

Many existing systems in industrial practice follow an
architecture pattern where an operating system and possibly
several communication stacks exist on top of a hardware
abstraction layer. Application tasks interface directly with
the OS as well as the communication stacks. The operating
systems support concurrent execution of multiple tasks ac-
cording to some arbitration scheme and provide basic means
of communication and locking, i.e. queues and semaphores,
between these tasks. A wide variety of operating systems,
that support such features, exist; ranging from sophisticated
kernels that support virtualization (e.g. L4 based kernels [7])
down to small-scale operating systems for sensor nodes (e.g.
TinyOS [8]). Some OS support dynamic adding and removing
of tasks. The communication stacks abstract the underlying
communication medium and the associated protocol so that
sending and receiving of data chunks is possible. However,
message sizes and the addressing scheme typically depend on
the communication medium.

Such execution environments do however not provide the
necessary mechanisms to couple the configuration of a system
with its verification model. As mentioned above, the system
specification in e.g. AUTOSAR allows to describe an appli-
cation largely independent of the underlying platform – the
specific configuration of the available communication stacks
is then synthesized using this description and a platform speci-
fication. Our goal is to diminish the need for this synthesis, by
extending the capabilities of the execution environment to be
able to provide a service that matches the design abstractions
in state-of-the art design processes.

Furthermore reconfiguration should be possible on a per
task basis, i.e. reconfiguration of a task does not require
the replacement of the entire binary of a processor. Because
we consider embedded systems with realtime requirements,
the employed mechanisms should impose low overhead on
memory and computation time.

To achieve this goal we propose an Execution Domain
architecture as shown in fig. 2. As in existing systems an
operating system (in our case µC/OS-II [9]) and a number of
communication stacks exist on top of a hardware abstraction
layer. The design of these components is not scope of this
paper.

The core services of the RTE are implemented on top



of these basic services. A communication middleware as
presented in section IV provides resource-agnostic realtime
capable communication channels between different tasks. Task
links will be synthesized from contract descriptions. The task
management component as presented in section V enables
dynamic code update and task reconfiguration and provides
methods for fault containment. The APIs of the middleware,
the operating system, and the task manger are exposed to user
applications via the Application Interface. Services, i.e. library
functions or complex device drivers, may expose an interface
to be used by applications, which will be made accessible by
the task manager as described in section V.

IV. COMMUNICATION MIDDLEWARE

In this section we describe the reconfigurable communi-
cation middleware based on the contracting admission control
scheme. Communication between software tasks is also subject
to the constraints of embedded realtime systems. Thus, timing
properties and resource consumption (i.e. memory, computa-
tion and communication time) are critical.

As mentioned above, we assume that distributed appli-
cations are decomposed into different communicating tasks.
These tasks run in an operating system that abstracts the
actual underlying platform and provides an API for e.g. sensor
readings. Consequently the implementation of such a task is
largely independent of the actual processor it is being executed
on, i.e. it is resource-agnostic. The communication middleware
we are presenting in this section shall provide the same level
of abstraction for communication, i.e. abstracting the actual
communication medium from the application.

A. Related Work

Numerous approaches for resource agnostic communication
exist in literature. In the domain of distributed realtime and
embedded (DRE) systems high-level concepts from general
purpose computing have been adopted. Realtime CORBA and
DCOM [10], [11], [12], [13] both provide a high level of
abstraction by hiding the localization of software objects.
An object-request broker (RT-CORBA) or a COM-Server
(DCOM) determine the localization of a requested object. A
lower layer then determines the route between two objects.
Java RMI [14], RCSM [15] and EJB [16] provide comparable
services. As localization as well as routing are performed
at runtime a high degree of flexibility is offered. Other
middleware approaches [17], [18] focus on resource allocation
and routing under QoS constraints. All of these services cause
a considerable overhead in terms of memory and computation
time [19] that may not be tolerable for small scale embedded
systems.

Middleware approaches in sensor networks provide com-
munication between nodes at relatively small overhead. Many
approaches target data dissemination and collection in the
network [20], [21]. Thus they address e.g. dynamic routing
[22], data aggregation [23] or rate adaptations to maintain a
certain service-quality of the network [24]. Due to the high
dynamics that is assumed in these systems, no hard guarantees

can be given. Our main concern in the scope of communication
middleware however is not highly dynamic runtime adaption
but guaranteed services in the presence of occasional system
reconfigurations.

In the automotive sector a specification for a communi-
cation middleware has been developed as one aspect of the
AUTOSAR specification [25]. It is particularly designed for
safety-critical realtime communication. The underlying soft-
ware primitives for communication between software modules
are synthesized at design-time from a description of software
and platform. They support resource-agnostic sender/receiver
as well as publisher/subscriber communication. However, no
runtime reconfiguration is allowed.

In our in-system contracting scheme reconfiguration is only
allowed through admission control to assure hard realtime
and safety properties. Thus, the system configuration is only
changed at clearly defined points in time. We propose to use
contract data for a quasi-static localization and routing scheme.
We extract the localization of tasks and the routing of messages
from the contracts and configure the middleware accordingly.
This approach allows an implementation at minimal overhead
while it ensures consistency between contract data and actual
execution parameters.

B. Middleware Implementation

The middleware presented in this paper provides an abstrac-
tion similar to the AUTOSAR specification. It allows resource-
agnostic sender/receiver as well as publisher/subscriber ser-
vices. Both are realized through message passing. However,
in contrast to AUTOSAR, communication channels are syn-
thesized from contract data during admission control instead
of synthesizing them at design-time in the lab. Thus, our
middleware approach allows for larger flexibility in the re-
configuration process.

The task management component (see fig. 1) establishes
task links during the admission control process. In the case
of sender/receiver communication it first determines whether
the communication uses a communication resource (external)
or is established within one resource (internal). This decides
on the implementation of the link (fig. 3). In case of an
internal task link a message queue is generated and linked
into the task link description (*pMsgQ) on sender as well as
receiver side (fig. 3a). The message queues are created with the
parameters msgSize and msgCount to enforce adherence
to message sizes. For external task links (fig. 3b) a queue is
created on sender as well as receiver side and registered at the
corresponding task link descriptions. Middleware tasks will
handle the communication via the physical communication
medium using the transmission parameters from the task link
description, i.e. prio.

As this setup process is completely executed at admission
control time through the task management component based
on contract data, the task implementation is guaranteed to be
inline with the specification in the model. The entire setup
process is invisible to the user application. To use a task link
a task first has to query the connection from the middleware



(a) Internal task link

(b) External task link

Fig. 3: Task link implementation (sender/receiver)

providing the task ID of the communication partner. The task
ID of the querying task is determined from the operating
system to ensure that no communication channels of other
tasks can be obtained. The middleware returns the message
queue of the task link which is cached in the task. The task can
then simply communicate via the message queue irrespective
of the location of the communication partner (an example
is shown later in alg. 2). Runtime of this communication
is bounded, as task link queues are cached within the tasks
and the message sizes are upper bounded by the definition in
the contract information. The priority-based middleware tasks
ensure realtime properties across the communication media,
provided the media themselves are realtime capable.

Publisher/subscriber connections are established in a sim-
ilar fashion as sender/receiver connections. This is possible,
because all subscribers are known at admission control time.
In case of publisher/subscriber communication each subscriber
maintains a separate message queue. As posting to a pub-
lisher/subscriber task link may requires sequential copying of
the message to all receiver queues, the runtime depends on the
number of subscribers. To bound the runtime the number of
possible subscribers has to be limited to a fixed value.

The presented middleware architecture has some key ad-
vantages. First, localization and routing are defined through
contracting and links are established at admission control
time, thus reducing possible execution-time overhead. Sec-
ondly, tasks can only query their own task links, providing a
certain degree of isolation. Finally, sender/receiver as well as
publisher/subscriber communication are realized via the same
API, providing an easy to use interface.

In contrast to a lab-based approach, as in AUTOSAR, recon-
figuration of communication channels can be performed in the
system without the necessity to re-synthesize communication
links in the lab and to replace the corresponding application
binaries.

C. Overhead Evaluation

In this section we present the overhead the communication
middleware imposes on memory consumption and timing
properties. For evaluation purposes we are using two differ-
ent hardware platforms: a physical setup consisting of two
MPC5200 evaluation boards interconnected by CAN bus and
a simulated hardware platform consisting of two ARM926E
processors at 100MHz communicating over a CAN bus. The

Module ROM (kB) RAM (kB)
Communication middleware
Generic functions 2,6 0,1
CAN specific 2 0,5
Task management
Generic functions 4,9 1,7
Jumptable 0,1 0
Migration specific 1 0
Memory Protection
Total 1,8 0.5

TABLE III: Memory Consumption

(a) Sending (b) Receiving

Fig. 4: Latencies of internal task links

simulation is performed using the cycle-accurate system sim-
ulator CoMET [26]. The code was written in plain C.

For evaluation of the communication middleware we have
used the simulated platform, as it allows easy measurement of
system timing. The memory overhead the middleware imposes
is shown in table III. The program code requires 4,6kB of
memory while 0,6kB are required for data. About 2,6kB of
the program code is required for generic functions, such as
sending and receiving to/from task links. The remaining 2kB
are used for functions specific to the CAN bus. These include
e.g. the initialization of the CAN controller and the middleware
TX and RX tasks. The largest portion of the required RAM
is used for the stacks of these middleware tasks.

To determine the overhead on latency the middleware
imposes we have made measurements for different message
sizes (several bytes per message). Figure 4 shows the delays
for sending and receiving on internal task links for different
message sizes. The delays are in the order of magnitude of
10µs while they scale linearly with message size. The latency
imposed through the TX and RX tasks are dominated by the
significantly slower CAN bus. The total delay of the tasks and
the communication medium lie in the order of magnitude of
1ms.

V. TASK MANAGEMENT

In addition to a communication middleware, the framework
supports dynamic task management. This is mandatory, if parts
of the system shall be exchanged at runtime, e.g. during an
update. In this section, we first highlight the key challenges
to be tackled when implementing dynamic task execution in
an embedded system, to then introduce the specific solutions
implemented in the EPOC framework.

A. Challenges

The first challenge to be tackled is the establishment of
position independence of the code to be dynamically executed.



As embedded systems may not support virtual memory due
to resource constraints, tasks must be able to run at any
memory location on the target platform. A major problem is
the interaction with the operating system infrastructure on the
target platform. This issue will be discussed in section V-B.

Once position independent code is available, the question of
managing the task’s binary as well as its associated static and
dynamic data must be answered. Our approach to organizing
tasks in memory is described in section V-C. Once this
is established, we introduce the complete flow of starting
applications in the EPOC framework.

Once the dynamic management of tasks within the EPOC
framework is fully described, we outline the programming
paradigms a designer has to follow when implementing an
application for this platform to show that the design decisions
taken do not overly complicate the task of writing a piece of
software on such a framework (section V-E).

B. Position Independendence of Tasks

In order to support updates where replacement of the full
binary is not an option, dynamic task or code management
must be enabled. In desktop operating systems, this is usually
achieved by dynamic linking and virtual memory partitions
as can be provided by memory management units of modern
processors. This setup does however result in a considerable
overhead both in operating system logic (dynamic linking) and
hardware requirements (MMU), which is often not tolerable.

A second approach, originally used in the context of server-
side computing, but also extended to embedded systems and
small-scale devices is the use of a virtual machine to host
the code. This approach has been followed by the Maté VM
as presented in [27]. Although this approach yields a high
level of abstraction of the target code from the actual runtime
environment and allows a compact representation of programs,
it requires the application developer to learn the specific
programming language of the VM. This does not integrate
easily into the design flow of modern embedded systems and
forbids the use of legacy code.

Using standard C as a programming language, code seg-
ments can however be compiled and linked independently of
their actual memory in the code, by only referencing data
and performing jumps relative to the program counter or a
given offset register. This is a common feature in C compiler
suites, such as gcc. The runtime environment API can be made
available by means of a jumptable, that provides access to the
runtime environment API at defined addresses in memory. This
approach has been presented in [28], where it has also been
shown that this approach yields high flexibility while keeping
the necessary overhead at a minimum. [29] showed that the
jumptable approach can be replaced by runtime dynamic
linking, without requiring a MMU. The implementation of the
dynamic linker presented in [29] comprises of roughly 6kB of
code on a 16 bit machine.

To avoid this overhead we follow the jumptable approach to
dynamic code management as presented in [28]. This approach
achieves absolute jumps to API functions by a custom set

Algorithm 1 Example of an assembly macro for jumptables
1: asm void ApplicationInterfaceFunction(int arg1, int arg2){
2: // copy arguments into appropriate registers
3: mr r3,arg1
4: mr r4,arg2

5: // branch and link to the appropriate function
6: lis r11,ApplicationInterfaceCallFunction@ha
7: addi r11,r11,ApplicationInterfaceCallFunction@l
8: mtspr ctr,r11
9: bctrl

10: }

of assembly functions that incur absolute jumps to given
memory addresses. Alg. 1 shows an example of a function
from the application interface. When this API function is
called, the function arguments are loaded into the registers
and an absolute jump to the appropriate RTE function is
performed. As the assembly is designed as inline assembly
functions, their use looks like a normal function call in the
application code. This enables the application developer to
design the code of his application without the need to link
against a runtime environment binary or the actual code. Thus,
for the RTE designer, it is sufficient to distribute the assembly
macro set to potential designers of applications, enabling a
distributed software development process with strict separation
of concerns between operating system/RTE and application
developers. Integration of services, i.e. library functions such
as e.g. complex device drivers, is also designed as described
in SOS [28]. Software modules can register a service API with
the task manager, which exposes it via the application inter-
face. The API is represented by a set of function pointers at
given offsets from the start of the service binary. This enables
an easy and modular extension of the runtime environment.
Note however, that due to the multithreaded base operating
system, services must in general be reentrant, i.e. it must be
possible to start a novel invocation of an API function before
the prior one has finished. In case this is not possible, as the
service e.g. represents a shared hardware on the processor,
the service call has to be protected by a semaphore and the
resulting blocking time has to be considered by the admission
control scheme.

C. Memory Organization

Position independet code allows large freedom in memory
organization as code can be freely relocated. In this section
we present the memory layout of the EPOC framework, which
is optimized to reduce the overhead in task management and
memory protection.

In the EPOC framework, tasks are managed in task slots
that contain not only the binary image of the task, but also all
relevant memory structures needed by that task. Allocating all
memory of user tasks in a contiguous task slot enables efficient
use of a memory protection unit, as will be later shown in
section VI-A.

The memory layout of a task slot is depicted in fig. 5. The
first area of the task slot is dedicated to the task’s stack. The
location of the stack area is motivated by the memory protec-



Fig. 5: Task Slot Memory Layout

void *pStart; // start of task slot pointer
int taskOffset; // task function offset
int taskArgOffset; // task arguments offset
int migOffset; // migration memory offset
int migLength; // migration memory length
int dataOffset; // data memory offset
int dataLength; // data memory length
int commMemOffset; // comm. queue memory offset
int commMemLength; // comm. queue memory length
tTDescr *pTDescr; // task description pointer
tTState state; // current state of task
tFlag *pFlag; // signalling flag pointer

TABLE IV: Struct for task slot description

tion scheme (see section VI-A). Then, the binary, followed by
the data to be passed to the task is allocated. After this, in case
the task shall be able to start from a previously saved state, a
memory area for construction of checkpoints is allocated. This
area is followed by memory space for global variables of the
task. The upper memory region of a task slot contains memory
for the middleware queues needed by this task. Note that these
are manged by the middleware as described before. In case of
internal task links, the memory of the queue is allocated in
the sender’s task slot.

Depending on memory availability the number of available
task slots may differ between different processing nodes of
the platform. Also the allocation in memory and the size of a
given task slot may vary. In order to manage tasks within their
slots, the task manager maintains an array of task information
structures as outlined in table IV. It contains a pointer to
the start of the given task slot (*pStart), offsets from this
base pointer and sizes of the relevant memory regions within
the task slot (...Offset-...Length pairs). In case of
equally sized task slots, this enables a quick update of a task
description in case a task is moved to another slot, e.g. in case
of task migration. Only the base pointer needs to be updated.

Additionally, this allows efficient introduction of tasks into
the system from an outside source. As the offsets can be
calculated offline after compilation, a descriptive struct as
above can be provided together with the binary. Once this data
is copied into the processors’ memory, only the base-pointer
needs to be updated to reflect the correct memory location.

In addition to these pointers, the information structure also
contains a pointer to the task’s contract data (*pTDescr) as
well as information about the state of the task and a pointer
to a signalling flag for communication with the running task
(state and *pFlag). A pointer to this runtime description
of the tasks is also kept within the contract of the specific task.

D. Task Start-up

Until now we have shown how tasks are organized and
how communication among them is established. In this section
we describe the steps taken to actually configure and start a
new task. These steps are performed by the Task Management

component based on contract data that has been verified by
the admission control scheme. This ensures that the actual
execution parameters are consistent with the contract.

We assume that the tasks binary (and potentially all param-
eters the task requires for startup) together with a descriptive
struct as shown in table IV have been placed in memory after
admission control. The Task Manager is passed a pointer to
the descriptive struct in order to insert the given task into a
task slot and commence its execution.

In order to start the task, the provided data is copied
into the task slot that has been allocated by the admission
control scheme. In the descriptive struct only the pointer to
the start of the task slot (*pStart) needs to be updated
accordingly. All offsets and lengths remain unchanged. Then
the associated contract data is used to initialize the middleware
queues required for the task’s task links. The backing memory
of outgoing task links is allocated within the task slot from
memory starting at *pStart+commMemOffset.

In case the task is time-triggered (i.e. an activation period is
specified in the contract data), a timer is configured to provide
an activation service to the task. Note that multiple tasks may
share a single timer. Also a signalling flag is allocated to
provide communication between the running task and the RTE.

Once this is done, the startup parameters are initialized with
pointers to checkpoint and global memory as well as the sig-
nalling flag. Now that configuration is complete the task can be
started using the appropriate service function of the underlying
operating system. The necessary scheduling parameters are
read from contract data to guarantee correctness.

From this startup sequence we see that the entire config-
uration process is controlled through the task management
component. All parameters are set from data from admission
control. The application task does not even require access to
this configuration data. This process ensures that the config-
uration is consistent with the model that was verified during
admission control.

E. Application Interface

In order to correctly interact with the presented framework,
an application designer has to adhere to a specific design
pattern. Alg. 2 shows a code example of a typical task.
During an initialization phase, the pointers to the migration
and global memory space should be extracted and cached from
the memory area passed as an argument (lines 6 to 8). As
shown in the example, the programmer may decide to impose
a predefined structure over these memory regions. As a second
step, pointers to relevant task links should be queried and
cached to avoid query overhead during runtime of the task
(lines 9 and 10). Next, an optional section to initialize the
task from a previously saved checkpoint can be implemented,
in case this task should be migratable without losing state
information (line 12). Once this initialization work has been
performed, the task may enter its main loop (line 16) that
contains the actual functionality of the task.

In case the task is event-triggered message reception must
be performed as first action (line 18). The timing model of



Algorithm 2 Code example of a task
1: void Task(void *voidTaskArgStruct){
2: tMsg msg;
3: // Cast argument struct
4: tArg *pArg = (tArg*)voidTaskArgStruct;

5: // Get and cache relevant pointers
6: tFlag *pSignallingFlag = pArg→pSignallingFlag;
7: tMigrationMem *pMigrationMem = pArg→pMigrationMem;
8: tGlobalMem *pGlobalMem = pArg→pGlobalMem;
9: tMsgQ *pInLink = TM GetTaskLink(1);

10: tMsgQ *pOutLInk = TM GetTaskLink(2);

11: // initialize from checkpoint
12: if pArg→checkpoint == true then
13: // initialize from pMigrationMem
14: end if

15: // start main loop
16: while (true) do
17: // Activation through message reception or timed activation
18: MW ReceiveFromTaskLink(pInLink,&msg); // activation by message
19: // TM WaitForTimedActivation(); // activation by timer

20: // Regular processing here

21: if *pSignallingFlag == true then
22: // create checkpoint in pMigrationMem
23: *pSignallingFlag = false;
24: end if
25: // Send Message to subsequent task
26: MW SendToTaskLink(pOutLink,&msg)

27: end while

the admission control scheme assumes that messages are sent
at the end of the execution. This is not mandatory – see [30]
for a thorough discussion.

In case the task supports migration and may restart from
a checkpoint, the main loop must contain logic to store a
checkpoint in the migration memory area. This code shall
be executed, as soon as the RTE triggers the signalling flag
(line 21). In order to enable efficient encoding of checkpoints,
the application designer should query the status of the flag
at convenient places in the code and - if set - construct a
checkpoint and clear the flag to complete the handshake.

F. Overhead Evaluation

As task management is only active during occasional tran-
sition phases and can be performed as a background task, its
timing is not critical for system functionality. Thus, we only
consider its overhead in means of memory consumption as
summarized in table III. Our implementation entails a total
of 7.7kB memory overhead on our 32 bit ARM evaluation
platform, most of which (4.9kB) is necessary logic. The
remaining 2.8kB distribute over necessary data structures (i.e.
task slot descriptions), the jumptable and migration specific
code for handling checkpointing and code transfer. Thus,
although providing a great amount of flexibility in the design
and evolution of mixed-criticality systems, it does not add a
large overhead in terms of memory to the overall system. Note
that adding a dynamic linker [29] would add a considerable
amount of additional overhead (6kB on a 16 bit machine as
in the implementation of [29]).

VI. FAULT CONTAINMENT FACILITES

By now, we have described our approach to reconfiguration
and dynamic management of tasks in a low-overhead environ-
ment. Together with the admission control scheme [1], such
an environment can ensure that every configuration change
is verified and properly realized. However, implementation
of software modules may be faulty and not adhere to their
description - especially for low criticality applications where
requirements on qualification may be low. Thus, running tasks
must be supervised w.r.t. their contracts and occuring faults
must be contained, such that components of higher criticality
are not affected.

In this paper we consider two fault scenarios - memory
access violations and violation of timing specifications. Both
may easily occur due to e.g. programming errors and both
are hard to detect and debug with existing design processes.
In this section we show how the presented approaches to
task management and communication can be exploited to
accomplish memory protection and containment of timing
errors in the embedded system at very low overhead. Also
these containment mechanisms are configured from contract
data to ensure consistency.

A. Memory Protection

To provide the same level of abstraction as current design
processes, memory protection shall be established on a per
task basis. We aim to provide protection between different
application tasks as well as protection of the runtime environ-
ment. As we consider fault containment (not security) only
write accesses and execution rights are critical.

Memory protection can be achieved either by hardware
through use of a memory management unit (MMU) or a
memory protection unit (MPU) or in software as presented
in e.g. [31], [32]. Most software approaches are based on
rewriting compiled binaries. Instructions that are writing to
memory are replaced by an instruction sequence that checks
access rights first. Especially for data intensive programs this
causes tremendous overhead.

In order to keep runtime overhead low, we consider memory
protection by hardware support rather than software solutions.
The approach we present in this section exploits the memory
layout of the task slots and effectively confines the effects of
programming errors to memory areas used by the erroneous
task. The memory layout was designed to take advantage of a
memory protection unit if present in the given system. We
shortly introduce the capabilites of the MMU available on
the MPC5200 evaluation board to then describe the memory
protection scheme we superimposed on the memory layout in
our implementation. To assess the effectiveness and overhead
of this solution, we discuss which kind of memory access
errors can be detected by the solution as well as the memory
and computation overhead incurred by it.

The Freescale MPC5200 microcontroller implements a
PPCe300 core which contains an MMU providing two
schemes for memory protection, namely Block Address Trans-
lation (BAT) and Page Address Translation (paging). Both



Fig. 6: Memory Alignment for Memory Protection

schemes support not only memory protection, but also address
translation, which we do not take into account in the scope of
this paper as it is an uncommon feature in e.g. automotive
systems. Both approaches enable the user to assign access
permissions (read, write, execute) to memory regions, to raise
an interrupt in case a non-configured or non-allowed access to
a memory region is performed.

The two schemes differ in the size and number of individual
memory regions, they can supervise. On the MPC5200, BAT
supervises up to eight memory regions of at least 128 kB up
to 256 MB. For paging the MMU implements a Translation
Lookaside Buffer (TLB) to store up to 64 entries covering
4 kB each. As a consequence, we use BAT to protect the large
code chunk representing the RTE and paging to configure the
individual task slots, as well as shared memory areas. For this
reason, we align the memory areas as shown in fig. 6 with
possible boundaries and sizes for BAT and paging. Task slots
are split into two memory regions, one that holds the stack
and another one that stores the actual instructions and data.
In this example, each of these regions is exactly one page in
size. Of course, they may be scaled in multiples of this size,
if larger tasks need to be supported. The figure also shows the
access rights of an application task during execution.

As can be seen from fig. 6, each task of an application only
has write-access to a limited amount of the memory. Thus,
the memory protection scheme efficiently protects correct
tasks from faulty ones, as these cannot corrupt their memory.
Allocating the stack at the beginning of a task slot has the
advantage that stack overflows, otherwise hard to find, can
be detected by the memory protection scheme. As stacks on
our platform grow downwards and adjacent task slots are not
writable by the given task, a growth of the stack over the stack
boundary immediately causes a memory access violation.

Note that the memory address 0x0 is not writable in the task
context. If memory is zeroed at startup many illegal accesses
due to uninitialized pointers can be identified.

In addition to restrictions on write accesses, execution rights
are restricted for all tasks. Only the task’s own program code
section as well as the sections containing program code of the
RTE are executable, thus providing additional protection.

All memory access rights are configured by the Task Man-
ager from data from the task slot description (table IV). As
this data is verified or generated through admission control
consistency with the verification is ensured.

The memory protection as outlined in this section causes
only low overhead on memory. In our implementation, it added
1.8 kB of program code and 0.5 kB of data to the RTE binary.
It does however also introduce computational overhead, which

Code Role # of instructions

OS context Switch 38
Invalidate TLB and BAT Registers 163
Initialize TLB and BAT for own task slot and RTE 106
Initialize TLB for access to other task slots (per slot) 97

TABLE V: Memory Protection context switch overhead

we discuss in more detail in the following. As the memory
access layout is potentially different for each task running
on the system, reconfiguration of the MMU/MPU is required
during each context switch. The additional overhead during the
context switch due to reconfiguration of the MMU is summa-
rized in table V. Without memory protection enabled, a context
switch takes 38 instructions to complete. The two necessary
steps of invalidating the old configuration and initializing
the access pattern for the task to be scheduled takes 163
and 106 instructions, respectively. In case the upcoming task
has incoming internal task links, the corresponding message
queues in the senders’ task slots must be readable. Thus, for
each internal incoming task link, an additional TLB entry must
be configured, which infers an overhead of 97 instructions. The
total context switch overhead can be bounded by bounding the
number of admissable internal incoming task links per task.

B. Timing Fault Containment

The presented framework not only allows to detect and
prevent memory access violations effectively and efficiently,
but also allows to detect and confine timing errors. In this
section we show how the timing fault containment is achieved
through configuration and monitoring based on contract data.

To ensure temporal isolation execution times and activation
patterns have to be monitored/controlled by the RTE [33]. As
described in section II-B contract information provides an ap-
propriate specification with activation periods, jitter and best-
case and worst-case execution times. If the implementation of
a software task is not consistent with this specification, e.g. it
executes longer than specified or it is activated too frequently,
this may influence the timing behavior of other software
modules in an invalid way, e.g. through longer preemption in
priority-based preemptive scheduling. This may lead to timing
behavior that was not verified through admission control and
that thus may cause illegal interference between different
software components.

The framework presented in this paper allows to easily
check or enforce adherence of software modules to their own
temporal specification. Activation of time-triggered tasks is
readily enforced through the task management component. As
shown in the code example of a task (algorithm 2) a task has to
request its next activation from the RTE. The RTE reads the
activation period from the contract information and triggers
the activation accordingly. The task has no means to circum-
vent this process and thus cannot violate its requirement on
activation period. Similarly, the transmission time on comm.
resources is directly enforced through the communication
middleware. As described in section IV task links are set
up with communication buffers according to the contract de-



scription (msgSize, msgCount). When sending data along
a task link, the middleware only transmits msgSize bytes
from these buffers. This ensures that worst-case transmission
times of inter-task communication are not exceeded. Thus,
time-triggered activations and message transmission times are
directly enforced through configuration from contract data.

Metrics that remain to be monitored are (i) execution times
of tasks, (ii) the activation period and jitter of tasks, that are ac-
tivated through some external event and (iii) period and jitter of
message transmissions. These metrics can easily be monitored
by means of watchdog timers [34], timed monitoring tasks
[35] or heartbeat monitors [33]. The required configuration
parameters can be drawn from contract data. In case the
monitoring facility detects a violation of the specification the
violating task can be stopped from executing.

VII. CONCLUSION

In this paper we have presented a methodology for contract-
based dynamic task management for mixed-criticality realtime
systems. The presented approach provides a close coupling
between an admission control scheme and task management
facilities to ensure consistency between the formally verified
model and the configuration.

We have shown how the verification model that is
used during admission control can be used for system
(re-)configuration. The employed reconfiguration mechanism
allows exchange of software binaries of single tasks and
provides means for resource-agnostic communication between
these tasks. Furthermore we have shown how the dynamic
task management approach allows containment of memory
access and timing faults also based on contract data. Thus
the presented methodology integrates the steps of verification,
configuration and fault containment by the means of contract-
ing. This allows software reconfiguration also for hard realtime
and safety critical mixed-criticality systems.

REFERENCES

[1] M. Neukirchner, S. Stein, H. Schrom, and R. Ernst, “A software Update
Service with Self-Protection Capabilities,” in Proc. of the conf. on
Design, Automation and Test in Europe (DATE), 2010.

[2] N. Tracey, U. Lefarth, H.-J. Wolff, and U. Freund, “Ecu software module
development process changes in autosar,” ETAS GmbH, Borsigstr. 14
70469 Stuttgart, Tech. Rep., 2007.

[3] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proc. -, vol. 152, pp. 148–166, 2005.

[4] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. of Int’l. Symp. on Circuits
and Systems (ISCAS), 2000.

[5] S. Stein, A. Hamann, and R. Ernst, “Real-time property verification
in organic computing systems,” in Second Int’l. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, 2006.

[6] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specification and
design,” in Formal Methods for Components and Objects. Springer,
2008, pp. 200–225.

[7] G. H. Alan Au, L4 User Manual, School of Computer Science and En-
gineering, The University of New South Wales, Sydney 2052, Australia,
March 1999.

[8] P. Levis and D. Gay, TinyOS Programming. Cambridge University
Press, 2009.

[9] J. J. Labrosse, MicroC/OS-II - The Real-Time Kernel, 2nd ed., 2002.
[10] D. C. Schmidt, “Middleware for real-time and embedded systems,”

Commun. ACM, vol. 45, no. 6, pp. 43–48, 2002.

[11] D. C. Schmidt and C. O’Ryan, “Patterns and performance of distributed
real-time and embedded publisher/subscriber architectures,” Journal of
Systems and Software, vol. 66, pp. 213 – 223, 2003.

[12] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The design and per-
formance of a real-time corba scheduling service,” Real-Time Systems,
vol. 20, pp. 117–154, 2001.

[13] P. E. Chung, Y. Huang, S. Yajnik, D. Liang, J. C. Shih, C. Wang, and
Y. Wang, “Dcom and corba side by side, step by step, and layer by
layer,” 1997.

[14] A. Wollrath, R. Riggs, and J. Waldo, “A distributed object model for the
javatm system,” in Proc. of the 2nd USENIX Conf. on Object-Oriented
Technologies (COOTS), 1996.

[15] S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta, “Reconfigurable
context-sensitive middleware for pervasive computing,” Pervasive Com-
puting, IEEE, vol. 1, pp. 33 – 40, 2002.

[16] A. Thomas, “Enterprise javabeans technology,” Sun Microsystems, Inc.,
Tech. Rep., 1998.

[17] T. Abdelzaher, S. Dawson, W.-C. Feng, F. Jahanian, S. Johnson,
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang, H. Zou, M. Bjork-
land, and P. Marron, “Armada middleware and communication services,”
Real-Time Syst., vol. 16, pp. 127–153, 1999.

[18] T. Cucinotta and L. Palopoli, “QoS Control for Pipelines of Tasks using
Multiple Resources,” IEEE Trans. on Computers, vol. 59, pp. 416–430,
2010.

[19] D. C. Schmidt, M. Deshpande, and C. O’Ryan, “Operating system
performance in support of real-time middleware,” in In Proc. of the
7th IEEE Workshop on, 2002.

[20] E. Souto, G. Guimar aes, G. Vasconcelos, M. Vieira, N. Rosa, and
C. Ferraz, “A message-oriented middleware for sensor networks,” in
MPAC ’04: Proc. of the 2nd workshop on Middleware for pervasive
and ad-hoc computing, 2004.

[21] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks,” in NSDI’04: Proc. of the 1st Symp. on Networked Systems
Design and Implementation, 2004.

[22] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: a survey,” IEEE Wireless Communications, vol. 11, pp. 6–28,
2004.

[23] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data
aggregation in wireless sensor networks,” in Distributed Computing
Systems Workshops, 2002. Proc.. 22nd Int’l. Conf. on, 2002.

[24] X. Yu, K. Niyogi, S. Mehrotra, and N. Venkatasubramanian, “Adaptive
middleware for distributed sensor environments,” IEEE Distributed
Systems Online, vol. 4, 2003.

[25] AUTOSAR - Automotive Open System Architecture,
“http://www.autosar.org/,” Internet.

[26] “Synopsys, inc., http://www.synopsys.com,” Internet.
[27] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor

networks,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 85–95, 2002.
[28] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic

operating system for sensor nodes,” in MobiSys ’05: Proc. of the 3rd
int’l. conf. on Mobile systems, applications, and services, 2005.

[29] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks,” in SenSys ’06:
Proc. of the 4th int’l. conf. on Embedded networked sensor systems,
2006.

[30] K. Richter, “Compositional scheduling analysis using standard event
models,” Ph.D. dissertation, Technical University of Braunschweig, De-
partment of Electrical Engineering and Information Technology, 2004.

[31] R. Kumar, E. Kohler, and M. Srivastava, “Harbor: Software-based
memory protection for sensor nodes,” in Information Processing in
Sensor Networks, 2007. IPSN 2007. 6th International Symposium on,
2007.

[32] L. Gu and J. A. Stankovic, “t-kernel: providing reliable os support to
wireless sensor networks,” in Proc. of the 4th int’l. conf. on Embedded
networked sensor systems, 2006.

[33] X. Chen, J. Feng, M. Hiller, and V. Lauer, “Application of software
watchdog as a dependability software service for automotive safety
relevant systems,” in Dependable Systems and Networks, 2007. DSN
’07. 37th Annual IEEE/IFIP Int’l. Conf. on, 2007.

[34] K. Tindell, H. Kopetz, F. Wolf, and R. Ernst, “Safe automotive software
development,” in Design, Automation and Test in Europe Conference
and Exhibition, 2003.

[35] S. Chodrow, F. Jahanian, and M. Donner, “Run-time monitoring of real-
time systems,” in Proc. of Real-Time Systems Symp. (RTSS), 1991.


