
1. INTRODUCTION 
 
Current automotive embedded systems are very 
complex due to large functionality which is 
distributed on many networked electronic control 
units (ECU). The ECUs are often based on 
standard HW components. Customized HW 
components, e.g. ASICs, are used only in parts. 
The development of such systems is distributed 
among several suppliers. Due to cost reasons a 
rough system design is fixed very early in the 
design process. This allows maximizing 
simultaneous activity and therefore minimizing 
the development time. This means that mapping 
of SW functionality to the different ECUs must 
be finalized early. The consequence of freezing 
the system very early in the development process 
is that the system decision requires very careful 
considerations and planning to avoid cost 
intensive redesign cycles because of system 
errors that are detected too late. 

Many functional and non functional issues 
have to be considered. One of them is the timing 
behavior of SW dominated embedded systems 
whose importance increases rapidly due to the 
rising complexity of automotive systems, as 
reflected in the AUTOSAR software standard 
(AUTOSAR home page). Classical methods 

become more and more inapplicable to predict 
the timing behavior of whole systems. Classical 
methods of the automotive domain are often 
based on tests which have to be performed with 
real HW (e.g. evaluation boards) or cycle 
accurate simulators. 

The limitation of this approach is that one 
has to cover all or at least representative system 
states to perform a useful prediction for the 
whole system. In practice this is often impossible 
or too time consuming. Other limitations are the 
preconditions due to the fact that we have to 
perform an architecture exploration very early in 
the development process. Therefore as much as 
possible timing predictions for different system 
designs have to be performed to choose the right 
processor. The necessary real HW or HW models 
are not or only in parts available. The creation of 
appropriate models is no practical solution 
because this process is very time consuming and 
can only be handled by HW experts. Furthermore 
one need for each test run all development 
environments (SDE; compiler, assembler, linker 
suite) of the chosen HW components and a 
suitable measurement environment. Purchasing 
all SDEs is cost intensive and building/running 
the measurement environment increases the costs 
additionally because of its complexity. So we 
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need a new approach which is cost effective and 
practical. 

A solution can be found in the field of 
timing analysis which can be divided into 
“system analysis” and “single process analysis”. 
System analysis is based on an abstract model of 
the system. It focuses on the timing and not on 
functional behavior. HW will not be simulated. 
Instead formal techniques are used which are 
more efficient than simulation runs to find the 
worst case execution time behavior of whole 
systems. At this abstraction level competitive 
access for the HW core, busses, memories, etc. 
can be considered. Therefore scheduling or 
concurrency effects caused by the OS or HW 
controlled operations (DMA) can be modeled. 
But it is important to note that this system 
analysis needs the single process timing of SW 
as input data. The single process analysis 
estimates the execution time of an undisturbed 
single process or SW component. Concurrency 
effects are neglected at this level. This is part of 
the system analysis (see above). 

Suitable system level analysis already exists, 
such as SymTA/S (see Henia et. al. (2005) and 
Hamann et. al. (2006)), a tool that is 
commercialized by Symtavision (see 
Symtavision home page) and e.g. used in the 
automotive industry.  So an appropriate method 
to predict the single process time in the context 
of early design phases is needed. The Wormhole 
project addresses this challenge. The approach 
combines simulation techniques and statistical 
methods and will minimize the necessary HW 
expert knowledge and the use of real HW or 
cycle accurate simulators.  

The paper is organized as follows. Related 
work is presented in Chapter 2. Details of the 
Wormhole principles are described in Chapter 3. 
After that we explain our experiments and 
discuss the results (Chapter 4). The paper ends 
with a conclusion (Chapter 5).  

 
 

2. RELATED WORK 
 
There are some approaches available which are 
targeted to prediction of SW execution time with 
the requirement to cover most of the timing 
influences.  

Currently simulation or measurement at real 
hardware is the state of the art approach. The 
simulator which is running on a standard PC 
represents the functionality and timing of the 
HW (ISA and micro architecture). So the 

executable of the whole SW, e.g., different SW 
components and a real time operating system 
(RTOS) run on the virtual HW. The accuracy of 
the timing depends on the HW details which are 
modeled. The timing accuracy of the HW models 
ranges from counting instructions up to cycle 
accurate. Cycle accurate means that the states of 
the HW model and of the real HW are identical 
on clock boundaries. For more information on 
terms of temporal resolution see (Bailey et. al., 
2005). Commercial simulators using cycle 
accurate models and featuring high simulation 
speed are currently available, e.g., Virtual 
Platform Designer (see CoWare home page), 
RealView Maxsim (see ARM home page) or 
METeor (see Vastsystems home page). The 
limitation of this approach is that only a subset of 
available real HW components is available as 
cycle accurate models especially in the 
automotive sector. Due to volume, architecture 
complexity, and number of applications, the 
focus is on models for the consumer and mobile 
communication industries. Although the model 
creation is assisted by model generation features 
of the tool sets mentioned above this step is still 
very time consuming and requires excellent HW 
knowledge. 

Another technique is based on a pseudo 
machine with a virtual instruction set which is 
annotated with timing information. Detailed 
information can be found in Lazarescu et. al. 
(2000), Giusto et. al. (2001) and Bammi et. al. 
(2000).  

SW (C code) is transformed in two ways. In 
the first case the target SW (C code) is compiled 
with the target compiler. The resulting object 
code is transformed to C code using functions 
that represent assembly code of a virtual machine 
with a small virtual instruction set. Each virtual 
instruction is annotated with fix timing 
information (delay). The virtual assembly code 
in C is compiled and linked to derive a simulator 
which runs on a PC. The timing is calculated by 
counting the delays of the executed virtual 
instructions as they are executed. In the second 
case the SW is compiled with a source annotator 
or “virtual compiler” which replaces the target 
compiler. The result and the further procedure is 
the same as in the first case.  

The relation between annotated timing of the 
virtual processor HW and the real processor HW 
to be modeled is approximated by a regression 
analysis. A set of benchmarks runs on the virtual 
HW (compiled with the virtual compiler) and on 
the real HW (transformed by the target SDE). 



 

The execution time on the real HW is measured 
and the executed virtual instructions are counted. 
The measured time and the number of virtual 
instructions of each benchmark are correlated in 
a linear regression analysis. Based on the least 
square metrics, the execution time of the 
different virtual instructions is computed. 

The benefit of that approach is that the 
construction of the performance model requires 
only little HW knowledge (first case). The 
limitation of this approach is that the abstract 
model of the real HW is very simple. So the 
inaccuracy will be high in case of a HW with a 
complex ISA, micro architecture and memory 
model (for more details regarding HW principles 
see Hennessy & Patterson (2006)). Additionally 
the second case cannot consider adequately 
target compiler effects or rather its optimizations 
(for more details regarding compiler techniques 
see Aho et. al. (2006)).  

A comprehensive methodology for SW 
performance estimation can be found in 
Bontempi & Kruijtzer (2004). All necessary 
steps are described in an abstract form. The 
principle of performance modelling is based on 
identifying a suitable set of parameters 
(signature) which have an impact on the timing 
and on finding a relation between signature and 
performance (performance model). Additionally 
a special non-linear performance model 
estimation technique is introduced - lazy 
learning. The principle works as follows. In the 
training phase the signature is collected and 
stored with the corresponding execution time in a 
database. During the estimation phase the 
signature values of the application SW are 
generated. Then a set of neighbours is calculated 
based on the database of benchmarks. This 
means that training cases with similar signature 
values are selected. Their relevance is weighted 
regarding some suitable criterion. After that a 
regression function has to be chosen for this local 
subset (here: linear regression based on least 
square error) and the regression values are 
computed. Finally the calculated weights are 
combined linearly with the application SW 
signature. 

The limitation of this approach is the need 
for suitable signatures. They must be able to 
characterize the timing influences of HW and 
SW precisely. There are no known systematic 
solutions for this problem. Another difficulty is 
the necessary amount of stored data.  The 
signatures and execution times of each 
benchmark must be stored. This local approach 

consumes much more storage space than global 
ones which need only one performance model. 
 
 

3. WORMHOLE 
 
The objective of Wormhole is to assist the 
developer with predicting the performance of 
SW with an acceptable accuracy. It extends over 
previous work, in particular the approach of 
identifying suitable parameters (“signature”) 
reflecting the main timing influences and finding 
a relation between the execution time and the 
signature (performance model). Although the 
significance of the signature is noted no 
systematic procedure or framework is available 
so far which is a major obstacle to its practical 
application. This is the point where Wormhole 
begins. Especially the customization effort which 
is necessary to adapt the framework to different 
processors is minimized. 

Wormhole puts simulation and statistical 
analysis together. It uses traces of executed 
instructions which are created by fast instruction 
set simulators (ISS). This kind of simulator is 
chosen because it is easily available for most 
embedded architectures. ISSs are typically 
included in the software development 
environment (SDE) of the SW engineer to verify 
the functional correctness of the SW. A further 
benefit is that all timing influences of the 
compiler optimization are visible at this level. 
Micro architectural features are missing and, 
therefore, the timing has to be modeled 
separately. The model is based on a signature 
which consists of a HW dependent and a generic 
part. The generic part is constructed by a generic 
simulation model which represents classical 
timing influences like data or control hazards. 
Due to this abstraction one can implement HW 
features independently of the concrete HW that 
is used. So the implementation can be reused for 
other processors without any adjustments. 
During training runs the signature is related to 
execution time and a performance model is 
created. More details are presented in the 
following. 

 
 

3.1 Training phase 
 
Figure 1 shows the principle of the training 
phase. The executables of different benchmarks 
run on an ISS which is part of a standard SDE. 
Much information of the instruction trace is 
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Fig. 1.  Training phase 

If a priori knowledge about the timing is 
available it is recommended to use it here (but it 
is not mandatory). The reason is that the number 
of parameters can increase extensively and 
boosting the required number of test cases or 
benchmark runs. More details are introduced 
later.  

This generated object stream is forwarded to 
a generic simulator. Based on information of the 
intermediate format different kinds of micro 
architectural effects which have an impact on the 
timing can be detected, e.g. control and data 
hazards. The results are added to the affected 
instruction object and the unnecessary 
information is deleted (read/write register name 
and instruction/data address). The new object 
that encodes to an instruction and its effects is 
defined as instruction level quantum (ILQ). To 
capture the timing behavior of complex HW 
(e.g., pipelined processors with variable stage 
timing) it is often necessary to consider the 
history of instructions. Therefore the framework 
can capture the history of instruction objects. To 
simplify matters this kind of extension is out of 
scope in this paper. The ILQs are the basis for 
the performance model creation and are 
represented by Formula 1. 

(1) 
 
 

 

In addition, the SW runs on real hardware or 
on a cycle accurate simulator where its execution 
time is measured. This step has to be performed 
only once per benchmark. The relation between 
the ILQs and the execution time is calculated by 
a regression analysis. Linear and non-linear 
models are available. Linear models are more 
concrete than non-linear models. Their results 
can be better interpreted referring to the real HW 
functionality. Then the relation between the 
measured time and the ILQs can be formulated 
as shown in Formula 2. It is called performance 
model. 

(2) 
 

 
 

 
 

The weights of the ILQs have to be 
calculated. For this purpose a set of m 
benchmarks is used to create pairs which consist 
of a signature vector and the corresponding 
execution time. These m pairs and the unknown 
weights span a system of equations (see Formula 
3). 

(3) 
 
 

 
 
 

 
 

 
 

 

The unknown α
r  is calculated by minimizing the 

sum of the squared tolerances (see Formula 4).  

(4) 
 

 

More details regarding linear regression 
analysis can be found in Fox (1997). 

It is important to mention that the time and 
the values of the ILQs should be normalized with 
the sum of all occurred ILQs in the SW or 
benchmark. This process ensures a balanced 
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influence of low and high values of ILQs. If no 
relative values are used for t

r
 and S  

benchmarks with great values will dominate the 
regression analysis (see Formula 4). So it seems 
more appropriate to replace the 

kt  of t
r

 and 
kix  

of S  with normalized values (see Formula 5). 

(5) 
 
 

 

One important requirement for solving such 
systems of equations is that nm ≥  is fulfilled. 
This means that at least one test case for each 
ILQ weight is needed. Because current ISAs are 
quite complex the number of different instruction 
types can be very high. This number has to be 
multiplied by the annotated parameters of the 
generic simulator to obtain the number of ILQ 
types. As a consequence the ILQ space increases 
to an impractical level. In practice the limiting 
factor is the number of available test cases or 
benchmark runs. For this reason the ILQs can be 
collected in groups. This grouping is optional 
and improves accuracy, but requires a qualified 
person to decide which instructions have the 
same timing behavior (e.g., instructions which 
follow the same path through the pipeline with 
the same timing per pipeline unit). Common 
information sources are technical datasheets.  

Knowledge of the exact ILQ timing reduces 
the number of required test cases, too. This 
works as follows. The known portion of time is 
subtracted from the measured execution time of 
the benchmarks. See Formula 6. 

(6) 
 
 
 

 

After that the known weight element zα  of 
the weight vector α

r
 and the corresponding 

column of matrix S  can be eliminated. The 

column rank and therefore the number of 
necessary test cases are reduced. 

Furthermore the knowledge of experts can 
help to decide which annotations have to be used 
at the beginning of the training. So the 
complexity can be reduced again. All this is 
optional. 

In this context it is important to mention that 
the benchmarks have to stress all of theses 
parameters intensively (benchmark set quality). 
This means that the benchmarks take care that 
each parameter of S  should occur multiple times 

with significant values.  
After the training phase all information 

which is necessary to predict the execution time 
of new SW without using real HW for the chosen 
HW/compiler combination is stored. This data 
includes the instruction transformation module, 
the configuration of the grouping module, the 
configuration of the generic simulator and the 
weight vector with the corresponding signature.  
 
 
3.2 Prediction phase 
 
Figure 2 shows the estimation process for new 
SW. First the developer prepares the framework 
with the same configuration as during the 
training phase. So the instructions will be 
processed in the exact same manner. For this 
purpose she uses the data which is stored during 
the training phase for the desired HW/compiler 
combination.  
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Fig. 2.  Time estimation - Wormhole 

If the ISS differs from the ISS used in the 
training phase, the instruction transformation 
module has to be adapted to the different output 
format. 

Then the SW executable is executed on the 
ISS. The generated objects are grouped and 
annotated according to the results of the generic 
micro architecture simulator. The resulting ILQs 
are counted and combined with the stored 
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weights (see Formula 2). As a result one gets the 
estimated execution time of the SW. 

 
 

4. EXPERIMENTS 
 
To investigate and test the methodology it is 
evaluated in cooperation with the Ford Research 
Centre Aachen. We start with experiments which 
are performed on a Freescale HCS12 evaluation 
board from ELMICRO (ELMICRO, 2005).  The 
DSE (compiler, linker, assembler) inclusively the 
ISS (“MIKSIM”) comes from Cosmic Software 
(see Cosmic home page). The SW which we 
want to estimate is an automotive application. It 
is input data dependent. For each input data set 
an execution time prediction is performed. 

 
 

4.2 Training phase  
 
The procedure is based on the explanations in 
Chapter 3. For the training we chose a collection 
of benchmarks which are based mainly on C-
LAB (see C-LAB home page) and EEMBC (see 
EEMBC home page) benchmarks (39 
altogether). 

We start with some adaptations of the 
Wormhole framework and the training phase. 
A new transformation module is created to 
handle the new ISA (especially multiword 
instructions) and HW status flags which are 
necessary to separate the different kind of 
instructions. The benchmarks are compiled and 
simulated on the board. So we obtain the 
measured real timing. Additionally the binary 
runs on the ISS. The generated trace is 
transformed to the intermediate format and 
forwarded to the grouping module. The grouping 
of the instruction objects and the configuration of 
the micro architectural simulator is based on the 
information of the data sheet Freescale (2003). 

Due to the simple architecture of the HCS12 
only the control hazard detection mechanism of 
the generic simulator is activated. Although the 
processor uses no pipeline its instruction queue 
has to be refilled in the case of wrong instruction 
fetches. This will happen if a branch is “taken” 
and changes the sequential execution flow. 
Furthermore data hazards cannot occur because 
of the missing pipeline. Therefore a signature 
consisting of eight different ILQs is sufficient. 

Before we start calculating the performance 
model we check the quality of the benchmarks 
(see Chapter 3.1). This means that we look at the 

distribution of the normalized ILQ values for 
each ILQ over all benchmarks. This can be done 
easily with a scatter plot (see Figure 3). 
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Fig. 3.  Scatter plot 

Each red circle represents a normalized 
value of a specific ILQ and benchmark. A plot 
(or benchmark set quality) is optimal if a lot of 
high values for each ILQ are available. This is 
necessary to give the regression algorithm a 
chance to calculate accurate weights (see 
Formula 4). As one can see, the distribution is 
not optimal. But, the benchmarks set should be 
sufficient (except for ILQ G) because we use 
normalized values. The normalization allows 
ILQs with small number of occurrences to be 
properly represented (see Formula 4). But that is 
not sufficient as can be seen. The ILQ G occurs 
seldom and the values are all nearly 0! So some 
inaccuracy is expected. 

We start the estimation of the weights. The 
counted and normalized ILQs and the real timing 
are put in a regression analysis with the least 
square metrics (see Chapter 3.1) and the 
performance model or weights of the ILQs are 
calculated. We use the tool SPSS which features 
comprehensive statistical analysis techniques 
(see SPSS home page). 

 
 

4.3 Results  
 
The ILQ weights and the corresponding 
estimation errors of the predicted weights are 
presented in Figure 4. As one can see all ILQ 
weight predictions with the exception of G are 
very precise. The absolute estimation errors of 
the ILQ weights are less 0.6% except for the 



 

seldom ILQ G which is predicted with an error 
of over 225%! 
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Fig. 4.  Estimation error of ILQ weights 

 But, the absolute estimation errors of the 
application SW execution times (different input 
data sets) are less 0.4% (see Figure 5). By the 
way, the errors are exclusively negative because 
of measurement errors that occurred while the 
real execution times of the SW runs are captured. 
Due to the setup the measured execution times 
are slightly greater than the actual execution 
times. 
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Fig. 5.  Estimation error of the SW runs 
The reason for the high accuracy in spite of 

the ILQ G problem is that the ILQ G does not 
occur in the application SW runs. Therefore no 
negative influence can occur. But, if other SW is 
estimated it will be important that the proportion 
of ILQ G will be checked. A high estimation 
accuracy can only be achieved if the proportion 
of ILQ G is negligible. 

It is important to note that the estimation 
errors of the ILQ weights can only be calculated 
in an experimental setup where the reference 
timing is known a priori (clarifying the 
methodology). In practice these weights are 
unknown and shall be estimated. So the 
performance model has to be verified by 
calculating the execution time estimation errors 

of benchmarks during the training phase, e.g., 
using the “leave one out” technique. 

The evaluation has shown that the approach 
works fine for simple processors. Wormhole is 
flexible and can be adapted easily to other 
architectures. At the moment we are 
investigating an ARM9 core (no thumb, no 
floating point, simple memory model) which is 
more complex than the HCS12. Pipeline 
interlocks due to data and control hazards has to 
be considered. The first results are promising. 
The SW execution time estimation error is less 
than 5%. 

But, very complex architectures can only be 
considered with limited accuracy. Long histories 
or many necessary architectural annotations, e.g., 
caused by caches, complex branch strategies, 
massive superscalar behavior, etc. lead to a 
parameter space explosion. This amount of 
parameters is necessary to form a suitable 
analysis input model and finally a performance 
model. Therefore these effects can be recognized 
in practice only in parts or rather for HW with 
short instruction history dependencies. However, 
most processors used in, e.g., automotive 
applications do not expose such complex 
behavior. 
 
 

5. CONCLUSION 
 
The Wormhole project goal was estimation 
support for early design space exploration, both 
for automotive network planning and ECU 
design. With an increasing industrial acceptance 
of formal methods in automotive system 
performance verification, formal techniques 
become also available for earlier design phases. 
Other than in performance verification, the 
architecture is not yet fully defined leaving 
processor architecture alternatives. As a 
consequence, design space exploration typically 
requires intensive experiments with different 
architectures or estimations. This is a costly and 
time consuming step.  

At the very beginning of the design process, 
the software is at best incompletely available 
such that estimations in the form of educated 
guesses and abstract load level models are all 
that is available as input data. Deriving such data 
is a research topic in its own right that is not 
addressed here. This project assumes that 
software in the form of C code and test patterns 
are available, from the increasing body of reused 
software, from third party providers or from 



 

early design of performance critical software 
parts. For these SW components, performance 
estimations shall be derived with high accuracy 
without the need to run through a prototyping or 
simulation task. Instead, a qualification process 
is assumed that is executed once per processor or 
once per processor and load characteristic. That 
qualification process is expected to be 
outsourced to a service provider.  

Results for simpler architectures and partly 
available SDE show high estimation accuracy in 
the order of 1% estimation error. Due to 
parameter space and benchmark count 
limitations, complex architectures can usually 
not be covered. However, in many practical 
systems, such as in most automotive 
applications, high-performance processor 
architectures are avoided to obtain predictability 
and reduce cost such that the presented approach 
can be applied. 
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