
1. INTRODUCTION

Current automotive embedded systems are very
complex due to large functionality which is
distributed on many networked electronic control
units (ECU). The ECUs are often based on
standard HW components. Customized HW
components, e.g. ASICs, are used only in parts.
The development of such systems is distributed
among several suppliers. Due to cost reasons a
rough system design is fixed very early in the
design process. This allows maximizing
simultaneous activity and therefore minimizing
the development time. This means that mapping
of SW functionality to the different ECUs must
be finalized early. The consequence of freezing
the system very early in the development process
is that the system decision requires very careful
considerations and planning to avoid cost
intensive redesign cycles because of system
errors that are detected too late.

Many functional and non functional issues
have to be considered. One of them is the timing
behavior of SW dominated embedded systems
whose importance increases rapidly due to the
rising complexity of automotive systems, as
reflected in the AUTOSAR software standard
(AUTOSAR home page). Classical methods

become more and more inapplicable to predict
the timing behavior of whole systems. Classical
methods of the automotive domain are often
based on tests which have to be performed with
real HW (e.g. evaluation boards) or cycle
accurate simulators.

The limitation of this approach is that one
has to cover all or at least representative system
states to perform a useful prediction for the
whole system. In practice this is often impossible
or too time consuming. Other limitations are the
preconditions due to the fact that we have to
perform an architecture exploration very early in
the development process. Therefore as much as
possible timing predictions for different system
designs have to be performed to choose the right
processor. The necessary real HW or HW models
are not or only in parts available. The creation of
appropriate models is no practical solution
because this process is very time consuming and
can only be handled by HW experts. Furthermore
one need for each test run all development
environments (SDE; compiler, assembler, linker
suite) of the chosen HW components and a
suitable measurement environment. Purchasing
all SDEs is cost intensive and building/running
the measurement environment increases the costs
additionally because of its complexity. So we

SINGLE PROCESS EXECUTION TIME ESTIMATION IN EARLY
DESIGN PHASES FOR SW DOMINATED EMBEDDED SYSTEMS

Joern Christian Braam1, Rolf Ernst1
1 Technical University of Braunschweig, Institute of Computer and Communication Network Engineering (IDA)
Hans-Sommer-Str. 66, D-38106 Brunswick
Phone: (+49) 531 391 – 3734, Fax: (+49) 531 391 – 3750, Email: {braam | ernst}@ida.ing.tu-bs.de

Abstract: An important challenge in automotive system design is to estimate the execution time of SW
for different HW architectures in early phases (architecture exploration). We present a methodology
which enables single process execution time estimation in early design phases. System analysis tools
can use the estimated time to calculate the system timing behavior. The methodology minimizes the
usage of real HW or simulators and emphasizes portability to different processor types. The approach is
based on instruction traces, annotations by a generic simulator and regression analysis techniques.
Therefore instruction set architecture, micro architecture and compiler effects (code optimization) are
considered. We show some successful experimental results and discuss limitations of the approach.
Keywords: estimation, prediction, execution time, embedded system, software, hardware.

need a new approach which is cost effective and
practical.

A solution can be found in the field of
timing analysis which can be divided into
“system analysis” and “single process analysis”.
System analysis is based on an abstract model of
the system. It focuses on the timing and not on
functional behavior. HW will not be simulated.
Instead formal techniques are used which are
more efficient than simulation runs to find the
worst case execution time behavior of whole
systems. At this abstraction level competitive
access for the HW core, busses, memories, etc.
can be considered. Therefore scheduling or
concurrency effects caused by the OS or HW
controlled operations (DMA) can be modeled.
But it is important to note that this system
analysis needs the single process timing of SW
as input data. The single process analysis
estimates the execution time of an undisturbed
single process or SW component. Concurrency
effects are neglected at this level. This is part of
the system analysis (see above).

Suitable system level analysis already exists,
such as SymTA/S (see Henia et. al. (2005) and
Hamann et. al. (2006)), a tool that is
commercialized by Symtavision (see
Symtavision home page) and e.g. used in the
automotive industry. So an appropriate method
to predict the single process time in the context
of early design phases is needed. The Wormhole
project addresses this challenge. The approach
combines simulation techniques and statistical
methods and will minimize the necessary HW
expert knowledge and the use of real HW or
cycle accurate simulators.

The paper is organized as follows. Related
work is presented in Chapter 2. Details of the
Wormhole principles are described in Chapter 3.
After that we explain our experiments and
discuss the results (Chapter 4). The paper ends
with a conclusion (Chapter 5).

2. RELATED WORK

There are some approaches available which are
targeted to prediction of SW execution time with
the requirement to cover most of the timing
influences.

Currently simulation or measurement at real
hardware is the state of the art approach. The
simulator which is running on a standard PC
represents the functionality and timing of the
HW (ISA and micro architecture). So the

executable of the whole SW, e.g., different SW
components and a real time operating system
(RTOS) run on the virtual HW. The accuracy of
the timing depends on the HW details which are
modeled. The timing accuracy of the HW models
ranges from counting instructions up to cycle
accurate. Cycle accurate means that the states of
the HW model and of the real HW are identical
on clock boundaries. For more information on
terms of temporal resolution see (Bailey et. al.,
2005). Commercial simulators using cycle
accurate models and featuring high simulation
speed are currently available, e.g., Virtual
Platform Designer (see CoWare home page),
RealView Maxsim (see ARM home page) or
METeor (see Vastsystems home page). The
limitation of this approach is that only a subset of
available real HW components is available as
cycle accurate models especially in the
automotive sector. Due to volume, architecture
complexity, and number of applications, the
focus is on models for the consumer and mobile
communication industries. Although the model
creation is assisted by model generation features
of the tool sets mentioned above this step is still
very time consuming and requires excellent HW
knowledge.

Another technique is based on a pseudo
machine with a virtual instruction set which is
annotated with timing information. Detailed
information can be found in Lazarescu et. al.
(2000), Giusto et. al. (2001) and Bammi et. al.
(2000).

SW (C code) is transformed in two ways. In
the first case the target SW (C code) is compiled
with the target compiler. The resulting object
code is transformed to C code using functions
that represent assembly code of a virtual machine
with a small virtual instruction set. Each virtual
instruction is annotated with fix timing
information (delay). The virtual assembly code
in C is compiled and linked to derive a simulator
which runs on a PC. The timing is calculated by
counting the delays of the executed virtual
instructions as they are executed. In the second
case the SW is compiled with a source annotator
or “virtual compiler” which replaces the target
compiler. The result and the further procedure is
the same as in the first case.

The relation between annotated timing of the
virtual processor HW and the real processor HW
to be modeled is approximated by a regression
analysis. A set of benchmarks runs on the virtual
HW (compiled with the virtual compiler) and on
the real HW (transformed by the target SDE).

The execution time on the real HW is measured
and the executed virtual instructions are counted.
The measured time and the number of virtual
instructions of each benchmark are correlated in
a linear regression analysis. Based on the least
square metrics, the execution time of the
different virtual instructions is computed.

The benefit of that approach is that the
construction of the performance model requires
only little HW knowledge (first case). The
limitation of this approach is that the abstract
model of the real HW is very simple. So the
inaccuracy will be high in case of a HW with a
complex ISA, micro architecture and memory
model (for more details regarding HW principles
see Hennessy & Patterson (2006)). Additionally
the second case cannot consider adequately
target compiler effects or rather its optimizations
(for more details regarding compiler techniques
see Aho et. al. (2006)).

A comprehensive methodology for SW
performance estimation can be found in
Bontempi & Kruijtzer (2004). All necessary
steps are described in an abstract form. The
principle of performance modelling is based on
identifying a suitable set of parameters
(signature) which have an impact on the timing
and on finding a relation between signature and
performance (performance model). Additionally
a special non-linear performance model
estimation technique is introduced - lazy
learning. The principle works as follows. In the
training phase the signature is collected and
stored with the corresponding execution time in a
database. During the estimation phase the
signature values of the application SW are
generated. Then a set of neighbours is calculated
based on the database of benchmarks. This
means that training cases with similar signature
values are selected. Their relevance is weighted
regarding some suitable criterion. After that a
regression function has to be chosen for this local
subset (here: linear regression based on least
square error) and the regression values are
computed. Finally the calculated weights are
combined linearly with the application SW
signature.

The limitation of this approach is the need
for suitable signatures. They must be able to
characterize the timing influences of HW and
SW precisely. There are no known systematic
solutions for this problem. Another difficulty is
the necessary amount of stored data. The
signatures and execution times of each
benchmark must be stored. This local approach

consumes much more storage space than global
ones which need only one performance model.

3. WORMHOLE

The objective of Wormhole is to assist the
developer with predicting the performance of
SW with an acceptable accuracy. It extends over
previous work, in particular the approach of
identifying suitable parameters (“signature”)
reflecting the main timing influences and finding
a relation between the execution time and the
signature (performance model). Although the
significance of the signature is noted no
systematic procedure or framework is available
so far which is a major obstacle to its practical
application. This is the point where Wormhole
begins. Especially the customization effort which
is necessary to adapt the framework to different
processors is minimized.

Wormhole puts simulation and statistical
analysis together. It uses traces of executed
instructions which are created by fast instruction
set simulators (ISS). This kind of simulator is
chosen because it is easily available for most
embedded architectures. ISSs are typically
included in the software development
environment (SDE) of the SW engineer to verify
the functional correctness of the SW. A further
benefit is that all timing influences of the
compiler optimization are visible at this level.
Micro architectural features are missing and,
therefore, the timing has to be modeled
separately. The model is based on a signature
which consists of a HW dependent and a generic
part. The generic part is constructed by a generic
simulation model which represents classical
timing influences like data or control hazards.
Due to this abstraction one can implement HW
features independently of the concrete HW that
is used. So the implementation can be reused for
other processors without any adjustments.
During training runs the signature is related to
execution time and a performance model is
created. More details are presented in the
following.

3.1 Training phase

Figure 1 shows the principle of the training
phase. The executables of different benchmarks
run on an ISS which is part of a standard SDE.
Much information of the instruction trace is

 ILQs of typesdifferent ofnumber ˆn
 ILQ occured of sumˆ

;),...,,(

i

21

=
=
=

i

T
n

x
xxxxrextracted and translated to an intermediate

format (instruction transformation). This
intermediate format is the foundation for
modeling common timing influences
independently of the used processor. At the
moment the intermediate format consists of the
instruction type, read registers (numbers not
contents), written registers (numbers not
contents), instruction address and data address (if
applicable).

benchmark executable

execution time

instruction set
simulator

instruction objects

HWHW

performance modelregression analysis

annotation of
timing effects

generic μarch
simulator

ILQ framework
configuration

+

token
grouping

instruction
transformation

intermediate format

Fig. 1. Training phase

If a priori knowledge about the timing is
available it is recommended to use it here (but it
is not mandatory). The reason is that the number
of parameters can increase extensively and
boosting the required number of test cases or
benchmark runs. More details are introduced
later.

This generated object stream is forwarded to
a generic simulator. Based on information of the
intermediate format different kinds of micro
architectural effects which have an impact on the
timing can be detected, e.g. control and data
hazards. The results are added to the affected
instruction object and the unnecessary
information is deleted (read/write register name
and instruction/data address). The new object
that encodes to an instruction and its effects is
defined as instruction level quantum (ILQ). To
capture the timing behavior of complex HW
(e.g., pipelined processors with variable stage
timing) it is often necessary to consider the
history of instructions. Therefore the framework
can capture the history of instruction objects. To
simplify matters this kind of extension is out of
scope in this paper. The ILQs are the basis for
the performance model creation and are
represented by Formula 1.

(1)

In addition, the SW runs on real hardware or
on a cycle accurate simulator where its execution
time is measured. This step has to be performed
only once per benchmark. The relation between
the ILQs and the execution time is calculated by
a regression analysis. Linear and non-linear
models are available. Linear models are more
concrete than non-linear models. Their results
can be better interpreted referring to the real HW
functionality. Then the relation between the
measured time and the ILQs can be formulated
as shown in Formula 2. It is called performance
model.

(2)

The weights of the ILQs have to be
calculated. For this purpose a set of m
benchmarks is used to create pairs which consist
of a signature vector and the corresponding
execution time. These m pairs and the unknown
weights span a system of equations (see Formula
3).

(3)

The unknown α
r is calculated by minimizing the

sum of the squared tolerances (see Formula 4).

(4)

More details regarding linear regression
analysis can be found in Fox (1997).

It is important to mention that the time and
the values of the ILQs should be normalized with
the sum of all occurred ILQs in the SW or
benchmark. This process ensures a balanced

ii

1

ILQ ofweight ˆα
ILQs ofnumber ˆn

SW of timeexecution estimatedˆ

=
=
=

⋅=⋅= ∑
=

SW

n

i
i i

T
SW

t

αxxt α
rr

ILQs ofnumber ˆ
benchmarks ofnumber ˆ

ibenchmark of timeexecution ˆ

),,,();,,,(

1

111

2121

=
=
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

==

⋅=

n
m
t

xx

xx
S

tttt

St

i

mnm

n

nm

L

MOM

L

L
r

L
r

rr

αααα

α

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⋅−∑ ∑

= =

m

k

n

i
kii xt

k
1

2

1
min α

influence of low and high values of ILQs. If no
relative values are used for t

r
 and S

benchmarks with great values will dominate the
regression analysis (see Formula 4). So it seems
more appropriate to replace the

kt of t
r

 and
kix

of S with normalized values (see Formula 5).

(5)

One important requirement for solving such
systems of equations is that nm ≥ is fulfilled.
This means that at least one test case for each
ILQ weight is needed. Because current ISAs are
quite complex the number of different instruction
types can be very high. This number has to be
multiplied by the annotated parameters of the
generic simulator to obtain the number of ILQ
types. As a consequence the ILQ space increases
to an impractical level. In practice the limiting
factor is the number of available test cases or
benchmark runs. For this reason the ILQs can be
collected in groups. This grouping is optional
and improves accuracy, but requires a qualified
person to decide which instructions have the
same timing behavior (e.g., instructions which
follow the same path through the pipeline with
the same timing per pipeline unit). Common
information sources are technical datasheets.

Knowledge of the exact ILQ timing reduces
the number of required test cases, too. This
works as follows. The known portion of time is
subtracted from the measured execution time of
the benchmarks. See Formula 6.

(6)

After that the known weight element zα of
the weight vector α

r
 and the corresponding

column of matrix S can be eliminated. The

column rank and therefore the number of
necessary test cases are reduced.

Furthermore the knowledge of experts can
help to decide which annotations have to be used
at the beginning of the training. So the
complexity can be reduced again. All this is
optional.

In this context it is important to mention that
the benchmarks have to stress all of theses
parameters intensively (benchmark set quality).
This means that the benchmarks take care that
each parameter of S should occur multiple times

with significant values.
After the training phase all information

which is necessary to predict the execution time
of new SW without using real HW for the chosen
HW/compiler combination is stored. This data
includes the instruction transformation module,
the configuration of the grouping module, the
configuration of the generic simulator and the
weight vector with the corresponding signature.

3.2 Prediction phase

Figure 2 shows the estimation process for new
SW. First the developer prepares the framework
with the same configuration as during the
training phase. So the instructions will be
processed in the exact same manner. For this
purpose she uses the data which is stored during
the training phase for the desired HW/compiler
combination.

SW executable

instruction set
simulator

performance modelcost calculation

annotation of
timing effects

generic μarch
simulator

ILQ
framework

configuration

+

token
grouping

instruction
transformation

intermediate format

estimated
execution time

instruction objects

Fig. 2. Time estimation - Wormhole

If the ISS differs from the ISS used in the
training phase, the instruction transformation
module has to be adapted to the different output
format.

Then the SW executable is executed on the
ISS. The generated objects are grouped and
annotated according to the results of the generic
micro architecture simulator. The resulting ILQs
are counted and combined with the stored

∑∑
==

== n

i
 ki

ki
kin

i
 ki

k
k

x

xx
x

tt

11

´;´

zz

z

1

ILQ ofht known weigˆα
ILQ of influence timing

thout vector wi timingnewˆ´
)(´

=

=

⋅−=

z

z
T

mzz

t
xxtt

r
L

rr
α

weights (see Formula 2). As a result one gets the
estimated execution time of the SW.

4. EXPERIMENTS

To investigate and test the methodology it is
evaluated in cooperation with the Ford Research
Centre Aachen. We start with experiments which
are performed on a Freescale HCS12 evaluation
board from ELMICRO (ELMICRO, 2005). The
DSE (compiler, linker, assembler) inclusively the
ISS (“MIKSIM”) comes from Cosmic Software
(see Cosmic home page). The SW which we
want to estimate is an automotive application. It
is input data dependent. For each input data set
an execution time prediction is performed.

4.2 Training phase

The procedure is based on the explanations in
Chapter 3. For the training we chose a collection
of benchmarks which are based mainly on C-
LAB (see C-LAB home page) and EEMBC (see
EEMBC home page) benchmarks (39
altogether).

We start with some adaptations of the
Wormhole framework and the training phase.
A new transformation module is created to
handle the new ISA (especially multiword
instructions) and HW status flags which are
necessary to separate the different kind of
instructions. The benchmarks are compiled and
simulated on the board. So we obtain the
measured real timing. Additionally the binary
runs on the ISS. The generated trace is
transformed to the intermediate format and
forwarded to the grouping module. The grouping
of the instruction objects and the configuration of
the micro architectural simulator is based on the
information of the data sheet Freescale (2003).

Due to the simple architecture of the HCS12
only the control hazard detection mechanism of
the generic simulator is activated. Although the
processor uses no pipeline its instruction queue
has to be refilled in the case of wrong instruction
fetches. This will happen if a branch is “taken”
and changes the sequential execution flow.
Furthermore data hazards cannot occur because
of the missing pipeline. Therefore a signature
consisting of eight different ILQs is sufficient.

Before we start calculating the performance
model we check the quality of the benchmarks
(see Chapter 3.1). This means that we look at the

distribution of the normalized ILQ values for
each ILQ over all benchmarks. This can be done
easily with a scatter plot (see Figure 3).

A B C D E F G H

ILQs

0,00

0,20

0,40

0,60

N
O

R
M

A
LI

ZE
D

 IL
Q

 V
A

LU
ES

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

AAA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

AA

A

A
A

A

A

A

A
A
A

A

A

A

A

AA

A

A

A
A
AA

A

A

A

A

A

A

A

A

A

A

AA

A
A

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

A

A

AAAA

A

AAAAAAAAAAAAAAAA

A

AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAA

A

A

AAAA

A

AAAAAA

A

A
AAAAAAAAAAAAAA

A

A

Fig. 3. Scatter plot

Each red circle represents a normalized
value of a specific ILQ and benchmark. A plot
(or benchmark set quality) is optimal if a lot of
high values for each ILQ are available. This is
necessary to give the regression algorithm a
chance to calculate accurate weights (see
Formula 4). As one can see, the distribution is
not optimal. But, the benchmarks set should be
sufficient (except for ILQ G) because we use
normalized values. The normalization allows
ILQs with small number of occurrences to be
properly represented (see Formula 4). But that is
not sufficient as can be seen. The ILQ G occurs
seldom and the values are all nearly 0! So some
inaccuracy is expected.

We start the estimation of the weights. The
counted and normalized ILQs and the real timing
are put in a regression analysis with the least
square metrics (see Chapter 3.1) and the
performance model or weights of the ILQs are
calculated. We use the tool SPSS which features
comprehensive statistical analysis techniques
(see SPSS home page).

4.3 Results

The ILQ weights and the corresponding
estimation errors of the predicted weights are
presented in Figure 4. As one can see all ILQ
weight predictions with the exception of G are
very precise. The absolute estimation errors of
the ILQ weights are less 0.6% except for the

seldom ILQ G which is predicted with an error
of over 225%!

lim
ite

d
ch

ar
t:

er
ro

r >
 2

25
%

-0,600

-0,400

-0,200

0,000

0,200

0,400

0,600

0,800

A B C D E F G H

ILQ WEIGHTS

R
EL

A
TI

VE
 E

ST
IM

A
TI

O
N

 E
R

R
O

R
 (%

)

Fig. 4. Estimation error of ILQ weights

 But, the absolute estimation errors of the
application SW execution times (different input
data sets) are less 0.4% (see Figure 5). By the
way, the errors are exclusively negative because
of measurement errors that occurred while the
real execution times of the SW runs are captured.
Due to the setup the measured execution times
are slightly greater than the actual execution
times.

-0,4

-0,3

-0,2

-0,1

0

DIFFERENT SW RUNS

R
EL

A
TI

VE
 E

ST
IM

A
TI

O
N

 E
R

R
O

R
 (%

)

Fig. 5. Estimation error of the SW runs
The reason for the high accuracy in spite of

the ILQ G problem is that the ILQ G does not
occur in the application SW runs. Therefore no
negative influence can occur. But, if other SW is
estimated it will be important that the proportion
of ILQ G will be checked. A high estimation
accuracy can only be achieved if the proportion
of ILQ G is negligible.

It is important to note that the estimation
errors of the ILQ weights can only be calculated
in an experimental setup where the reference
timing is known a priori (clarifying the
methodology). In practice these weights are
unknown and shall be estimated. So the
performance model has to be verified by
calculating the execution time estimation errors

of benchmarks during the training phase, e.g.,
using the “leave one out” technique.

The evaluation has shown that the approach
works fine for simple processors. Wormhole is
flexible and can be adapted easily to other
architectures. At the moment we are
investigating an ARM9 core (no thumb, no
floating point, simple memory model) which is
more complex than the HCS12. Pipeline
interlocks due to data and control hazards has to
be considered. The first results are promising.
The SW execution time estimation error is less
than 5%.

But, very complex architectures can only be
considered with limited accuracy. Long histories
or many necessary architectural annotations, e.g.,
caused by caches, complex branch strategies,
massive superscalar behavior, etc. lead to a
parameter space explosion. This amount of
parameters is necessary to form a suitable
analysis input model and finally a performance
model. Therefore these effects can be recognized
in practice only in parts or rather for HW with
short instruction history dependencies. However,
most processors used in, e.g., automotive
applications do not expose such complex
behavior.

5. CONCLUSION

The Wormhole project goal was estimation
support for early design space exploration, both
for automotive network planning and ECU
design. With an increasing industrial acceptance
of formal methods in automotive system
performance verification, formal techniques
become also available for earlier design phases.
Other than in performance verification, the
architecture is not yet fully defined leaving
processor architecture alternatives. As a
consequence, design space exploration typically
requires intensive experiments with different
architectures or estimations. This is a costly and
time consuming step.

At the very beginning of the design process,
the software is at best incompletely available
such that estimations in the form of educated
guesses and abstract load level models are all
that is available as input data. Deriving such data
is a research topic in its own right that is not
addressed here. This project assumes that
software in the form of C code and test patterns
are available, from the increasing body of reused
software, from third party providers or from

early design of performance critical software
parts. For these SW components, performance
estimations shall be derived with high accuracy
without the need to run through a prototyping or
simulation task. Instead, a qualification process
is assumed that is executed once per processor or
once per processor and load characteristic. That
qualification process is expected to be
outsourced to a service provider.

Results for simpler architectures and partly
available SDE show high estimation accuracy in
the order of 1% estimation error. Due to
parameter space and benchmark count
limitations, complex architectures can usually
not be covered. However, in many practical
systems, such as in most automotive
applications, high-performance processor
architectures are avoided to obtain predictability
and reduce cost such that the presented approach
can be applied.

ACKNOWLEDGEMENT

This work is sponsored in part by the Ford
University Research Program.

REFERENCES

Aho, A. V., M. S. Lam, R. Sethi and J. D.

Ullman (2006). Compilers: Principles,
Techniques, and Tools. Addison Wesley, 2nd
edition.

ARM home page. The Architecture for the
Digital…, http://www.arm.com, 2008.07.02.

AUTOSAR home page. AUTOSAR,
http://www.autosar.org, 2008.07.02.

Bailey, B., G. Martin, T. Anderson (2005).
Taxonomie for the Development and
Verification of Digital Systems. Springer.

Bammi, J. R., E. Harcourt, W. Kruitzer, L.
Lavagno, M. T. Lazarescu (2000). Software
performance estimation strategies in a system-
level design tool. Proc. of the Eighth
International Workshop on Hardware/
Software Codesign (CODES), 82-86.

Fox, J. (1997). Applied Regression Analysis,
Linear Models, and Related Methods. Sage
Publications.

Bontempi, G. and W. Kruijtzer (2004). The use
of intelligent data analysis techniques for
system-level design: a software estimation
example. Proc. Soft Computing - A Fusion of
Foundations, Methodologies and Applications,
8(7), 477- 490.

C-Lab home page. C-Lab Homepage,
http://www.c-lab.de, 2008.07.02.

Cosmic home page. Cosmic Software Cross…,
http://www.cosmic-software.com, 2008.07.02.

CoWare home page. The ESL Design Leader,
http://www.coware.com, 2008.07.02.

EEMBC home page, EEMBC–The Embedded…,
http://www.eembc.org, 2008.07.02.

ELMICRO (2005). HCS12 T-Board, Hardware-
Version 1.00. User Manual.

Freescale (2003). HCS12 Microcontrollers,
S12CPUV2. Reference Manual.

Giusto, P., G. Martin, E. Harcourt (2001).
Reliable Estimation of Execution Time of
Embedded Software. Proc. of the conference
on Design, automation and test in Europe
(DATE), 580-589.

Hamann, A., R. Racu und R. Ernst. Formal
Methods for Automotive Platform Analysis
and Optimization (2006). In Proc. Future
Trends in Automotive Electronics and Tool
Integration Workshop (DATE Conference).

Henia, R., A. Hamann, M. Jersak, R. Racu, K.
Richter und R. Ernst (2005). System Level
Performance Analysis - the SymTA/S
Approach. IEEE Proc. Computers and Digital
Techniques, 152(2), 148-166.

Hennessy, J. L., D. A. Patterson (2002).
Computer Architecture – A Quantitative
Approach. Morgan Kaufmann, 3rd edition.

Lazarescu, M. T., J. R. Bammi, E. Harcourt, L.
Lavagno, M. Lajolo (2000). Compilation-
based software performance estimation for
system level design. Proceedings of the IEEE
International High-Level Validation and Test
Workshop (HLDVT'00), 167.

SPSS home page. SPSS, Data Mining,…,
http://www.spss.com, 2008.07.02.

Symtavision home page. Symtavision –
Scheduling Analysis for ECUs, Buses…,
http://www.symtavision.com, 2008.07.02.

Vastsystems home page. VaST tools and models
for embedded system design,
http://www.vastsystems.com, 2008.07.02.

