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Abstract—Allowing real-time systems to autonomously
evolve or self-organize during their life-time poses challenges on
guidance of such a process. Hard real-time systems must never
break their timing constraints even if undergoing a change in
configuration. We propose to enhance future real-time systems
with an in-system model-based timing analysis engine capable
of deciding whether a configuration is feasible to be executed.
This engine is complemented by a formal procedure guiding
system evolution.

The distributed implementation of a runtime environment
(RTE) implementing this procedure imposes two key questions
of consistency: How do we ensure model consistency across the
distributed system and how do we ensure consistency of the
actual system behavior with the model?

We present a synchronization protocol solving the model
consistency issues and provide a discussion on implications of
different mode-change protocols on consistency of the system
with its model.

I. INTRODUCTION

One of the largest challenges in larger embedded systems,
such as an automotive or avionic platform, is the large
number of variants and the continuous development by soft-
ware updates in the field. Already today, modern upperclass
automobiles can be ordered in up to 22° configurations with
possible effects on the electric system [FHSO5]. This is
only possible because of software flexibility, but it turns
integration into a hard task as all of these configurations
need to be analysed for feasibility before shipping. Also,
it has to be repeated for each update or other change in
configuration to be applied to an automobile.

A remedy to this problem is to move the verification
process into the embedded system - in this case the car. If the
system is aware of its key performance data, it could protect
itself from maliciuous updates that would compromise the
correct timing of existing applications. In order to do this,
only one - the upcoming - configuration needs to be analyzed
for each update. We implemented a prototype capable of
protecting itself against updates breaking timing contracts
in the EPOC project [NSSE10].

When constructing real-time systems that are allowed
to autonomously modify (“self-organize”) themselves, one
must ensure that they will never break their real-time con-
straints as a result of this self-organization. We believe that

the EPOC architecture [NSSE10] is an enabler for the im-
plementation of such systems as it allows to formally verify
real-time properties within the system and thus deminishes
the need for a-priori analysis of all configurations a self-
organizing real-time system may pass through during its life
time.

The EPOC architecture as introduced in [NSSE10] verifies
system configurations based on a formal timing model
and manages software applications distributedly without a
central entity. This ensures scalability and distributes the
load of management and analysis evenly throughout the
system.

As no system component has an overall view of the
system state, and no central entity globally coordinates an
ongoing modification, several data and state consistency
issues arise. As first aspect we will discuss these and present
a synchronization protocol solving them.

As a second aspect, we will show that it is not sufficient
to analyze the behavior of a system before and after a
change in software. Transient configurations as will appear
during configuration transitions can severly affect the timing
properties of the upcoming configuration. Thus, the algo-
rithms and protocols used to transition between successive
configurations must be considered. We discuss possible
strategies for configuration transitions on an abstract level to
highlight the potential timing issues associated with them.
We will start with a motivating example in the following
section.

II. MOTIVATING EXAMPLE

Take the system shown in figure 1 as an example. It
consists of three processors interconnected by two buses and
thus resembles a typical gateway setup. Assume that this
system is currently running a control application spanning
all three processors, as the necessary sensors are attached to
CPU 1 and the actuators are attached to CPU 3. For stable
operation of the control loop, constraints on the maximum
path latency as well as the maximum allowed jitter exist.
Assume that adherence to these constraints has been shown
during the development process using state of the art tools.
In the remainder of the paper, we refer to this application
as the old or o-application.



Figure 1: Example System

In this example, assume that a second application (new or
n-application) is to be added to the system after deployment
which will run on the same platform, again spanning all
three processors. The application consists of four tasks
and is shown in the top of figure 1. This application,
similar to the already existing one, must be guaranteed a
constrained latency as well as activation jitter during opera-
tion. The question of whether the update is feasible cannot
be answered without knowledge of all other applications
running on the system as shared usage of resources, such
as processors and buses lead to complex interdependencies
in the timing behavior of the applications.

Using a state-of-the art development process, the update
can only be installed on the embedded system after extensive
lab testing, this means returning to the verification stage
of the system development process after deployment of
the actual system, which is costly. Our proposed remedy
to this problem is to enable the system to autonomously
decide whether an update is suitable for execution. In order
to enable the embedded system to perform this decision,
we propose to implement an in-system model-based perfor-
mance evaluation engine.

Adding tasks or applications at run time is just one of
many possible mechanisms to achieve self-organization or
adaptivity in (not only) real-time systems. Other mechanisms
include migration of tasks between processors, adaptation
of scheduling parameters such as task priorities or variation
of hardware parameters such as processor frequency, which
all have an impact on real-time properties of the system.
An RTE of a self-organizing real-time system (and thus the
principles presented in this paper) should consider all these
mechanisms.

In this paper, we will shortly introduce the main concepts
and the architecture of the EPOC-RTE. We will then go into
more detail on the distribution of the RTE over the embedded
systems and consistency issues arising from this distribution.
Section VII describes a synchronization protocol we use
to ensure consistent states within the RTE. The section
thereafter goes into detail on timing consistency issues
encountered when transitioning between different system
configurations.

III. CONTRACTING

By contracting, we understand that applications provide
information on their behavior and needs to the system,
which, before starting an application, ensures that given all
applications adhere to their description, they will be able to
meet their constraints. We refer to this agreement between
application and system as a contract. The EPOC RTE relies
on the concept of in-system contracting to allow save updates
w.r.t. timing properties.

To introduce the main terms and concepts used in this
paper we will first provide a brief definition of terms.

The term platform refers to the hardware any software will
run on. We assume that a platform consists of multiple inter-
connected processors. These processors will be connected by
communication media. In line with nomenclature common in
the area of performance analysis, we will refer to processors
and buses as computational and communication resources,
respectively.

We assume that the EPOC RTE ([NSSE10]) is running on
each processor within this platform. On top of the runtime
environment, applications are running. An application con-
sists of a set of potentially communicating tasks. By task
we understand a piece of code that will be scheduled by the
operating system within the RTE.

In addition to the term application, we will use the term
system to describe the combination of a platform running
an RTE on each processor and the applications executed
within these RTE instances. We will also use the terms
application and system in order to describe the availability of
information within the RTE. If information is considered to
be available (or synchronized) application wide, we assume
that the information is available at each RTE instance that
hosts at least one task of the given application. Similarly,
information is available system wide if all RTE instances
have access to it. Furthermore task specific information is
available locally if it is only known to the resource that hosts
that particular task.

Changes in a real-time system such as adding or removing
tasks may affect parts of the system that are not directly
associated with the transition. In performance analysis liter-
ature, this effect is known as a non-functional dependency.
In this paper, we refer to the set of resources that is affected
by the current transition as the effect horizon of the current
transition. The effect horizon contains at least all resources,
that are directly affected by the update. Depending on the
system configuration it may include additional resources,
that are affected due to non-functional dependencies.

In order to be able to verify system properties at runtime,
contract information has to be provided along with an appli-
cation. A contract contains a description of the application
(e.g. task graph), a set of prerequisites of the application
and a set of guarantees it can give in turn. In our context of
performance verification, application contracts consist of a



performance characterization of the application in isolation
as guarantee for the RTE (i.e. worst-case execution times
(WCET)), a set of constraints the application assumes to
adhere to (i.e. constraints on worst-case path latencies)
and a description of communication dependencies (i.e. task
graph). If a contract is accepted, the RTE guarantees that
all applications comply to their constraints, given they do
behave as described in the contract. For a more detailed
description of the contracts please refer to [NSSE10].

IV. ARCHITECTURAL APPROACH

In the this section we will recapitulate the EPOC ar-
chitecture and explain the associated contract-based update
protocol, that allows for in-system verification of timing
properties, with the example system shown in figure 1.

The framework architecture, as shown in figure 2, is
strictly separated into two domains - the Model Domain (left)
and the Execution Domain (right). While the former solely
operates on application models, as contained in the contract
information, the latter enforces the parameter settings ac-
cording to the model. To ensure consistency of the model
and the execution parameters of accepted applications the
Contract Repository acts as an interface between the two
domains.

The core component of the Model Domain is the Model
Analysis. It performs the feasibility check - i.e. a dis-
tributed performance analysis algorithm ([SHEO06]). Models,
as required by the analysis, are supplied by the Contract
Negotiation component, which accepts contract requests via
the Contract Interface, transforms them into an analysable
format and interprets the results of the verification process.
Closed contracts are stored in the Contract Repository.

The Execution Domain, as depicted on the right hand
side of figure 2, enforces application contracts by setting
execution parameters of applications. To perform this task
the Contract Enforcement reads accepted contracts from the
Contract Repository and configures the platform accordingly
(e.g. setting task and communication priorities). The Execu-
tion Domain is also capable of starting and stopping as well
as migrating tasks at run time.

Both domains in combination ensure safe evolution of the
system, as new configurations can be verified and evaluated
w.r.t. to their performance while running applications can be
controlled according to their model.

Note that the EPOC framework is a distributed RTE. Thus
the shown components exist on every resource and cooperate
to fulfill their respective tasks and thus act as cooperative
software agents.

V. DEGREE OF DISTRIBUTION

In the following we will focus on the degree of dis-
tribution of the model and the applications. Some of the
consistency issues, that will be discussed in sections VII
and VIII, arise immediately from this degree of distribution.

local | connected | unconnected
WCET v - -
Mapping v v -
Path latency v - -

Table I: Summary of visibility of tasks

If model and applications are distributed in the system to
a high degree, additional coordination between participating
processors is required and the view each resource has of
the system setup is restricted. However, a high degree of
distribution may significantly reduce memory usage and
improve scalability, as data is only present where actually
needed.

As already indicated in the previous section, the model
of the system configuration is held distributedly. Every
resources’ local Contract Repository only contains the infor-
mation, that is needed at that particular resource. Contract in-
formation can be partitioned in application and task specific
information. Application specific information contains data
relevant for the entire application (e.g. constraints on path
latencies), while task specific information only describes
properties of one particular task (e.g. communication depen-
dencies of that task, WCET). All task specific information is
only available locally, i.e. only at the processors that actually
executes the specific tasks. Application specific information
is available application-wide.

Table I summarizes the visibility a resource has of the
system model. Resources are aware of their local tasks
and the corresponding communication partners (connected
tasks), though cannot access the task specific information
(e.g. WCET) of those communication partners (as indicated
by the dashed lines). Additionally, resources do not know the
extend of an application beyond the communication partners
of their tasks.

Again, consider the example system as depicted in figure
1. Figure 3 shows the resources’ view of the system model.
E.g. CPU 1 has knowledge of all contract information of
Nact and is aware that a task n.,,, that is communicating
with ng, exists on CPU 2. It has no information though
about the existence of tasks 7,0 and ngens. Furthermore
CPU 1 is aware, that n,. is part of a latency-constrained
path. The Model Analysis component provides information
on the path latency on all resources, that host at least one
task of that path.

The degree of distribution within the execution domain is
comparable. The program code of all tasks is only stored
locally. Communication between tasks is established via a
runtime-configurable communication middleware within the
RTE.

As a result of the distribution of model and code and
the lack of a central entity within the RTE, keeping the
model and the execution of the application in a consistent
state, becomes a major challenge. In the following section
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Figure 3: Resources’ view of the system configuration

we will outline the update process of the EPOC architecture
and refine these challenges. We will then focus on these
consistency issues throughout rest of this paper.

VI. THE UPDATE PROCESS

In this section we will delineate the process of adding an
application on the EPOC architecture. Figure 2 will serve
as reference for the framework components, while figure 4
depicts the sequence chart for the update.

Updates are provided by the Update Controller. For each
update one Update Controller controls the distribution of
the update - potentially a different one for any update. This
Master Update Controller stores all information about the
update. This includes the update description in the form of
contracts as well as the program code to be executed if the
update is accepted. In the presence of gateway architectures
all Update Controllers cooperate for routing.

Consider the example system shown in figure 1. The o-
application, consisting of a sensor task 0gens, @ cOmmuni-
cation task ooy, on the gateway resource CPU 2 and an
actuator task oq¢t, 1s already present in the system. The n-
application shall be added to the system configuration with a
mapping as indicated by the arrows. Let the Master Update
Controller reside on CPU 3.

In a first step (1) the Update Controller has to transmit
the contract information of task n.,,, to CPU 2 and of task
naet over CPU 2 to CPU 1. On each resource the Contract

ework Architecture

Negotiation will then store the corresponding contract infor-
mation in the local Contract Repository (2) and insert the
model into the Model Analysis component (3).

As no assumptions are being made on platform archi-
tecture and communication media, no statement about the
arrival times of contract information at the corresponding
resource, as distributed by the Update Controller, can be
made. Thus no resource knows when all contract information
for a new or updated application has been received at all
affected resources. If a resource would start analysis imme-
diately after reception of its updated contract information,
some parts of the model on other resources might still be
outdated. In this case the analysis results would not reflect
a worst-case estimation of the system behavior and thus no
reliable statement on system feasibility could be made. As a
result a synchronization mechanism (4) is required to ensure
model consistency.

After analysis (5) has been performed cooperatively by
all three processors, the performance metrics are evaluated
(6) locally at each resource. As all resources only have
knowledge of timing metrics of tasks and paths, that they
host, they can only evaluate the constraints for those tasks
and paths. Thus another synchronization step (7) is required,
to gather analysis results to be able to determine feasibility
of the system configuration.

If the n-application can be accepted, the Master Update
Controller on CPU 3 is notified (8) and the update can be
executed in the execution domain. The program code of
tasks Meom and nge: is transferred to CPU 2 and CPU 1
respectively (9). In another synchronization step (10) the
completion of all code transfers is assured. At this point in
time all affected RTE instances have the necessary data to
perform the transition to the next configuration. To actually
enforce the new configuration a specific protocol is needed
(11). In section VIII, we discuss several possible strategies
for such protocols and their implications on system timing.
Once the system is running the next configuration, an
application wide synchronization (12) marks the end of the
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Figure 4: Update Protocol

update process.

VII. ENFORCING MODEL CONSISTENCY

In this section we will address the issues of model and
analysis consistency as outlined in section VI. We will define
the requirements on synchrony and distribution of possible
synchronization algorithms.

As indicated in figure 4 synchronization of model in-
formation is required application-wide, as the remainder
of the system remains unchanged during the update of
one application in steps 4, 10 and 12, and effect-horizon
wide during step 7. We first elaborate on application-wide
synchronization to then extend the approach to also cover
the effect-horizon.

Since resources only have a limited view of the applica-
tions (section V), no resource knows all resources that have
to be included in such an application-wide synchronization.
Additionally we cannot assume a complete interconnect
among resources, as gateway architectures are common in
the domain of real-time systems (e.g. automotive platforms).

The system model in the model domain is only consistent,
if all resources that are affected by the update, have received
the new contract information (the same holds true for the
completion of analysis and analysis results). In other words,
every affected resource needs to perform a certain processing
step, before any of the affected resources may proceed to
the next processing step. No tight requirements are made
on the time needed for this synchronization, as processing
of model information is not timing critical. Instead resource
usage and degree of distribution are of main concern. As
real-time embedded systems are oftentimes very limited on
resources (e.g. automotive platforms), especially concern-
ing communication media and memory, a synchronization
mechanism should have minimal implications on messages
sent and memory consumption. Furthermore, as the EPOC

framework has no central entity, also the synchronization
mechanism should be distributed. At the same time, since
applications can change over time through updates, it should
be adaptive, to be able to handle e.g. migration of tasks to
other resources.

A. Barrier synchronization

An approach very well-suited to the problem described,
is known from the domain of parallel computing. In bar-
rier synchronization ([Bro86], [GH89], [Lee90], [YK98])
a process enters a barrier, after it has completed all its
computations. The processor may only proceed to execute,
when all processes to be synchronized have entered the
barrier. Implementations differ in communication structure
between processors (e.g. master-slave, tree), complexity and
platform requirements.

The reflected-tree barrier synchronization, presented in
[Lee90], uses a tree communication structure between pro-
cessors. In an announcement phase the leaves announce
their arrival in the barrier towards the root. Nodes only
forward the message, when they themselves arrive at the
barrier and all leaf-sided nodes have announced their arrival.
After arrival of all anouncements at the root of the tree,
it notifies all nodes with a notification wave of successful
synchronization. This algorithm can even be executed on
platforms that do not have a complete interconnnect (e.g.
gateway architectures), as only processors that are connected
in the tree have to be able to communicate.

B. Extraction of communication trees

The reflected-tree algorithm is well-suited for the dis-
cussed synchronization requirements, due to its low message
count and good scalability ([Lee90]). However it cannot be
applied directly. The algorithm employs a tree communi-
cation structure between participating processors. However,
the resources required to synchronize application-wide, may
be different for every application and in the presence of task
migration may even change for an application. Consider the
following example.

Figure 5a shows a platform consisting of three processors
and a communication bus. An application consisting of four
tasks is mapped on the resources as depicted. In order to
synchronize application-wide using the reflected-tree algo-
rithm, all three processors would have to be included in the
synchronization. Figure 6a shows a possible communication
tree for this case, in which CPU 1 is the root.

Now, consider the case in which task 7% is migrated to
CPU 2 (figure 5b). Due to the limited model visibility, as
discussed in section V, CPU 2 is not aware of any other task
on CPU 3 after migration of Task 75. Thus it does not know
whether CPU 3 still has to be included in synchronizations.
CPU 1 on the other hand, is aware of Task 7, due to the
communication with 77. However, it does not see any of the
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model changes due to the task migration. Thus it will not
change synchronization behavior.

This scenario shows, that a resource-based synchroniza-
tion tree cannot adapt to changing applications easily. In-
stead it may need to adapt the communication structure for
the synchronization with every model change.

We propose, to extract the communication tree from the
task graph of the application. The resources then communi-
cate along the edges of that tree. Again, refer to the example
from figure 5. A possible task-based tree for the given
example system is depicted in figure 6b. Before migration
CPU 3 would have to send one synchronization message
for T5 to CPU 2 and one for T to CPU 1. After migration
CPU 3 only has to send one message to CPU 1. On CPU 2
the message from 73 to 75 can be processed internally and
only one message has to be send to CPU 1.

The tree information can be extracted from the task graph
at design time and does not need to be changed in the
presence of task migration. Additionally no resource requires
knowledge of the entire tree. Instead for every task only

the predecessors and the successor in the tree need to be
known. The resources, that predecessors and successor are
executed on, are already known from the local view of the
system model due to communication dependencies (section
V). The local information on the tree structure can easily be
appended to the contract information and thus be updated
if the task graph changes in the course of an application
update.

C. “Effect horizon”-wide synchronization

After analysis the results of all model analysis compo-
nents within the effect horizon have to be gathered. This may
include resources, that do not contain any part of the changed
application. However, this case can easily be covered with a
minor extension to the task-based reflected-tree algorithm.

The model-based analysis components knows, when the
timing behavior of an application changes due to an update
of another application. Thus, it knows, when an application
extends the effect horizon as a result of such a non-
functional dependency. This locally available information
can be exploited to adapt the synchronization tree.

The synchronization tree of the affected application can
be linked as a leaf to the one of the updated application.
Thus it will be included in the synchronization process.
After completion, the linking can be removed. This way
synchronization will only be performed on all resources, that
are actually affected by an update.

Thus the reflecting-tree algorithm can be used for all
synchronization steps in the update protocol (figure 4). It
relies solely on local information, and imposes only minimal
overhead on memory and processing. All required com-
munication structures can be extracted at design-time and
will only be linked for effect-horizon synchronization. Thus
distributedly enforcing model consistency can be handled
efficiently.

VIII. CONFIGURATION TRANSITIONS

The second major consistency issue during updates of
distributed real-time systems, as in the EPOC architecture,
arises when the system transitions between two verified
system configurations. This section addresses the problems
that arise in step 11 of the update protocol (figure 4). When
a system transitions between two configurations special pre-
cautions have to be taken, to ensure that the actual behavior
of the system is consistent with the analyzed contracts.
As we will show, timing behavior can easily deviate from
the model during transitions if no special protocols are
employed. The system designer has the options of either
implementing special mode-change protocols, enhancing the
analysis algorithms to reflect transitions, or a combination
of both.

In the following, we will first give an overview of analysis
approaches of such transitions and related mode-change
protocols. Then we will define a classification of transition



scenarios and strategies for distributed systems and elaborate
on their corresponding implications on timing and the design
process. We do not provide a complete solution to the
problem, but want to raise an awareness for the issue and
indicate in which cases precautions have to be taken.

A. Analyzing configuration transitions

Existing research in schedulability analysis has shown,
that even if both configurations - before and after a change
in system configuration - have been proven feasible, the
transition between both configurations can cause violation
of timing constraints and thus needs explicit analysis. The
protocols used to transition between different configurations
in literature are referred to as Mode-Change Protocols. Most
existing theoretical work in this domain focuses on single
processor Mode-Change Protocols and their timing. A good
overview can be found in [RC04]. The literature categorizes
the tasks in a system undergoing a configuration transition
in three sets:

1) finished tasks: The set of tasks that are present in the
old, but not the new configuration. These tasks may
have at most one activation during the transition phase.

2) new tasks: The set of tasks that are only present in the
new configuration.

3) unchanged tasks: The set of tasks that are present
in both configurations and remain unchanged in their
parameters during the transitions.

The authors of [RC04] further introduce the set of tasks
that are present in both configurations, but change their
parameters, e.g. execution time or activating event model
during the transition. We assume that these tasks are mod-
eled using two tasks, one finished and one new, which is
also common in literature.

Mode-Change Protocols are categorized by the way they
treat these task sets. Synchronous protocols as opposed to
asynchronuous protocols do not allow execution of finished
and new tasks at the same time. Furthermore, protocols are
discerned by the fact whether they accomodate unchanged
tasks or not. Those that do are referred to as protocols
with periodicity others are said to be without periodicity. It
is very unlikely that there are no unchanged tasks during
configuration transitions in complex distributed systems.
Thus we assume all protocols mentioned from here on to
be with periodicity.

Recent work [NGAOQ9] also covers mode changes on
multi-processors. The authors claim that their approach is the
first published mode-change protocol dealing with multiple
processors. It does however impose strong restrictions on
properties of the processors, scheduling and task set. Namely
the authors assume uniform multiprocessors platforms, a
global (greedy) scheduler and no dependencies between
tasks. Thus, the work is not applicable to the scenarios
discussed here, as no global scheduler exist and tasks may
have communication dependencies.
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Figure 7: Echo-Effect Example

Uni-processor Mode-Change Protocols with dependant
tasks have been discussed briefly in [HEO7]. Here, it is
observed, that unchanged tasks may experience different
worst-case response times (WCRT) in the old and the new
configuration as well as the transition. For communicating
tasks, the difference in WCRT causes different potential
communication patterns which in turn affect system timing.

Take the system in figure 7 as an example. It consists of
five tasks mapped on two processors. We assume static prior-
ity preemptive scheduling on both processors and a priority
assignment, such that Fy > U; > Us > U,. Furthermore
assume that the system performs a mode change, with F}
being a finished task and the tasks U; — U, being unchanged
tasks. We consider the WCRT (and thus output jitter) of Uy.
Clearly the WCRT of U;,Us and Uy decreases during the
mode change and we can easily compute the WCRT for the
old and new configuration using existing analysis techniques
(e.g. [TBW94]). However, we do not know when we can
safely assume the new WCRT.

Consider the instant in time the last activation of F}
finishes. Clearly, after this point in time the new WCRT
of U; and thus a more regular output pattern can safely
be assumed. However, this effect has not yet arrived at the
input of Us nor has it propagated to Us. We are not aware of
any analysis methodology that we can use to determine the
necessary offset between the instance of the mode-change
and the point in time at which we can safely assume the
timing properties obtained when merely analyzing the new
scenario. In general this problem can be much more complex
than outlined here, as cyclic dependencies (functional and
non-functional) between unchanged tasks may exist. We
refer to these effects on timing affecting the system possibly
for a long time after the cause (i.e. configuration transition)
as Echo-Effects.

In [HEOQ7], this problem is solved by assuming the worst
case of the three states for system feasibility analysis. This
constitutes a conservative approximation of the system’s
behavior before, after and during the transition. However,
this does not constitute a feasible approach for real-time
systems that undergo multiple configuration transitions, as
the conservatism accumulates.

To express the effects of transitions on the timing behavior
we use WCRT diagrams of unchanged tasks (e.g. figure 9).
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The WCRT diagram depicts the worst-case response time
a task may exhibit at time ¢. The steady state WCRTs
WC RTsteqdy,1 of the old configuration and WC RT stcqdy,2
of the new configuration can be calculated by current per-
formance analysis algorithms [TBW94].

A WCRT diagram of an unchanged task during a con-
figuration transition that only stops tasks as discussed in
the previous paragraphs can be seen in figure 8. The steady
values of the WCRT can be computed for each configuration.
Similarly, for any given protocol, handling the stopping of
the tasks, we can compute the time At,,,; needed to execute
the protocol, i.e. to stop all finished tasks. We cannot,
however, compute the complete time Atge4y.. Thus we can
only safely assume Atgeqe — 00, which from an analysis
point of view means, we need to assume the same WCRT
for the task in question, even if a higher priority task has
stopped to execute.

We make similar observations in the case of merely
starting tasks. Consider the jitter diagram of an unchanged
task in figure 9. At t,, stqr¢ tasks are being started and the
worst-case response time increases, as more and more tasks
of the transition are started. At ?,y, ¢nq all tasks are started
in the system and the transition is completed. The WCRT
however still increases, as effects of remote tasks might first
have to propagate through the system. Only at fscq4, the

system behavior has settled and the WCRT of the unchanged
task is equal to WC RTeqdy,2. Also in this case the time
tsteady. at which all effects of the transition have settled,
currently cannot be analyzed by any analysis algorithm. For
the scenario of starting additional tasks, this is not relevant
though, as WC RTsteqdy,2 is always larger that any WCRT
during the transition, thus providing a valid upper bound.

Based on these observations, we also think it necessary
to redefine the notion of synchrony for Mode-Change Proto-
cols dealing with communicating tasks. The basic property
of synchronuous protocols is that finished tasks do not
interfere with new tasks. Under the assumption of non-
communicating tasks, this is equivalent to the claim that
finished and new tasks do not execute at the same time,
under the assumption of communicating tasks, this property
is harder to establish due to echo-effects. To give credit
to these effects, we propose the following new definition
of synchronuous Mode-Change Protocols: A Mode-Change
Protocol is synchronuous if no new task is activated before
interference of all finished tasks has ceased to affect system
timing.

We conclude that, as of today, no Mode-Change Protocol
and associated analysis exists that solves the problem of
transitioning between configurations in heterogeneuous net-
worked embedded systems with communicating tasks. In the
next sections, we will elaborate on scenarios causing a real-
time system to transition between configurations, to derive
protocols suited to deal with these use-cases. Afterwards,
we will evaluate the potential timing issues and analysis
difficulties that are likely to be encountered if one wants
to utilize such a protocol to finally draw a conclusion on
which class of Mode-Change Protocols is safe to use (with
respect to timing) in order to build self-organizing real-time
systems.

B. Transition scenarios and strategies

We have identified four basic scenarios to classify changes
in the system configuration:

1) insertion of new tasks

2) removal of already running tasks (finished tasks)

3) combined insertion/removal of tasks (e.g. task migra-

tion)

4) change of runtime parameters of an application (e.g.

scheduling parameters)
Each scenario comes with its own limitations w.r.t. real-
time aspects as we will further discuss in section VIII-C.
A configuration change may also be composed of several
of these basic scenarios, in which case the most stringent
limitations apply.

In terms of managing the transition from one config-
uration to another, we think it necessary to distinguish
between different strategies. As described in the section
VIII-A, current mode-change protocols distinguish between
synchronous and asynchronous configuration transitions.



Dealing with distributed systems, we propose to extend
this classification. We distinguish between protocols that are
globally asynchronous locally asynchronous (GALA), glob-
ally synchronous locally synchronous (GSLS) or globally
asynchronous locally synchronous (GALS). GALA protocols
allow parallel execution of new and finished tasks on one
processor and on different processors in the system. This
strategy is easiest to implement, as tasks of the new configu-
ration may be started at any instance without synchronization
on one or between several processors. The opposite case,
GSLS, requires that at no time tasks of different configura-
tions may be executed in the system - neither within one pro-
cessor nor on different processors. Furthermore, according
to our extended definition of synchrony, one has to ensure
that effects of old-mode tasks have ceased to affect system
timing. GSLS protocols can generally only be implemented
with additional overhead, as a synchronization between
participating processors needs to be established. GALS
protocols can be a trade-off. Configuration transitions are
performed synchronously on each processor, while different
processors perform the change asynchronously. As locally
synchronous protocols are comparatively easy to implement
and inter-processor synchronization is not required, GALS
protocols do not introduce significant overhead.

C. Implications on real-time properties

In this section we will investigate the implications of
different combinations of scenarios and strategies on real-
time properties of the system. We will present these impli-
cations in relation to the required analysis algorithms from
section VIII-A. To express these implications, we regard
the effects a transition has on the timing behavior of an
unchanged task.

For the scenarios of starting and of stopping tasks no
finished tasks or no new tasks exist, respectively (unchanged
tasks exist in both cases). Thus the three strategies do not
differ in their implications on the timing behavior. The
corresponding implications have already been discussed in
section VIII-A.

For the scenario of combined insertion/removal of tasks,
we have to differentiate between the different protocol
strategies. From an implementation point of view GALA
is the strategy of choice, as synchronization requirements
are minimal. Figure 10 depicts the worst-case response time
of an unchanged task during a configuration transition with
a GALA protocol. At time %, start the first configuration
change occurs on one resource, starting the transition phase.
During Aty all resources perform the transition, starting
execution of new tasks and stopping execution of finished
tasks. During this transition, as GALA is asynchronous,
new and finished tasks may exist at the same time. Thus
the WCRT may exceed W C RTsteqdy,1 and WO RT steqdy,2
- the calculated WCRTs for the two configurations. As
discussed before, these transient effects will eventually settle

WCRT, Dteerye

Atpro‘r
wc RTtrans IJ I.
WC RTstea dy,2
wcC RTstea dy,1

»
»

t t t

sw,start tsw,end steady

Figure 10: Settling behavior of an unchanged task for the
scenario of combined starting and stopping tasks for GALA
protocols

at time fsicqdy. However, as tgicqqy cannot be calculated
one has to assume the maximum of all three WCRT values
WCRTeqdy,1, WCRTrans and WC RTgeqdy,2 after the
transition as has been done in [HEO7], thus leading to
accumulated conservatism over several transitions.

We now consider the GSLS strategy. The aim of syn-
chronous protocols is, to avoid the possible load peak,
that causes WC RTyqns. Figure 11 shows the worst-case
response time diagramm of unchanged task for a GSLS
protocol. At t,¢ ¢ stqre the transition is initiated. All affected
processors start removing finished tasks from the system.
At tofrena all finished tasks are stopped. The effects of
removing finished tasks settle until t;teady. At top stare the
process of starting new tasks starts and complets at ¢y, end.
All transient effects settle until ¢4cqqy. As can be seen
from the WCRT diagram, GSLS protocols successfully avoid
the WCRT peak during the transient phase. However, they
cannot be implemented. According to the extended definition
of “synchronous”, the starting of tasks may not be initiated
before all transient effects of the finished tasks have settled.
Thus 5,44, < ton,start is Tequired. As ti; ., cannot be
determined using state of the art analysis algorithms, the
only save assumption is t'steady — o0o. Thus a save GSLS
protocol with current analysis algorithms would require
infinite time.

Considering the discussion of the GALA and GSLS
strategies, the GALS strategy, which initially seemed like a
trade-off between GALA and GSLS, proves to be the least
feasible approach. As part of the system is asynchronous,
use of GALS strategies may still introduce WCRT peaks
on unchanged tasks. At the same time, the GALS strategy
requires knowledge about the settling time of the first part
of the transition and thus is not implementable.

As indicated in section VIII-A parameter changes can
be modelled as a combination of starting and stopping
tasks. Thus it imposes the same restrictions on configuration
transitions as that scenario.

The results of the discussion on the implications of



strategy | insertion removal insertion/removal parameter changes
GALA « OK o unknown settling time transient jitter peaks o transient jitter peaks
unknown settling time o unknown settling time
GSLS « OK « unknown settling time not implementable « not implementable
GALS « OK « unknown settling time transient jitter peaks o transient jitter peaks
unknown settling time « unknown settling time
not implementable o not implementable
Table II: Overview of implications of transition scenarios and strategies
wcrTt At systems with communicating tasks. A thorough high-level
e survey of possible protocols shows that using state of the art
Dtpror analysis algorithms, self-organization in real-time systems
WCRT. y >
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Figure 11: Settling behavior of an unchanged task for the
scenario of combined starting and stopping tasks for GSLS
protocols

scenarios and transition strategies are summarized in table II.

As can be seen from the table, none of the transition
strategies solves the problem of providing consistency be-
tween the analyzed model and the actual system behav-
ior. The system designer has options, to enable updates
in self-organizing real-time systems though. If, during an
update execution of all tasks, including unchanged tasks,
is stopped and all communication buffers are reset, thus
deleting all state information in the system, every scenario
becomes equivalent to the scenario of only starting new
tasks. This allows predictable timing-behavior, but makes
seemless configuration transitions impossible. Alternatively,
the designer has to discard dynamic scheduling and resort to
some orthogonalization method (e.g. TDMA). This however
usually introduces large overhead.

IX. CONCLUSION

We have presented a framework and an associated formal
protocol ensuring that a self-organizing real-time system
can only transition between provenly correct configurations.
In this paper, we discussed the issue of consistency in
parts arising from the distributed nature of the framework.
In order to be able to cooperatively perform the formal
protocol in our distributed implementation, we presented a
state-synchronization protocol that automatically adapts to
reconfigurations (e.g. task migration) in the system.

As a second consistency issue, we have discussed tim-
ing implications of mode-changes in distributed real-time

can only safely be allowed if dynamic scheduling is dis-
carded or the system state is resetted for each configuration
transition.
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