
1

SMFF: System Models for Free
Moritz Neukirchner, Steffen Stein and Rolf Ernst

Technische Universität Braunschweig
Braunschweig, Germany

neukirchner|stein|ernst@ida.ing.tu-bs.de

Abstract—Evaluation of scheduling, allocation or performance
verification algorithms requires either analytical performance
estimations or a large number of testcases. In many cases, e.g.
if heuristics are employed, extensive sets of testcase systems are
imperative. Oftentimes realistic models of such systems are not
available to the developer in large numbers.

We present SMFF (System Models for Free) - a framework
for pseudorandom generation of models of real-time systems.
The generated system models can be used for evaluation of
scheduling, allocation or performance verification algorithms.
As requirements for the generated systems are domain-specific
the framework is implemented in a modular way, such that the
model is extendible and each step of the model generation can
be exchanged by a custom implementation.

I. INTRODUCTION

During the development of e.g. scheduling or allocation
algorithms or algorithms for performance verification, test-
case systems are required to evaluate the applicability and
performance. If formal proofs of correctness or analytically
derived perfomance estimations can be given a small set of
such systems is sufficient. However, in many cases this is not
possible e.g. if heuristics are employed. In this case the algo-
rithm has to be tested with an extensive set of testcases. For
many algorithm developers, especially in academia, system
models are not available in large numbers. Manually creating
such system models is very time-consuming and might not
respect requirements on randomness.

Consider the following example. A developer has imple-
mented a heuristic algorithm for optimized priority assignment
in distributed real-time systems. As the algorithm is based on
a heuristic, no analytical estimation of the performance of the
algorithm can be given. Thus the developer has to evaluate
the algorithm against a set of testcases. As no extensive set
of testcases is available to the developer, the system models
have to be generated automatically. These models however
need to resemble real-world systems, as typical for the targeted
domain. Furthermore, they need to be sufficiently random, in
order not to bias the evaluation.

In this paper we adress this issue and present SMFF - a
framework for parameter-driven generation of models of dis-
tributed real-time systems. The generated models incorporate
a description of the platform, of the software applications
mapped onto the platform and the associated scheduling and
timing paramters, thus covering the entire model specification.

As system models, that are used for algorithm evaluation,
have to resemble real-world systems, requirements on testcase
systems may be highly domain- and problem-specific. The

presented framework provides a high degree of modularity,
allowing the user to extend the system-model and to replace
algorithms for system model generation, thus making the
framework a universal tool for testcase generation. The algo-
rithms presented in this paper are example implementations
and were developed for the evaluation of an algorithm to
find execution priorities in static-priority-preemptively (SPP)
scheduled systems under consideration of timing constraints
[1].

The key features of the SMFF framework as presented in
this paper are:
• Parameter-driven generation of complete system models

for use as testcases
• A Modular framework architecture to allow exchange of

generation algorithms
• Extendible data structures to allow customization of the

system model
The SMFF framework is no simulation or benchmarking
environment. Thus, we do not adress the issues of simulation
or performance monitoring. We rather provide models as input
for such tools.

This paper is structured as follows. First we will discuss
how the process of system model generation can be structured
into discrete steps. We will then give an overview of related
work and how previous approaches relate to this structure. In
section IV we will define the main terms and the system model
used throughout the paper. The following sections will address
the single steps of the model generation and the implemented
algorithms. Section IX covers aspects of the implementation
of the framework and its modularity. In section X we will
present an example of system model generation with the SMFF
framework. Then we will conclude the paper.

II. GENERAL APPROACH

In this section we will outline the general approach to
generate system models of distributed real-time systems.

We propose to devide the process of model generation into
six steps as depicted in figure 1. The six steps can be grouped
into the categories structural definition, real-time property
definition and constraint definition. While some steps can be
executed independent of each other, some require other steps
to be performed beforehand (indicated by arrows).

The structural definiton is composed of the platform model
generation, the application model generation and the applica-
tion mapping. During platform model generation the architec-
ture graph is constructed. Thus this steps defines the topology

2

of the platform. In the application model generation step,
application graphs are created defining the logical structure of
software applications. The final step of the structural definition
maps the application models onto the platform model, defining
the distribution of the application on the hardware platform.
Naturally this step can only be performed after architecture
and application models have been created. All steps of the
structural definition are highly domain-specific, as hardware
platforms, application structure and their distribution on the
platform are generally very diverse for different application
domains.

Real-time property definition is composed of the steps of as-
signment of timing properties and of assignment of scheduling
parameters. In the first step tasks and communication between
tasks are assigned an execution model such as best-case
execution and worst-case execution times. Furthermore tasks
can be assigned an activation model (e.g. activation period
and activation jitter). Thus this step defines the timing of each
entity of an application in isolation. This step can only be
performed after the application models have been generated.
In the second step scheduling parameters, such as execution
priorities for static priority preemptively (SPP) scheduled
resources, are assigned to the tasks and communication. This
step can only be executed after the application mapping, as
scheduling paramters depend on the scheduling strategy of
the resources tasks and communication have been mapped to.
After these two steps the timing behavior of the system is
completely specified.

The last category is composed of only one step - the
assignment of timing constraints. In assignment of timing
constraints limitations on e.g. end-to-end path latencies or
ouput jitters can be defined. Also this step can only be
performed after the application model has been created, as
constraints are specified for entities of an application.

Except for the outlined dependencies the steps of the system
model generation can be performed in arbitrary order and
independent of each other. This gives great flexibility to the
developer as it is possible to e.g. load manually defined
platform models and only perform the remaining steps of the
testcase generation with the provided platform model. Also
the developer may introduce further dependencies to tailor the
testcase generation process for his specific needs. E.g. one may
require testcases with certain load-distributions on the platform
resources and thus make the assignment of timing properties
depend on the application mapping.

III. RELATED WORK

We will now review previous approaches to generation of
testcase system models and highlight how these approaches
relate to the structure of testcase generation as described
above.

For evaluation of real-time algorithms (e.g. scheduling,
allocation or performance verification) many developers rely
on handcrafted example systems, to highlight strengths and
shortcomings of different approaches (e.g. [2], [3], [4]). Others
rely on benchmark models of real applications such as MPEG2
decoders (e.g. [5]) or on more comprehensive benchmark

suites as e.g. [6]. A third approach many developers take for
evaluation and comparison of their algorithms is parameter-
driven testcase generation (e.g. [7], [8]).

If any of the first two approaches is taken, the results of
an algorithm evaluation tend to be fairly well reproducible
as the set of system models is well specified and oftentimes
publicly available. However the number of testcases typically
is low. As a result statements about average performance of
an algorithm may be inaccurate, as the examples might not be
representative of the targeted domain of application or might
not cover common corner-cases properly. This may bias the
evaluation of an algorithm.

The approach of pseudorandom parameter-driven testcase
generation can provide more accurate results on average
performance, as an algorithm can easily be evaluated against
a large set of system models. Many developers use custom
algorithms to generate testcases automatically. Common ap-
proaches are to select a system topology (i.e. platform model
and application model) manually and to assign timing prop-
erties in specified bounds (e.g. [8]) or to use a fixed platform
and generate task sets (i.e. application models) automatically
(e.g. [7], [9]). In both cases common corner-cases, that might
only occur for e.g. certain platforms, might be neglected. To
the best of our knowledge there exists no single approach that
addresses all steps of parameter-driven pseudorandom system
model generation. Instead parts of the generation process have
been addressed.

A fairly comprehensive tool for automatic testcase genera-
tion is task-graphs for free (TGFF) [10]. TGFF generates task
graphs based on a parameter set that allows detailed influence
on the topology. Furthermore it allows to generate timing
properties for all tasks (periods and execution times) and
latency constraints on paths. Thus it adresses the three steps of
application model generation, assignment of timing properties
and assignment of timing constraints. TGFF has been widely
used for generation of task sets (e.g. [11], [12], [13]). However,
if the algorithm under evaluation targets distributed systems
with communicating tasks, platform topology and application
mapping may be relevant. TGFF is not able to perform these
steps of model generation, though.

The steps of application model generation and assignment
of timing properties have also been studied thoroughly in the
scope of single und multi processor schedulability analysis.
Here benchmarking includes generation of task sets and as-
signment of timing parameters such as execution times and
activation periods. In many cases timing parameters of fixed-
size task sets are assigned so that a specific processor load
is accomplished by randomly assigning activation periods and
setting the execution times to match the required utilization
(see e.g. [14], [8]). [15] gives an analysis of properties
of commonly used algorithms to accomplish this task and
discusses their respective properties with respect to the task
set parameters generated. It shows that the chosen algorithm
can bias the benchmark favoring one schedulability test or
the other and proposes new algorithms for timing parameter
generation that have been widely adopted in the community
[16], [17], [18]. These findings should be considered when
designing an algorithm for timing parameter generation in the

3

Fig. 1: General testcase generation flow

described flow of pseudorandom system generation.
We are not aware of any tool capable of generating complete

system models covering the entire testcase generation flow.
With the SMFF framework we aim to incorporate all steps
of the testcase generation into a single framework, allowing
developers to generate complete system models to evaluate
their algorithms. In the following we will first provide a
detailed description of the system model and then address the
single steps of the testcase generation flow.

IV. SYSTEM MODEL

In this section, we will briefly introduce the main terms
used throughout the paper and elaborate on the system model.

The term platform refers to the hardware software will run
on. We assume that a platform P consists of set of processors
(computational resources) Rcomp = {ρcomp,0, . . . , ρcomp,i−1}
interconnected by a set of communication media (communi-
cation resources) Rcomm = {ρcomm,0, . . . , ρcomm,j−1}. The
platform will be modeled as a bipartite graph

GArch = {Rcomp,Rcomm, E}

with the two types of resources Rcomp and Rcomm being the
two types of vertices. The undirected edges eq ∈ E denote
connectivity between two resources.

Applications are running on the platform. An application Ap
consists of a set of tasks ΓAp = {τ0, . . . , τn−1} and a
set of communication channels (task links) ΛAp

. By task
we understand a piece of code that will be scheduled by a
micro kernel. By a task link λk ∈ ΛAp

we understand a
communication entity that may be established/scheduled on
computational and communication resources. An application
will be modeled as a directed bipartite graph

GApp = {ΓAp ,ΛAp , C}

with the task and task links being the two types of vertices.
Edges cp ∈ C denote communication of a task via a task
link while information flows in the direction of the edge.
Furthermore an edge denotes a precedence relation between
adjacent vertices. All task links have an in-degree and out-
degree of 1. This model slightly deviates from the common
model of task graphs, where tasks are modeled as vertices and
communication between tasks as edges. We chose to modify
this model to provide better expressiveness for mappings of

Fig. 2: System Model

task links. Regular task graphs can easily be transformed to
the modified model by replacing edges by a task link vertex
and two edges. For the modified model we additionally define
adjacency of tasks. Two tasks are adjacent to each other if
a task link exists that is adjacent to both tasks. This notion
of adjacency is identical to adjacency of tasks in regular task
graphs.

Tasks are mapped on resources, signifying that a task is
executed on that resource. Task links can be mapped on com-
putational resources or communication resources indicating
that communication is established via/on this resource. Thus,
the mapping of an application

m : ΓAp
∪ ΛAp

→ Rcomp ∪Rcomm

assigns each task and task link of the application to a resource.
An example system is depicted in figure 2. It is composed

of a platform of two computational and one communication
resource and one application of three tasks that communicate
over two task links. Task link λ1 is mapped on a computational
resource, while λ2 is mapped on the communication resource.

As we are dealing with real-time systems timing properties
can be defined. A task τi can be assigned an activation
model and an execution model. An activation model may be a
specification of e.g. an activation period Pτi and an activation
jitter Jτi . An execution model can be specified by e.g. best-
case and worst-case execution time (BCET and WCET) Cb,τi
and Cw,τi , respectively. Task links that are mapped on a
communication resource can also be assigned an execution
model.

In addition to the timing properties a set of constraints C =

4

{χ0, . . . , χk−1} on timing properties can be provided. This can
include e.g. constraints on end-to-end path latency or output
jitter.

In the following sections we will explain the single steps
of system model generation. We will present possible char-
acterizations for the system models and present examplary
algorithms for each step as used in [1].

V. PLATFORM GENERATION

When generating platform models for use as testcases,
the models should resemble real-world systems as closely
as possible. Real-world embedded systems however exhibit
a diversity of platform architectures depending on application
domain. Possible criteria for platform characterization are e.g.:

1) Size
Embedded real-time systems differ in size to a large
degree. Very small-size systems of only one or a few
processors (e.g. heating control) as well as large-scale
systems such as an avionic platform exist.

2) Degree of connectivity
The communication structure of systems may be diverse.
Bus architectures, in which all computational resources
can directly communicate with each other, are common
as well as architectures where communication between
two resources can only be established via a gateway.

3) Degree of heterogenity
Systems may be composed of a homogenous set of
computational and communication resources or may
consist of a large number of different types of resources.

When generating testcase systems, the developer should
know how real-world systems of his targeted domain can be
characterized e.g. with respect to the above criteria. The em-
ployed platform generation algorithm should then be capable
of producing platform models with this characterization.

We have implemented an examplary algorithm for genera-
tion of homogenous platforms that is parametrizable w.r.t. size
and degree of connectivity. The generated platforms exhibit the
following properties:
• GArch is a connected component.
• GArch is bipartite.
• ∀ρcomm,i ∈ Rcomm : deg(ρcomm,i) ≥ 2. I.e. each

communication resource is connected to at least 2 com-
putational resources.

Algorithm 1 shows the pseudo-code for the platform
generation. The algorithm requires only two parameters.
numRes directly defines the number of computational re-
sources (numRes= |Rcomp|) in the system. It allows the
user to scale the overall system size. The second parameter
(CRes%) controls the degree of connectivity of the platform. It
allows to set the average number of communication resources
as percentage of the number of computational resources. E.g.
if set to 5%, on average the generated platforms will have
0.05 times as many communication resources as computational
resources. As a result low values of CRes% will tend to
generate bus-like architectures, while higher values will tend
to create architectures with gateways.

Algorithm 1 Platform Generation
INPUT: numRes, CRes%

1: numCRes = value from Binomial Distribution(n=numRes, p=CRes%)
2: for i = 1 to i =numCRes−1 do
3: connect ρcomm,i−1 and ρcomm,i to random ρcomp,rand

4: for all ρcomp,l : deg(ρcomp,l) = 0 do
5: connect ρcomp,l to random ρcomm,rand

6: for all ρcomm,p : deg(ρcomm,p) < 2 do
7: connect ρcomm,p to random ρcomp,rand

8: Random pruning of superfluous connections

In the first step of the algorithm (line 1) the number of
communication resources is determined based on a binomial
distribution with n=numRes and p=CRes%. The following
step (lines 2-3) iterates over all comm. resources and con-
nects two consecutive comm. resources to a random comp.
resource. This step assures that all communication resources
are contained in one connected component. The following two
steps (lines 4-5 and lines 6-7) assure that all comp. resources
are connected to at least one comm. resource and that all
comm. resources are connected to at least two comp. resources,
respectively. In a last step (line 8) connections are pruned, such
that no two computational resources are connected to the same
two communication resources, if this does not violate any of
the required platform criteria.

VI. APPLICATION GENERATION

Also generated application models should resemble real-
world systems as closely as possible. As for platform archi-
tectures, application graphs of real-world embedded systems
exhibit a large diversity in topology. Possible characterization
metrics for application graphs are:

1) Size
Applications differ in size. This can be characterized e.g.
by the number of vertices in the application graph.

2) Connectivity
Applications may be diverse in terms of communication
dependencies. Some applications might be highly paral-
lel, while others might be strictly parallel. This can be
characterized e.g. by maximum in-degree and out-degree
of vertices of the application graph.

3) Cyclicity
Some applications e.g. control algorithms are cyclic in
nature. As oftentimes this is not supported by analysis
algorithms it can be sensible to exclude these systems
from evaluation.

TGFF [10] already provides sophisticated algorithms for
parameter-driven task graph generation. It has been used
extensively in other projects (e.g. [11], [12], [13]). The exem-
plary algorithm of SMFF is based on TGFF but extends the
functionality by support for cyclic task graphs. The remaining
parameters are identical to the old algorithm of TGFF (for a
complete description of TGFF’s functionality refer to [19]).

Algorithm 2 shows the application model generation in
pseudo-code. As input the algorithm accepts 5 parame-
ters. numTasks and diffNumTasks define the num-
ber of tasks in the task graph and the allowed deviation
from that number, respectively. With taskMaxDegrIn and

5

Algorithm 2 Application Generation
INPUT: numTasks, diffNumTasks, taskMaxDegrIn, taskMaxDegrOut,

cyclicGraph
1: get task graph from TGFF(numTasks,

diffNumTasks,
taskMaxDegrIn,
taskMaxDegrOut)

2: if cyclicGraph then
3: undirect edges
4: find cycles
5: redirect edges
6: convert task graph to application model

taskMaxDegrOut the maximum in-degree and maximum
out-degree of the tasks can be specified. These parameters
are passed directly to TGFF (line 1). TGFF can only create
non-cyclic task graphs. If cycles are allowed in the created
applications (parameter cyclicGraph, line 2), the direction
of all edges of the task graph is deleted (line 3). A cycle search
is performed on the undirected graph (line 4) and edges are
directed, such that the cycles found, are also cycles for the
redirected graph (line 5). In a final step (line 6) the task graph
is transformed to the framework’s application model.

VII. APPLICATION MAPPING

The application mapping completes the structural definition
of a system model and determines the degree of distribution
of an application on the platform. Applications may be either
clustered, i.e. all tasks are located on only a few resources, or
widely spread, i.e. tasks are distributed across many resources.
However some domains may have very specific requirements
on application mapping. E.g. if the generated system model
should resemble a client-server setup, a path of the application
graph should start and end on the same resource while some
intermediate task has to be mapped on a different resource.
I.e. there should be a task τi : degin(τi) = 0, a task τj :
degout(τj) = 0 that are mapped onto the same resource and
at least one more task τl : degin(τl) 6= 0, degout(τl) 6= 0
that is mapped onto another resource. This example illustrates,
that the application mapping of generated system models has
highly domain-specific requirements, that have to be taken into
account in implementation and parametrization of mapping
algorithms for testcase generation.

The example mapping algorithm, as implemented for eval-
uation of the algorithm presented in [1], is tailored to generate
mappings for “sensor-actuator-like” applications. It only sup-
ports task chains without forks or joins and tends to distribute
these chains across several resources. In particular, we assume
that such sensor-actuator applications are characterized by the
following features:

1) Task chains do not traverse a computational resource
more than once
If two tasks are mapped on the same resource, all tasks
on the path between these tasks are also mapped on the
same resource.
More formally, let Iτi,τj be the set of tasks that are part
of the path between tasks τi and τj . Then

∀τi, τj ∈ΓAp ,m(τi) = m(τj)

: ∀τl ∈ Iτi,τj ,m(τl) = m(τi)

(a) Valid Mapping (b) Invalid Mapping

Fig. 3: Valid and Invalid Mappings

Fig. 4: Mapping to “spread” applications

Figure 3 shows examples of valid and invalid mappings
according to this criterion. Figure 3a shows a valid
mapping, as for every pair of two task mapped on the
same resource, all tasks between are mapped on the same
resource as well. Figure 3b shows an invalid mapping.
Task 2 and task 4 are both mapped on resource 2 al-
though their intermediate task 3 is mapped on a different
resource.

2) Applications are distributed across several resources
The probability of a task being mapped on a resource
increases with the distance to other resources that have
a task of the same application mapped on them.
Figure 4 shows an example for this criterion. The upper
part depicts the task graph of the application to be
mapped. At a point in the mapping process only task 1
is mapped to resource 1. If the next task to be mapped
is task 3, its probability to be mapped on resource 3
is higher than that of resource 2 which is again higher
than that of resource 1. This assures that applications
consisting of several tasks are not clustered on only a
very small set of resources.

The mapping is performed by a probabilistic algorithm that
enforces the first criterion and lets the user control the degree
of distribution with a parameter. Its pseudocode is shown in
Algorithm 3.

As long as the application is not completely mapped (line 2)
the algorithm alternatingly selects the first/last task of the task
chain, that is not yet mapped (lines 3-6). In the following step
the set of resources this task can be mapped on is calculated
based on distances in the platform graph and the distances
to already mapped tasks of the application graph. For the
first task this set includes all resources. Then the probabilities
with which the task is mapped to any resource of this set
are calculated (line 8). This step is based on a weighted
random number generator, which selects a value from a given
set with a probability corresponding to the value’s weight
(non-normalized probability mass). If a resource violates cri-
terion 1 its weight is set to 0. The probabilities for all other

6

Algorithm 3 Application Mapping
INPUT: kPredecessor, kSuccessor, kResDist

1: temp=0
2: while not all tasks mapped do
3: if (temp++)%2==0 then
4: get first unmapped task of task chain
5: else
6: get last unmapped task of task chain
7: calculate set of possible resources
8: calculate probability of all possible resources
9: if temp ==1 then

10: apply kResDist to probabilities
11: map task on resource based on probability distribution

resources are initialized with 1 and are then modified by the
three parameters that are passed to the mapping algorithm.
kPredecessor and kSuccessor are factors applied to
the weight of a resource, if the predecessor or successor of
the task to be mapped, is mapped on that resource. The third
parameter kResDist is applied only to the end of the task
chain (line 9). For each resource the distance to the resource
that the first task was mapped to is calculated. Then its weight
is multiplied by kResDistdistance. Thus, depending on the
value of kResDist the application tends to be either spread
across many resources (for kResDist > 1) or clustered on
a small set of resources (for kResDist < 1). In a final step
a resource is chosen from the set of possible resources based
on probability mass and the task is mapped to that resource.

VIII. DEFINITION OF REAL-TIME PROPERTIES AND
CONSTRAINTS

The three steps for definition of real-time properties and
constraints typically are closely related. Again consider the
example of the developer who has implemented an algorithm
to assign execution priorities in SPP scheduled systems w.r.t. to
end-to-end latencies. To evaluate the algorithm the developer
might require testcases, which violate some path latency
constraints while other constraints are not violated. This can
only be accomplished if the steps of assignment of timing
properties, of scheduling paramters and of constraints are
implemented to work together.

The three example algorithms for definition of real-time
properties and constraints as presented below were also imple-
mented in the scope of the evaluation of the algorithm from
[1].

A. Assignment of Scheduling Parameters

Along with the framework we provide an examplery al-
gorithm for assignment of scheduling parameters for SPP
scheduled resources. Execution priorities for tasks and task
links, that have no scheduling parameter assigned yet, are
set randomly. Already assigned execution priorities remain
unchanged.

B. Assignment of Timing Properties

In this step of testcase generation the timing properties of
all tasks and task links are defined. In SMFF this comprises
assignment of activation period Pτi , activation jitter Jτi , BCET
Cb,τi and WCET Cw,τi . SMFF uses the UUniFast algorithm

presented in [15] for this step. UUniFast assigns task execution
times, such that the resource utilization assumes a specified
value, while the distribution of the task execution times is
uniform.

In the SMFF implementation of UUniFast activation
periods are assigned uniformly in a specified inter-
val [minActPeriod, maxActPeriod]. The user further-
more specifies an interval for resource utilization [minResU,
maxResU]. From this interval a random value is chosen
for each resource and the task execution times are as-
signed according to UUniFast to achieve that resource uti-
lization. BCETs are assigned as user-specifiable percentage of
WCETs [bcetPercentage].

C. Assignment of Timing Constraints

The assignment of timing constraints for a testcase system
model is of particular importance when evaluating algorithms
for optimization or design space exploration, as it may signif-
icantly influence the number of feasible system configurations
(i.e. configurations that do not violate any constraint).

The implemented algorithm is again targeted at sensor-
actuator-like applications. It defines paths from the first task
to the last task of a task chain. The value of the constraint is
defined as multiple of the sum of all WCETs along the path.
This factor - the constraint laxity - is randomly selected from
a user-defined interval [minLaxity, maxLaxity]. Smaller
laxity values result in more tightly constrained systems.

IX. IMPLEMENTATION AND MODULARITY

We will now focus on aspects of implementation of SMFF
and the modularity of the framework. As previously indicated,
requirements on generated system models may be diverse,
depending on application domain, scheduling algorithm and
algorithm under evaluation. Thus the presented implementa-
tions of the generation steps may not be suitable for every
user and the system model might not be sufficient.

To account for the diverse requirements the testcase gener-
ation framework is implemented in a modular way, allowing
extension of the data structures as well as replacement of
all generation steps. The framework was implemented in
Java for ease of development and platform independency.
The next paragraphs give a short overview of the software
architecture of SMFF, highlighting the aspects of modularity
and extendibility.

A. Model Generation Infrastructure

In order to enable a flexible combination of the system
model generation steps described in this paper, SMFFs gen-
eration logic is based on an aggregation of factories, each
responsible for one step of the generation process. For an
overview refer to figure 5. All factories are grouped in a central
system generation factory orchestrating the order of the single
generation steps. The SMFF model generation core library as
depicted in figure 5 does not provide any generation logic, but
merely defines the relationship between the single factories
and their APIs to ensure seamless integration of different

7

Fig. 5: Organization of System Generation Stages

implementations of the model generation stages. An actual
implementation, as the one discussed in this paper needs to
provide an implementation for each of the factories.

The algorithms described in this paper are shipped with
SMFF as standard implementations, e.g. StdPlatformFactory.
As an example, figure 5 shows two additional possible imple-
mentations of a platform factory (AutomotivePlatformFactory,
FixedPlatformFactory), which could be integrated into the
flow. This shows that a user of the tool may replace e.g.
the standard platform generation logic with a platform factory
specific to his own requirements. The specific custom imple-
mentation could e.g. be the generation of one static platform
that is used for all experiments (FixedPlatformFactory). The
user could then keep using the standard implementations of
the other factories for generation of the remaining parameters
of the system model.

Similarly, e.g. the default order imposed on the stages of
system model generation can be altered by replacing the
standard implementation of the system factory by a user-
defined one.

B. Model Representation

Next, we present the system model data structure as shown
in figure 6. It consists of a platform model and multiple
application models. Platform models are comprised of com-
putational and communication resources, represented by the
CommResource and CompResource class respectively. Simi-
larly, application models consist of tasks and task links, each
represented by a distinct class. Additionally, application and
platform models manage adjacency information about their
parts defining the bipartite graphs described in section IV.

Fig. 6: System Model and Extension Points

A mapping is specified as a relation between task or task
links and communication and computational resources. In the
diagram this is indicated by the relevant local variables.

In order to reflect the flexibility of the model generation
framework also in the system model data structure, all model
elements allow the attachement of additional classes for future
extension of data and functionality without modification of the
basic data structure. Figure 6 shows that application as well
as platform model components may be associated with a set
of data elements. Example extensions as have already been
mentioned in this paper are shown for a task or a task link.
These may be annotated with timing properties (such as best-
and worst-case response time) or timing constraints (such as
jitter constraints). Although not shown in the figure, similar
data extension points also exist for the system model as well
as the application and platform model, thus enabling a very
flexible extension of the model depending on the specific use-
case of SMFF.

C. Framework Extensions

This flexible data structure allows usage of the gener-
ation framework for multiple purposes. For example, we
implemented an interface to the performace verification tool
SymTA/S [20] - the SymTA/S Adaptor - to allow verification
of timing constraints. This also allows to e.g. only generate
systems that are schedulable. All relevant data and function-
ality needed to transform the system model to a SymTA/S
compliant representation as well as retrieving data from the
SymTA/S tool is encapsulated in data extensions of model
elements.

Another existing extension is a Visualization Plugin to
the SMFF framework. It enables the display of a graph

8

Algorithm 4 Sample System Model Generation
INPUT: systemFactoryData

1: // create system factory
2: StdSystemFactory systemFactory = new StdSystemFactory(systemFactoryData);
3: // create new system model
4: SystemModel systemModel = systemFactory.generateSystem();
5: // create XML file
6: new ModelSaver(”SystemModel.xml”).saveModel(systemModel);
7: // create PDF file
8: PdfPrinter.convertToPdf(systemModel, ”systemGraph.pdf”);

representation of the system model as well as the export to
a pdf file. This allows the user to quickly grasp the platform
and application graphs and the application mappings of the
generated system models.

The XML Load/Store Plugin completes the SMFF model
generation suite, allowing easy integration with other tools.
Additionally, when incompletely specifying a system model
in XML - e.g. when using another tool to generate a partial
model, SMFF can be used to generate the remaining parame-
ters and save the resulting - completely specified - system as
XML.

X. TESTCASE GENERATION EXAMPLE

In this section, we give a brief example on how to use SMFF
in practice. We assume that all necessary factories for the
system generation stages are present. We used the algorithms
specified earlier on in this paper for generation of the example
systems shown below.

Algorithm 4 shows the necessary code to generate a system
from a set of parameters as needed for the different model
generation stages, which we assume to be given. In order to
generate a system model, one merely needs to instantiate a
system factory, in this case the StdSystemFactory supplied
with SMFF (line 2). A (potentially new) system model is
generated each time the generateSystem() function of
the factory is called (line 4). The following lines show the
code necessary to save the model to an XML file (line 6) and
create a pdf file (line 8) containing a graphical representation
of the system.

Figures 7 and 8 show two example systems that have
been generated by SMFF and exported using the visualization
plugin. The relevant parameters to the system model gen-
eration algorithms as described in the previous sections are
summarized in table I. The parameters in column 1 resulted
in the system model shown in figure 7, the model shown in
figure 8 corresponds to the parameter set in the second column.
Note that multiple application models were generated for both
systems. Each application model is depicted in a separate
color.

XI. CONCLUSION

In this paper we have presented System Models for Free
(SMFF) - a framework for parameter-driven generation of
models of distributed real-time systems. SMFF can generate
completely specified system models, including specification of
platform architecture, of application models, mapping of ap-
plications and definition of timing and scheduling parameters
and timing constraints.

Fig. 7: Small Example System Model

Param. Set 1 2
numRes 4 12
Cres% 35% 35%
minTasks 2 3
maxTasks 4 7
kPredecessor 3.0 3.0
kSuccessor 3.0 3.0
kResDist 1.5 1.5

TABLE I: SMFF Factory Parameters

As illustrated with examples, the user can easily and quickly
generate pseudorandom system models for use in his field
of application, thanks to supplied standard implementations
of parameter-driven factories. More advanced users can take
advantage of the flexible infrastructure of SMFF, by in-
terchanging implementations of system generation steps or
extending the system model to tailor SMFF to fit their specific
needs.

If you would like to use SMFF in your project, feel free to
contact any of the authors.

REFERENCES

[1] M. Neukirchner, S. Stein, and R. Ernst, “A lazy algorithm for distributed
priority assignment in real-time systems,” in under submission, 2010.

[2] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,
R. Henia, R. Racu, R. Ernst, and M. G. Harbour, “Influence of different
abstractions on the performance analysis of distributed hard real-time,”
Design Automation for Embedded Systems, vol. 13, no. 1-2, pp. 27–49,
June 2009.

[3] J. Real and A. Crespo, “Mode Change Protocols for Real-Time Systems:
A Survey and a New Proposal,” Real-Time Systems, vol. 26, no. 2, pp.
161–197, March 2004.

[4] J. G. Garcı́a and M. G. Harbour, “Optimized priority assignment for
tasks and messages in distributed hard real-time systems,” in Proc. of the
IEEE Workshop on Parallel and Distributed Real-Time Systems, 1995,
pp. 124–132.

[5] T. Cucinotta and L. Palopoli, “QoS Control for Pipelines of Tasks using
Multiple Resources,” IEEE Trans. on Computers, vol. 59, pp. 416–430,
2010.

[6] A. R. Weiss, “The standardization of embedded benchmarking: pitfalls
and opportunities,” in Computer Design, 1999. (ICCD ’99) Int’l. Conf.
on, 1999, pp. 492 –508.

[7] T. D. ter Braak, P. K. F. Hölzenspies, J. Kuper, J. L. Hurink, and G. J. M.
Smit, “Run-time spatial resource management for real-time applications
in heterogeneous mpsocs,” in Proc. of DATE’10, 2010.

[8] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on
multiprocessors,” in Real-Time Systems Symposium, 2001. (RTSS 2001).
Proc.. 22nd IEEE, dec. 2001, pp. 193 – 202.

[9] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT : A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers,” in RTSS, 2006, pp. 111–126.

9

Fig. 8: Large Example System Model

[10] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”
in CODES/CASHE ’98: Proc. of the 6th international workshop on
Hardware/software codesign. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 97–101.

[11] V. Kianzad, S. Bhattacharyya, and G. Qu, “Casper: an integrated energy-
driven approach for task graph scheduling on distributed embedded
systems,” Application-Specific Systems, Architecture Processors, 2005.
ASAP 2005. 16th IEEE Int’l. Conf. on, pp. 191–197, July 2005.

[12] M. Schmitz, B. Al-Hashimi, and P. Eles, “Energy-efficient mapping and
scheduling for dvs enabled distributed embedded systems,” in DATE
’02: Proc. of the conference on Design, automation and test in Europe.
Washington, DC, USA: IEEE Computer Society, 2002, p. 514.

[13] L. Shang and N. K. Jha, “Hardware-software co-synthesis of low power
real-time distributed embedded systems with dynamically reconfigurable
fpgas,” in VLSI Design, 2002, pp. 345–.

[14] E. Bini, G. Buttazzo, and G. Buttazzo, “A hyperbolic bound
for the rate monotonic algorithm,” in Proceedings of the 13th
Euromicro Conference on Real-Time Systems. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 59–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=871910.871919

[15] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Syst., vol. 30, no. 1-2, pp. 129–154, May 2005.

[16] E. Bini, T. H. C. Nguyen, P. Richard, and S. Baruah, “A response-time
bound in fixed-priority scheduling with arbitrary deadlines,” Computers,
IEEE Transactions on, vol. 58, no. 2, pp. 279–286, Feb. 2009.

[17] V. Pollex, S. Kollmann, K. Albers, and F. Slomka, “Improved worst-case
response-time calculations by upper-bound conditions,” in DATE, 2009,
pp. 105–110.

[18] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with edf scheduling,” Computers, IEEE Transactions on, vol. 58, no. 9,
pp. 1250 –1258, sept. 2009.

[19] K. Vallerio, Task Graphs for Free (TGFF v3.0), April 2008.
[20] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,

“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proc. -, vol. 152, no. 2, pp. 148–166, Mar
2005.

