
Real-time Image Processing for
Camera-based Driver Assistance Applications

Stefan Wonneberger, Thorsten Graf

Volkswagen AG / Driver Assistance and Integrated Safety

{stefan.wonneberger|thorsten.graf}@volkswagen.de

Letter Box 1777, 38436 Wolfsburg, Germany

Henning Sahlbach, Sean Whitty, Oliver Bende, Rolf Ernst

TU Braunschweig

Institute of Computer and Network Engineering

{sahlbach|whitty|ernst}@ida.ing.tu-bs.de

Abstract

Future driver assistance systems will rely on a variety of sensors, including camera-based systems, to achieve an
optimal perception of a vehicle’s surroundings. With increasing resolutions and the inevitable real-time require-
ments of these safety-relevant systems, multi-camera setups demand processing performances and data rates that
cannot be satisfied by current standard PC components. To meet these requirements, this paper presents a flex-
ible FPGA-based design approach for a central onboard image preprocessing unit, which offloads computation
intensive tasks to a dedicated FPGA accelerator platform with support for real-time execution.

1 Introduction

One challenging goal of next generation driver assistance systems will be the complete digital
reconstruction of a vehicle’s environment in real-time. In addition to commonly used sensors
like radar or ultrasonic-based systems, a visual perception of the environment will be required to
obtain a maximum amount of information. The corresponding sensor systems are based on dif-
ferent camera configurations. Usually, front view cameras are used for applications such as lane
departure warning or generic object detection. In order to obtain a complete 360 degree view of
a vehicle’s surroundings, additional systems composed of four cameras are used. The increas-
ing number of cameras means a significant increase in the amount of data to be processed. For
example, even for small resolutions of 512×512 pixels with 8-bit color depth, a stereo system
combined with a surround view setup produces a data rate of 377 Mbit/s for an image frequency
of 30 frames per second. To handle such data rates, high performance electronic control units
(ECU) are required.

In contrast to the required processing performance, the power budget in cars is very limited.
Therefore, these ECUs must be designed for energy efficiency. This also supports the goal of

reducing the overall carbon dioxide output, which is increasing in importance in the automotive
development process.

Image processing algorithms for driver assistance systems can be divided in different classes
starting with the image retrieval process and image restoration tasks. Image extraction is the
next logical step and is used to reduce the amount of data. This step is then typically followed
by a classification. Especially the algorithms for image restoration and image extraction can
be chained as a processing graph. Figure 1 shows an example for a pre-processing algorithm
graph, which is a typical part of a camera-based driver assistance system. The acquired image
stream is processed by each node of the graph and streamed to each successor nodes.

Processing
Node

Image
Acquisition

Processing
Node

Processing
Node

Image
Acquisition

ECU
Output

Figure 1: Algorithm graph with several processing nodes

Almost all algorithms in this class demand for high computational performance to process im-
ages in real-time. Frequently, operations must be performed on each individual pixel or on
repeating parts of the input image. On the other hand, the required operations are typically
quite simple, which allows the usage of simple processor architectures. Because of these char-
acteristics these algorithms can be massively sped up if they are realized as a parallel hardware
implementation. FPGAs offer a good starting point for an initial hardware development as
they provide a ready-to-use hardware platform with standard I/O and hardware programming
interfaces. The performance of FPGA implementations is comparable to real ASIC designs.

Therefore, this paper proposes a central FPGA-based image preprocessing platform for image
data, which is acquired by all vehicle cameras. The required preprocessing algorithms for
driver assistance functions can be bundled and implemented on one central ECU, which extracts
and reduces the desired image information and streams it to specialized devices implementing
specific assistance functions. The current trend in ECU onboard networks leads to a distinction
between ECUs attached to sensors to pre-process the retrieved data, and dependent function-
specific ECUs operating on the resulting data. The presented idea of a central image processing
unit supports this idea of ”democratizing” the on-board ECU network.

For an assisted development of image processing algorithms the FlexWAFE architecture [1] has
been selected. This architecture follows the idea of a stream oriented design. It implements a
dataflow model in hardware and defines a standard communication interface for all processing
node. This guarantees the reusability of processing nodes and allows a comfortable rearrange-

ment of implemented processing nodes during the design process.

To evaluate the selected architecture an existing pre-processing algorithm from the professional
video domain [2] has been adapted and implemented in hardware. A motion estimation algo-
rithm, which calculates the movement of pixels between two images, was chosen as a bench-
mark for the FlexWAFE architecture in automotive context. In a standard PC environment the
algorithm does not achieve real-time performance for the desired resolutions, which requires an
accelerated implementation on dedicated hardware. For driver assistance systems this algorithm
is highly relevant because it is a basis for 3D reconstruction using mono cameras or the tracking
of reconstructed 3D points using a stereo system.

For a seamless post-processing of the computed results in the driver assistance development
chain the FPGA is integrated in a host PC which executes additional software algorithms. The
ADTF software framework [3] is used to connect the hardware algorithm results to a software
post-processing.

The rest of the paper is organized as follows. The next section gives an overview of related
research. In section 3, a brief overview of the basic architecture is given, followed by an analysis
of its usability for image processing in driver assistance functions. Section 4 describes the
integration of the architecture in a concrete driver assistance scenario. The motion estimation
algorithm and its implementation in hardware is presented in section 5 followed by benchmark
results in section 6. A final conclusion is given in the last section.

2 Related work

In the past, several existing project dealt with the design and implementation of specific image
processing platforms. Angermeier et. al. [4] present an approach using hardware/software co-
design for vehicle detection, a specific driver assistance problem. The design implements a fixed
preprocessing graph for image retrieval and feature extraction consisting of a pattern matching
and segmentation unit in hardware combined with a software postprocessing. Claus et. al. [5]
present a reconfigurable hardware platform for driver assistance systems. The platform con-
sists of a dual core embedded processor design combined with reconfigurable coprocessors to
accelerate certain pixel operations and different classes of algorithms. In contrast to specific,
application dependent, architectures, Kyo and Okazaki [6] present a SIMD multi-core proces-
sor network for image-based driver assistance systems. Processors, described as processing
elements (PE), can be clustered in certain ways to operate on image structures in parallel.

All these architectures, and classical image processing systems, are typically multi-core proces-
sors with specialized pipelines and specialized memory architectures i.e. the cell processor [7]
or general purpose processors with attached coprocessors, which are required to operate on the
input data in real-time. On the other hand, there exist dedicated platforms, which implement
a specific driver assistance function in hardware. These approaches usually lack flexibility and

are not considered in detail.

Image processing algorithms often perform identical calculations on different image sections,
which provides a very high potential for parallelization. Therefore, these algorithms are typi-
cally executed in parallel on multi processor - single instruction multiple data (SIMD) - archi-
tectures. Each processor has extended execution pipeline paths and several computation units to
allow the execution of different classes of image processing algorithms. In contrast to this, most
of the algorithms require only a few, simple operations provided by the processor’s basic com-
putation units. Consequently, large parts of the processor remain unused during the execution
of one specific algorithm.

Moreover, the processing network is not useable for other algorithms during the execution of
one specific algorithm. A complete chain of preprocessing algorithms has to be executed in
sequence, which results in a decrease of available execution time for each algorithm. To target
these issues, a different approach for platform development is presented.

3 System Architecture

As already mentioned, the system architecture itself is based on the FlexWAFE architecture,
originally developed at the Institute of Computer and Network Engineering during the FlexFilm
project [2]. The architecture has been successfully verified for different high definition video
processing tasks for the digital cinema application domain, which requires high data rates and
enormous processing performance. The key features of the architecture are briefly repeated for
convenience, a detailed presentation can be found in [1].

The FlexWAFE architecture is based on a synchronous data flow graph model (SDF) [8]. Figure
3 shows an example instantiation with its basic components. All nodes are connected by a light-
weighted interface protocol with backpressure capabilities, which provides an easy, flexible
interconnect for the processing nodes. The ability to stop certain parts of the data path using
backpressure allows a self-timed execution of the nodes and does not necessarily require a
global fine grain schedule. Specific inbound and outbound nodes of the graph have to translate
this internal protocol to the connected peripherals. The architecture consists of three different
component classes, originally introduced in [2].

• Data processing units (DPU) contain hardware implementations of specific image pro-
cessing algorithms or algorithm parts.

• Local memories with controllers (LMC) are used to buffer and reorder data or to provide
an application interface to and from off-chip memory. This interface is necessary for
certain operations such as a random read/write access to a complete image area, which
cannot be realized using on-chip memories.

• The LMC and certain DPUs can be partly configured and controlled using a weakly-
programmable central algorithm controller (AC).

The architecture is complemented by a high performance memory controller, which accesses
the off-chip memory [9].

FlexWAFE Architecture

Image Processing Pipeline

DPU

Input Im
age S tream

Algorithm Controller

Memory Controller

LMC
LMC

LMC

DPU DPU

DPU

O
utput Im

age Stream

Offchip Memory

Figure 2: Example configuration of FlexWAFE architecture components

Using the FlexWAFE approach, each algorithm is implemented on a network of application
specific processing elements (PE) and local memories. Depending on the selected algorithm
often only a few simple mathematical operations are needed, which results in a very easy PE
unit that consists of a small amount of electrical gates. To achieve a high performance execution
of a specific algorithm such PEs can be instantiated in parallel. The amount of parallel PEs
is defined by the algorithm designer and depends on the required performance and available
chip resources or targeted hardware costs. The complete net of PEs for one algorithm can be
encapsulated as a single DPU node in FlexWAFE. This allows hardware parallelism for one
algorithm in an internal DPU and a parallel execution of multiple algorithms using several
DPUs in a specific FlexWAFE processing system.

As the FlexWAFE library already consists of various existing image processing components the
development time for new hardware accelerated algorithms decreases. Current FPGAs provide
a large amount of logical elements, which allows the design of even complex image processing
pipelines. Some FPGA devices are already automotive certified so they can be integrated in
final ECU designs as well.

4 Implementation

Since the FlexWAFE architecture concept is based on a dataflow graph principle, no limitations
to the inbound and outbound connections are necessary, except that the data streams need to be

stoppable by the succeeding nodes. Otherwise sufficient buffer space is required in the in- and
outbound nodes to ensure correct communication behavior with connected peripherals. This
concept offers the possibility to integrate the architecture in diverse transfer protocols or sys-
tems. During the development and evaluation process the architecture is typically embedded
in a host system. Only parts of the algorithms are ported to the FlexWAFE engine. Results
can be transferred to and analyzed on the host system. For the development of camera-based
driver assistance functions the inbound data stream might be changed between online and off-
line processing. This allows a realization of live tests with real-time response for the developed
algorithms. For a detailed algorithm analysis in offline mode, data streams can be transferred
directly from a host system storage device. The image data can be artificially generated for sim-
ulation tests, captured during online processing or can be provided by external camera devices.
Figure 3 shows a typical system configuration of the architecture for online image processing.
In the example, two cameras are connected as inbound nodes of the architecture. Image pro-
cessing results are transferred to the host system via an internal bus protocol (PCI Express,
PCIe).

FPGA Hardware

C
am

era A
dapte r

DDR2 Memory

Internal

FlexWAFE

Architecture

Memory Controller

PC
I E

xpress 8x

D
M

A
D

M
A

H
ost System

Figure 3: Integrated FlexWAFE architecture with input/output devices

Regarding application development, all single hardware components can be developed and
tested as single DPUs. As soon as all required components are available a complete prepro-
cessing system can be designed as a chain of multiple DPUs. This completed system, which
is integrated as an ECU will be able to send extracted and reduced image information to sub-
sequent ECUs via typical onboard bus systems or to local post-processing hardware such as an
additional onboard processor.

A complete implementation of the FlexWAFE architecture has been realized on a Xilinx FPGA
board. During the algorithm development process the hardware platform can be integrated in a
common PC environment as described above. The PCIe protocol is used to transfer image data

from high level applications to the image preprocessing platform and retrieve the resulting data.
An online camera mode is possible using the direct memory access (DMA) mode between an
external frame grabber and the developed processing board.

On the host PC system an application programming interface for the FlexWAFE architecture
has been realized. This allows the configuration of the programmable DPUs and LMCs using
the algorithm controller. A set of parameters can be sent over the PCIe bus. Using the direct
memory access mode (DMA), image data can be streamed from a host internal storage device
or the main memory to and from the FPGA board.

The resulting output data stream can be post-processed on the host system using the automo-
tive framework ADTF [3]. This framework implements a data flow graph in software. This
allows the integration of the hardware concept of a FlexWAFE-based hardware algorithm in a
full driver assistance software solution developed with ADTF. The hardware algorithm is repre-
sented as one node in the ADTF graph. Inbound and outbound data streams can also be modeled
using the framework. This enables an easy switch between an on- and offline processing mode.
The communication protocol between the host and the FlexWAFE board is hidden using the
programming interface and can be accessed from an ADTF wrapper for a FlexWAFE-based
hardware algorithm.

5 Algorithm Deployment

For the platform evaluation, a pre-processing algorithm has been deployed as a set of DPU
nodes. Motion estimation has been chosen because of its high computational needs and massive
parallelization potential [10]. The algorithm can be considered as a basis for 3D reconstruction,
or for the tracking of reconstructed 3D points (6D Vision). In an image sequence, the movement
of pixels or small pixel blocks needs to be determined. Even for a small amount of image
points to be matched between two images, motion estimation is a very cost-intensive function
on a general purpose processor. However, it can be massively parallelized in hardware as the
pixel operations can be executed independently. In an initial step an existing block matching
algorithm [10] has been adapted as a DPU. The input images are divided in pixel blocks using
a predefined raster, which are then searched in the preceding image in the near neighborhood
of the original block position. As the possible movement of objects in a vehicle’s environment
is limited by the current driving speed and frame rate, the search space is limited as well. As
a first metric for the movement, a sum of absolute differences (SAD)-based algorithm using
exhaustive search was chosen because of its regular integer operations. Equation 1 describes
the calculation needed for each possible block position.

D(i, j, x0, y0) =

x0+N∑
x=x0

y0+N∑
y=y0

|it(x, y)− it−1(x + i, y + j)| (1)

D(i, j, x0, y0) defines a matching rate between a reference block and a selected block in the
search area defined by offsets i and j relative to the reference position. N defines the block size,
x0 and y0 the upper left corner position of the reference block in the input image. The search
space is relative to the reference position in the subsequent image. A specialized processor for
the SAD calculation, first introduced in [10], has been adapted to the generic DPU interface.
The structure follows the idea of systolic arrays [11]. Like many other data flow architectures,
systolic arrays, can be directly implemented with FlexWAFE. Reference and search area are
pumped through an array of SAD units. After an initial latency the processor computes the
result for one block comparison each cycle. For example, a search area of 32×32 pixels with a
block size of 16×16 pixels needs 256 single comparisons for one block match calculation.

6 Results

For a performance benchmark the motion estimation block has been instantiated as a DPU in
the FlexWAFE architecture as shown in Figure 6. Two subsequent images are stored using
external memory and are fed into the motion estimation DPU simultaneously, which outputs
the corresponding motion vectors.

Image(t-1)
Image

Acquisition
Image(t)

Motion
Estimation

Motion
Vectors

Figure 4: Instantiated FlexWAFE components for the block-matching algorithm

The application has been tested for a low resolution image of 0.5K with a block size of 16 pixels
and a search area of 32 pixels. Figure 5 shows the output vectors of the motion estimation
array, post-processed and displayed as an overlay on the input image and as extracted vector
field. Considering the image, block and search area size the architecture requires a minimum
performance of about 3.3 billion operations per second (GOPS) to achieve real-time processing
(30 frames per second). If the image acquisition frame rate is assumed sufficiently high, the
instantiated motion estimation DPU and the architecture is able to achieve about 400 frames per
second (FPS) at a clock rate of 125 MHz. This performance enables the designer to reuse the
motion estimation DPU for multiple cameras or higher resolutions.

Although the qualitative processing results can be improved by more sophisticated motion de-
tectors, the impressive performance results demonstrate that FPGAs are an attractive hardware
platform for camera-based driver assistance applications. Next generation chips announced for
2010 such as the Xilinx Spartan-6 devices show that the available logical space in automotive
certified devices will increase at a very low power consumption level [12].

Figure 5: Resulting motion vectors, (a) first input image, (b) second image with resulting motion
vector overlay, (c) vector field

7 Conclusion

This paper presents a design proposal for developing image preprocessing ECUs. In order to
satisfy the performance requirements of tomorrow’s driver assistance applications the design is
based on FPGA hardware accelerators. Flexible design reuse and ECU modeling is achieved
by a generic interface and interconnection model between specialized processing nodes. For
evaluation purpose a concrete image preprocessing algorithm has been ported to the architecture
and platform, which satisfies even multi-camera setups. In order to meet various requirements,
a DPU can be instantiated multiple times by simply redesigning the processing pipeline.

In contrast to typical hardware implementations for driver assistance systems the presented ap-
proach allows flexible design reuse and scales in performance with increasing design size. This
scalability is a common problem of central bus architectures, which are typical in automotive
System-on-chip (SoC) design. The architecture allows the realization of real-time capable sys-
tems at a very early development phase, which dramatically decreases the gap between a first
algorithm test and a final implementation. All these aspects together with next generation low
power FPGA devices add up to a promising FPGA-based architecture design and test for future
high-performance image processing ECUs.

References

[1] A. do Carmo Lucas, H. Sahlbach, S. Whitty, S. Heithecker, and R. Ernst, “Application
Development with the FlexWAFE Realtime Stream Processing Architecture for FPGAs,”
ACM Transactions on Embedded Computing Systems Special Issue on Configurable Com-
puting: Configuring Algorithms, Processes and Architecture, vol. 9, no. 1, 2009.

[2] A. Lucas, S. Heithecker, P. Rüffer, R. Ernst, H. Ruckert, G. Wischermann, K. Gebel,
R. Fach, W. Huther, S. Eichner, et al., “A reconfigurable HW/SW platform for compu-
tation intensive high-resolution real-time digital film applications,” in Proc. of the con-
ference on Design, Automation and Test in Europe (DATE), Association for Computing
Machinery, Inc, 2006.

[3] P. Voigtländer, “ADTF: Framework for Driver Assistance and Safety Systems,” ATZ,
vol. 2008-09, 2008.

[4] J. Angermeier, U. Batzer, M. Majer, J. Teich, C. Claus, and W. Stechele, “Reconfigurable
HW/SW Architecture of a Real-Time Driver Assistance System,” in Proc. of the 4th inter-
national workshop on Reconfigurable Computing (ARC), pp. 149–159, 2008.

[5] C. Claus, J. Zeppenfeld, F. Müller, and W. Stechele, “Using partial-run-time reconfig-
urable hardware to accelerate video processing in driver assistance system,” in Proc. of
the conference on Design, Automation and Test in Europe (DATE), pp. 498–503, 2007.

[6] S. Okazaki, S. Kyo, and F. Hidano, “IMAPCAR: A highly parallel integrated mem-
ory array processor for in-vehicle image recognition applications,” in Proc. of the World
Congress on Intelligent Transport Systems (ITS), 2006.

[7] J. A. Kahle, M. N. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy, “Introduction
to the Cell multiprocessor,” IBM journal of Research and Development, vol. 49, no. 4/5,
pp. 589–604, 2005.

[8] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proc. of the IEEE, vol. 75, no. 9,
pp. 1235–1245, 1987.

[9] S. Whitty and R. Ernst, “A Bandwidth Optimized SDRAM Controller for the MOR-
PHEUS Reconfigurable Architecture,” in Proc. of the International Parallel and Dis-
tributed Processing Symposium (IPDPS), April 2008.

[10] C. Sanz, M. Garrido, and J. Meneses, “VLSI architecture for motion estimation using
the block-matching algorithm,” in Proc. of the European Design and Test Conference
(ED&TC), pp. 310–314, 1996.

[11] H. Kung and C. Leiserson, “Algorithms for VLSI processor arrays,” Introduction to VLSI
systems, pp. 271–292, 1980.

[12] M. Klein, White Paper: Spartan-6 and Virtex-6 Devices, Power Consumption at 40 and
45 nm. Xilinx, Inc., WP298, V1.0 ed., April 2009.

