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Abstract—Integration of system components is a crucial chal-
lenge in the design of embedded real-time systems, as com-
plex non-functional interdependencies may exist. We propose a
software update service with self-protection capabilities against
unverified system updates - thus solving the integration problem
in-system.

As modern embedded systems may evolve through software
updates, component replacement or even self-optimization, possi-
ble system configurations are hard to predict. Thus the designer
of system updates does not know the exact system configura-
tion. This turns the proof of system feasibility into a critical
challenge. This paper presents the architecture of a framework
and associated protocols enabling updates in embedded systems
while ensuring safe operation w.r.t. non-functional properties.
The proposed process employs contract based principles at
the interfaces towards applications to perform an in-system
verification. Practical feasibility of our approach is demonstrated
by an implementation of the update process, which is analzed
w.r.t. the memory consumption overhead and execution time.

I. INTRODUCTION

One of the largest challenges in the design of larger embed-
ded systems, such as an automotive or avionic platform, is the
large number of variants and the continuous development by
software updates in the field. Already today, modern upper-
class automobiles can be ordered in up to 225 configurations
with possible effects on the electric system [1]. This is only
possible because of software flexibility, but it turns integration
into a hard task.

To cope with this problem, OEMs currently maintain a
complex versioning database and perform exhaustive testing
to cover the whole configuration landscape, and this has to
be repeated for any update. This is a very time consuming
and costly procedure and puts a high burden on the integrator
(e.g. the car manufacturer) and its continuous collaboration
with all suppliers. This strongly limits the possible evolution
of an automotive embedded system over its lifetime.

An alternative is to move part of the design process to the
field by establishing an in-field test bed and/or by including
“self-x” (self-test, self-protection, self-optimization) functions
in the systems that are based on formal models of the re-
quired system behaviour. In this case only the actual system
configuration has to be verified. In this paper, we propose
a modular software service for the in-field software update
integration problem. We focus on performance guarantees
because, due to resource sharing, integration leads to non-
functional performance dependencies that are difficult to test,

even in the lab. Therefore performance guarantees are key in
integration.

The remainder of this paper is organized as follows. First,
we will give an overview of related work and outline the
methodology of managing contracts at runtime. Section IV
will give a brief definition of terms and explain the principles
of in-system contracting. Sections V and VI will elaborate on
the architecture of our runtime environment (RTE) and on the
associated protocol, respectively. Section VII will cover some
aspects of the implementation and give an overview of the
test environments used. In section VIII we will evaluate the
performance of the developed framework, to then conclude the
paper.

II. RELATED WORK

The common approach to face the challenge of system
integration is specification of each system component and
verification of the complete system using the data from the
specification. In recent years the component-based design
methodology was established to provide means to design com-
ponents and subsystems in isolation [2]. In Contract Theory
a similiar approach is taken - system component descriptions
are supplemented by assume/guarantee interfaces describing
functional and non-functional properties and constraints [3].
The composition of these components can then be tested for
compatibility and feasibility. Real-time extensions have been
proposed, that also enable verification of compliance with real-
time constraints using formal methods [4]. [5] proposed to
use contracts to specify software components w.r.t. component
behavior, interaction, synchronization and QoS attributes to
verify component composibility.

We propose to use the contracting approach at runtime
in the system itself. Our focus lies on hard real-time sys-
tems. Existing runtime implementations supporting contracting
between system components w.r.t. performance metrics as
described in [6] use periodic or total bandwidth servers [7]
to ensure isolation between applications and adherence to
contracts - thus employing orthogonalization, which tends to
impose restrictions on resource utilization. In the context of
embedded systems, [8] developed a contract-based framework
to support self-optimization w.r.t. timing properties based on
control theory. We are however not aware of any approach that
offers performance contracting mechanisms on a system-wide
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level based on formal methods - thus allowing verification
before execution and high utilization.

To allow contracting in the system, an additional software
layer has to be introduced to embedded software to control
and supervise access to platform resources. This trend towards
multiple software layers in embedded systems could already
be observed in recent years. The automotive industry has
developed a standardized middleware API as one result of
the AUTOSAR [9] initiative. Also, several research groups
are working towards layered software architectures to manage
applications in embedded systems on different levels (e.g.
reliability, soft real-time, trust levels) [10], [8], [11].

The software service presented in this paper follows this
trend of multiple software layers in embedded systems and
aims to incorporate the established principle of contracts into
such a system. The resulting RTE allows for self-protection
capabilities against infeasible system changes.

III. METHODOLOGY

Because in-field test is strongly limited (e.g. no test drives),
the approach presented here resorts to a formal update proto-
col, which assumes that the parties providing software updates
are generally well behaving and that in case of a failure, it must
be possible to determine liability.

We first assume that the individual software function to be
updated has been thoroughly tested or analyzed in the lab and
has been characterized with its execution time on the target
hardware, required bandwidth, and memory usage. This is a
realistic approach that is used for lab based integration today
[12], [13]. We assume that the supplier is responsible for the
correctness of the individual characterization. In the following
integration process, these data are used as performance specifi-
cation and are taken for granted, but are monitored to switch,
e.g., to a fail-safe state if the specification turns out to be
incorrect. In such a system, software function development,
integration, and safety can be treated as separate concerns
treated with separate mechanisms.

Contracts are used as interface between these mechanisms.
Monitoring is used to watch adherence to contracts. If well
defined, the contracts and monitoring can be used to determine
liability in case of failure.

We propose to establish an RTE as abstraction layer between
platform and application capable of managing such contracts.
As we are concerned with performance metrics, contracts
will refer to data relevant for system timing properties. We
aim at preverifying the contracts using formal methods be-
fore admitting corresponding configurations to take effect in
the system. Thus, the system will only transition between
provenly safe configurations. We focus on the overall structure
and the update protocol while individual modules, such as
the online performance verification may be exchanged. The
system model and the distributed performance analysis [14]
are based on the industrial offline tool SymTA/S [15] and
have previously been published. Architecture support, such as
virtualization or temporal separation using. e.g., time boxing,

are orthogonal methods and can support the self-protection
protocol. This is beyond the scope of this paper.

IV. CONTRACTING

In this section, we will elaborate on the principles of
in-system contracting. To introduce the main terms and con-
cepts used in this paper we will first provide a brief definition
of terms.

The term platform refers to the hardware any software
will run on. We assume that a platform consists of multiple
interconnected processors. These processors will be connected
by communication media. We will refer to processors and
buses as (computational and communication) resources.

We assume that a runtime environment is running on each
processor of this platform. We propose that the framework
described in this paper resides within this runtime environ-
ment. Furthermore, we expect the RTE to contain an operating
system capable of multi-tasking.

On top of the runtime environment, applications are run-
ning. An application consists of a set of potentially communi-
cating tasks. By task we understand a piece of code that will be
scheduled by the operating system within the RTE. Note that
although an application may span multiple processors it does
not necessarily use all processors available in the platform.

In addition to the term application, we will use the term
system to describe the combination of a platform running an
RTE on each processor as described above, that may run a
set of applications. We will also use the terms application
and system in order to describe the availability of information
within the RTE. If information is considered to be available
(or synchronized) application wide, we assume that the infor-
mation is available at each RTE instance that hosts at least
one task of the given application. Similarly, information is
available system wide if all RTE instances have access to it.

We refer to the binary data that contains the executable code
of a task as the task code. Note that the code of multiple tasks
may be provided as a single file.

In order to be able to configure the RTE and verify system
properties at runtime, we assume that additional meta infor-
mation is provided along with an application. We refer to this
description as annotations.

In line with work in interface based design [16], by a
contract, we understand a set of prerequisites an application
requires and a set of guarantees it can give in turn. In our
context of performance verification, the guarantees of applica-
tion contracts consist of a performance characterization of the
application in isolation, as specified in the annotations. The
prerequisites are a set of constraints the application assumes
to adhere to. The contracts include:

• A mapping of the tasks to the computational resources
• The task graph describing the inter-task communication
• Timing and activation models for tasks and communica-

tion links (bcet, wcet, period, jitter, minimum distance)
• Constraints on end-to-end latencies between tasks

If a contract is accepted, the RTE guarantees that all appli-
cations comply to their constraints given they do behave as



Fig. 1: Contracting Flow within RTE

described in the contract. The RTE becomes a contract broker,
managing contracts with applications in order to guarantee
undisturbed operation of the system.

In order to negotiate and verify contracts in the system
itself, we established a flow as depicted in figure 1. The
key components are a Contract Interface and a Contract
Repository. An application and its associated contracts are
presented to the system using the contract interface (1). The
software component responsible for negotiating the contracts
then inserts the contract data into the current system model
within the feasibility evaluator in order to determine feasibility
(2). In case an application can be accepted, its contract is
stored in the Contract Repository (3) and it is admitted to
execute on the system (4). Once the application is running,
execution monitoring components (5) supervise adherence to
the service contracts and can notify a controlling software
component in case a service contract is broken. Runtime
monitoring of timing properties, as used here, has been studied
intensively in the past [17], [18], [19] and is not further
discussed in this paper.

We assume that a new or updated application is loaded into
a central entity of the system from an external source. This
entity, the Update Controller, will distribute the annotations
of the application to the appropriate resources. Every instance
of the distributed feasibility evaluator (i.e. the analysis engine)
only receives data of tasks or task links that it has to analyze.
In case the application is accepted the Update Controller will
distribute the task codes to the appropriate resources. Note that
although an update controller is a central instance for the time
needed for any given update process, it may be executed on
any computational resource of the platform, potentially on a
different one for each update process.

V. FRAMEWORK ARCHITECTURE

In the scope of the EPOC project, we are implementing
a system as outlined above. The focus lies on developing
a suitable software architecture for contract validation and
enforcement. This backing framework is able to handle an-
notations, transform and insert them into an analysable model
for a model-based performance analysis engine and deduce
a decision whether the application can be accepted into the
system or not.

As we target in-system verification of real-time systems,
reliance on formally deduced application models becomes
inevitable. Model analysis and contract negotiation should
have minimal impact on execution of accepted applications
though. Thus, the framework architecture, as shown in figure 2,
is strictly separated into two domains, the Model Domain (left)
and the Execution Domain (right). While the former solely op-
erates on application models the latter enforces the parameter
settings according to the model. To ensure consistency of the
model and the execution parameters of accepted applications
the Contract Repository acts as an interface between the two
domains.

Furthermore, the strict decoupling of model and execution
domain has the advantage that system configurations can
be evaluated in the model domain without the necessity of
loading the actual application onto the embedded system. This
approach limits the temporary impact on required resources,
such as memory, on the system to a minimum, in case an
application or update is rejected.

The core component of the Model Domain is the Model
Analysis. It performs the feasibility check. In our case it is
based on a distributed performance analysis algorithm [14],
while also an external centralized analysis component could
be used. Models, as required by the analysis, are supplied
by the Contract Negotiation component. It accepts application
specifications and requirements via the Contract Interface,
transforms them into an analysable format and interprets the
results of the verification process. Closed contracts are stored
in the Contract Repository. This feasibility check can be
extended by a model-based optimizer to close a control-loop
in the model domain, enabling runtime optimization.

The Execution Domain, as depicted on the right hand side
of figure 2, enforces application contracts by setting execution
parameters of applications and supervising task behaviour. To
perform this task the Contract Enforcement reads accepted
contracts from the Contract Repository and configures the
platform accordingly (e.g. setting task and communication
priorities). Metrics about the actual behaviour of running
software components are collected by Contract Supervision
and compared to the expected behaviour. If violations are
detected they are reported back to Contract Enforcement which
takes appropriate measures.

Both domains in combination ensure safe evolution of the
system, as new configurations can be verified and evaluated
w.r.t. to their performance while running applications can be
monitored and controlled according to their model.

VI. UPDATE PROCEDURE

In order to manage dynamic software updates in an evolving
system, we developed a lightweight protocol which in the
following will be referred to as Update Protocol. The Update
Protocol is initiated by the Update Controller. Every time it
receives a new application model from an external source,
it distributes the annotations to all affected RTE instances.
The resulting configuration is analyzed distributedly and can
be optimized if necessary. The Contract Negotiation sends a



Fig. 2: Framework Architecture

resulting performance guarantee back to the Update Controller
if all constraints of all applications are satisfied. At this point
the feasibility of the new system configuration is determined.
If the contract is closed, it is stored in the Contract Repository
and the Update Controller transfers the application code to
the corresponding processors. In the following step Contract
Enforcement starts execution of the new application with
parameters obtained from the Contract Repository.

Note that only one Update Controller is active during the
update procedure, whereas the Model Domain as well as the
Execution Domain components are active on all resources,
forming a distributed evaluation and control system of coop-
erating software agents.

As Model and Execution Domain are composed of coop-
erating software agents that are each unaware of the global
system state, consistency poses an issue on several levels.
First, prior to system analysis, consistency of application
models across the affected resources has to be assured. In a
second step system analysis results have to be synchronized.
Finally all affected resources have to switch to the new system
configuration in a synchronized manner to prevent execution
of application components of different versions.

A state synchronization mechanism which performs a bar-
rier synchronization along the application’s task graph ensures
this consistency. It is implemented completely distributed and
is applicable to evolving applications to match the overall
framework concept.

We will now focus on the specific protocol that is executed
during the different phases of the update procedure (figure 3).
It consists of three main sections separated by synchronisation
procedures as described above to ensure data consistency
across all computational resources. In the first part the ap-
plication model is transferred to all affected computational
resources. In the second part the analysis is performed and, in
case the new configuration is proven feasible, the application
code is transferred. During the last part of the sequence all
settings and execution parameters are enforced.

In the first step the Update Controller transfers the appli-

Fig. 3: Message sequence chart of update process

cation model to the Contract Negotiation Components of all
RTE instances affected by the update. The transfer is realized
using the Contract Interface (1). Each Contract Negotiation
Component stores only a partial model in its local Contract
Repository (2). Furthermore, it inserts the model in the Model
Analysis Component (3) which later performs the system ver-
ification. The Contract Repository serves as a database for all
contracts. It stores accepted contracts, as well as contracts that
are yet to be evaluated. An application wide synchronisation
(4) ensures model consistency across the distributed system.

At the beginning of the second phase all necessary data is
available application wide, therefore the model-based analysis
(5) can be performed. If the analysis is implemented distribut-
edly, as in our implementation, this step requires cooperation
of the analysis component instances. This process is not shown
explicitly in figure 3. After the analysis process has finished,
the results are reported back (6) to the Contract Negotiation
Components that check the feasibility. In the following syn-
chronization step consistency of the analysis results is ensured
application-wide (7). The results are then forwarded (8) to
the Update Controller. If all analysis results are positive, the



update is accepted and the Update Controller transfers the
program code (9) to the appropriate computational resources.
A following application wide synchronisation (10) assures the
completion of the code transfer.

In the last part of the update procedure the Contract En-
forcement reads the new execution parameters (11) from the
Contract Repository to configure the communication resources
and set the task execution parameters (11). Furthermore the
task execution is started by setting the appropriate states in the
task manager. As soon as all tasks are running a notification
(13) is send by all Contract Enforcement Components to the
Update Controller to signal completion. When all notifications
are obtained, the Update Controller notifies all Contract Nego-
tiation Components that the update process is completed (14).
Only after this final notification new updates can be accepted.

VII. IMPLEMENTATION & TEST

We have implemented all components used in the Update
Procedure (figure 3) as elaborated above. The Model Analysis
component is an implementation of the distributed perfor-
mance analysis as described in [14]. uC/OS-II [20] is used
as micro kernel. The code is written in plain C.

In order to give an idea of the overhead of such a framework
we have analyzed the memory consumption. The first imple-
mentation of the framework uses about 270kB of memory for
program code of which 32kB are used by the micro kernel.
Additionally 105kB of memory is allocated for data of which
most is part of the Contract Repository. The data size of the
Contract Repository however can easily be scaled via defines
depending on the number of tasks a resource has to be able
to accommodate.

Two different test platforms are used to evaluate function-
ality and performance of the proposed framework.

For investigation of functionality in a real-world setup a
hardware platform consisting of two Microsys PM520 eval-
uation boards, that are connected via a CAN-Bus, is used.
Both boards are equipped with a Freescale MPC5200 micro-
controller.

The second test platform used, is the cycle-accurate hard-
ware simulator CoMET by VaST Systems Technology [21].
The setup allows for simulation of larger hardware setups and
at the same time provides means for measurement of execution
times on all processors. All experiments presented in this work
were performed on this platform. The simulated hardware
environment consists of three ARM926E processors running
at 200MHz which are connected via two CAN busses (fig. 4).
Figure 4a shows the setup of the framework components of the
test system. Contract Negotiation, Model Analysis, Contract
Repository and Contract Enforcement exist on all resources
and cooperatively perform their respective tasks. The Update
Manager resides solely on ARM 3.

The setup of the applications is depicted in figure 4b.
In the initial state all user tasks (o1-o3, n1-n4) and their
models are compiled into the code of ARM 3. The user tasks
are not running and all RTE instances are unaware of the
corresponding model information. An excerpt of the model

(a) Framework structure of test system

(b) Application structure of test system

Fig. 4: Setup of test system

Task
ID

Prio. Act.
period

Act.
jitter

WCET Comm. part-
ners

o1 2 500 5 10 o2

o2 2 n.a. n.a. 10 o1, o3

o3 3 n.a. n.a. 17 o2

n1 1 500 0 10 n2

n2 1 n.a. n.a. 15 n1, n3, n4

n3 1 n.a. n.a. 17 n2

n4 2 n.a. n.a. 13 n2

Link
ID

Prio. Act.
period

Act.
jitter

WCET src.
task

trg.
task

o1-o2 2 n.a. n.a. 120 o1 o2

o2-o3 3 n.a. n.a. 120 o2 o3

n1-n2 1 n.a. n.a. 150 n1 n2

n2-n3 1 n.a. n.a. 50 n2 n3

n2-n4 2 n.a. n.a. 150 n2 n4.

TABLE I: Model specification and performance requirements
(Act. period = Activation period [ms], Act. jitter = Activation
jitter [ms], WCET = worst-case execution time [ms], src. =
source, trg. = target)

specification of all tasks and communication channels of both
applications is given in table I. The required end-to-end latency
between o1 and o3 is 300 ms, between n1 and n3 500 ms and
between n1 and n4 also 500 ms. In a first step the application
consisting of tasks o1, o2 and o3 is inserted into the framework
following the update process as depicted in fig. 3. As no other
application is present in the system the latency along the path
from o1 to o3 simply equals to the sum of the WCETs of
its tasks and communication channels. The resulting latency
of 277 ms is lower than the specified constraint of 300 ms.
Thus the first application is admitted to the system and starts
execution.

After the first application is accepted the model of the



second application consisting of tasks n1, n2, n3 and n4 is
added to the system model (fig. 4). As the second application
uses the highest priorities in the system all other tasks and
communication channels would be influenced in their timing
behavior. The analysis returns path latencies of 687 ms be-
tween o1 and o3, 247 ms between n1 and n3 and 410 ms
between n1 and n4. As the latency constraint of the path
between o1 and o3 is violated the second application is rejected
and thus its update process is aborted after step 7 of fig. 3.

VIII. EVALUATION

In this section we will present the information on the
execution time of the update process for the given test system.
Timing information has been acquired with CoMET. All refer-
ences to steps in the update process refer to the corresponding
labels in fig. 3.

The entire process (steps 1-14) for inserting the first appli-
cation required approx. 426 ms. While negotiating the contract
(steps 1-8) took 143 ms, the remaining 283 ms were used for
distributing and starting the application (steps 9-14).

Further analysis of the execution time distribution showed
that large portions of these time windows were caused through
the fairly slow CAN bus.

The 143 ms for contract negotiation were composed of
108 ms for transmission of the model via the CAN bus (step
1), 23 ms for synchronization (steps 4 and 7) and 9 ms for
the distributed analysis itself (step 5). Synchronization and
analysis both use the CAN bus for communication as well.
The remaining 3 ms were used for protocol handling and local
model operations.

The execution domain operations of the update process
(steps 9-14) consist primarily of transmission of the program
code over the CAN bus (step 9), which required 259 ms,
and a synchronization step (step 10), that took 23 ms to
execute. During the remaining 1 ms task parameters were
set, communication channels established and protocol handling
was performed.

The values for the contract negotiation of the second
application are comparable. Contract negotiation (steps 1-
8) required 219 ms due to the larger model of the second
application. Analysis was only slightly slower (12 ms) which is
also due to the larger model, which led to an increased number
of CAN messages. As the second application is rejected
because of violated timing constraints the update process was
aborted after the negotiation process.

As can be seen from the above execution time analysis,
the proposed framework imposes an overhead of only some
100 ms, while these times are primarily influenced by the
transmission speed of the used communication medium. Thus
it is highly suitable for the targeted scope of application -
in-field verification of system updates.

IX. CONCLUSION

In this paper we have presented a software update service
with self-protection capabilities. Using contracts between ap-
plications and the runtime environment, component integra-
tion can be verified autonomously by the system itself. The

presented contracting API provides the user with a uniform
interface for specifying behaviour of applications and corre-
sponding performance constraints.

As our architecture and the associated update protocol
strictly separate application models and execution, the under-
lying verification process is decoupled to a large degree from
running applications. Thus, new system configurations can be
verified prior to their execution, maintaining a safe system
state at all times.

The prototype implementation shows that such a framework
can be implemented with low overhead concerning memory
footprint and processor allocation. Thus the presented architec-
ture is suitable for the targeted domain of in-field verification
of system updates in distributed embedded systems.
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