
Application-specific Memory Performance of a
Heterogeneous Reconfigurable Architecture

Sean Whitty, Henning Sahlbach, Brady Hurlburt, Rolf Ernst
Institute of Computer and Network Engineering

Technische Universität Braunschweig
38106 Braunschweig, Germany

{whitty | sahlbach | hurlburt | ernst}@ida.ing.tu-bs.de

Wolfram Putzke-Röming
Deutsche Thomson OHG, Germany

30625 Hannover, Germany
wolfram.putzke-roeming@thomson.net

Abstract— Heterogeneous reconfigurable processing architec-
tures are often limited by the speed at which they can access
data in external memory. Such architectures are designed for
flexibility to support a broad range of target applications, in-
cluding advanced algorithms with significant processing and data
requirements. Clearly, strong performance of applications in this
category is an extremely relevant metric for demonstrating the
full performance potential of heterogeneous computing platforms.
One such example, a film grain noise reduction application for
high-definition video, which is composed of multiple image pro-
cessing tasks, requires enormous data rates due to its large input
image size and real-time processing constraints. This application
is especially representative of highly parallel, heterogeneous,
data-intensive programs that can properly exploit the advantages
offered by computing platforms with multiple heterogeneous
reconfigurable processing elements. To accomplish this task and
meet the above requirements, a bandwidth-optimized external
memory controller has been designed for use with a heteroge-
neous reconfigurable architecture and its NoC interconnect.

With the help of the application described above, this paper
evaluates the proposed architecture in two forms: (1) with a
basic memory controller IP and (2) with the advanced memory
controller design. The results illustrate the full potential of
the computing platform as well as the power of heterogeneous
reconfigurable computing combined with high-speed access to
large external memories.

I. INTRODUCTION

Many high-performance computing platforms share a com-
mon bottleneck: the relatively slow speed at which they
can load and store large amounts of data to and from
external memory sources. Heterogeneous reconfigurable ar-
chitectures such as the Multi-purpose Dynamically Recon-
figurable Platform for Intensive Heterogeneous Processing
(MORPHEUS) platform are no exception. These heteroge-
neous architectures are designed with flexibility as a key
goal, which implies a broad range of target applications.
The MORPHEUS heterogeneous platform was developed with
such flexibility in mind in order to support simple tasks with
minimal memory needs, as well as applications consisting
of more advanced algorithms with significant processing and
data requirements. This flexibility supports an efficient use of
hardware resources, which is a critical property of embedded
systems due to the importance of size, cost, and power
consumption limitations.

To satisfy the requirements of both simple control-oriented
as well as data-intensive applications, the MORPHEUS plat-
form offers a scalable memory architecture. For best per-
formance, a custom solution was developed in the form
of an advanced quality-of-service (QoS) access optimizing
memory controller [1], designed to maximize bandwidth while

still delivering acceptable latencies. For applications with
more moderate memory requirements, the scalability of the
MORPHEUS computing architecture can be utilized to easily
integrate a more standard memory solution, which offers
significantly reduced performance in return for reduced area,
complexity, and overall packaging cost.

In this paper, we quantify the performance offered by
two specific versions of the platform with the above men-
tioned memory controllers, rather than focus on the memory
controller architectures themselves, which were presented in
detail in [1], [2]. To perform this comparison, a real-time
image processing application with massive data requirements
was selected as a real-world case study to demonstrate the
architecture’s ability to satisfy realistic memory needs. In
showing the massive performance increases offered by the
integration of an advanced memory controller, we demonstrate
the positive influence of a high-speed memory solution on
a heterogeneous reconfigurable architecture combined with
high-performance applications.

This paper is organized as follows. Section II introduces
the heterogeneous reconfigurable computing platform. Next,
Section III outlines the scalable memory subsystem and pro-
poses two memory controller solutions. Section IV illustrates
the integration of these solutions into the MORPHEUS ar-
chitecture. In Section V, a target application domain and its
requirements are presented, along with an example application.
Then, a thorough performance evaluation and corresponding
analysis are presented in VI, followed by a final conclusion.

II. HETEROGENEOUS RECONFIGURABLE ARCHITECTURE

The MORPHEUS project is a European collaboration
(IST027342) that provides a flexible heterogeneous platform
for HW/SW co-design via a unique architecture, composed
of reconfigurable computing units of varying granularity [3],
[4]. This concept allows high computation density common to
coarse-grained reconfigurable architectures, optimal hardware
structure like that found in many System-on-Chips (SoC),
and the flexibility and programmability of General Purpose
Processors (GPP), while at the same time attempting to
minimize the disadvantages of each platform. Another goal is
to provide an integrated toolset to easily map and implement
target applications, allowing shorter development times than
those typical for Field Programmable Gate Arrays (FPGA).

The architecture is based on an ARM9 processor, respon-
sible for data, control, and configuration transfers between
all system resources, and three Heterogeneous Reconfigurable
Engines (HRE), each targeting different types of computation:

M2000
eFPGA

(Fine­grained
Processing)

ARM9
Processor

Configuration
Manager

Main AHB

External
Memory

Controller

Config.
Memory

On­Chip
Memory

DMA
Controller

NoC Domain

Conf. Interface

Interrupt
Controller

Boot­Up
ROM

DMA
Controller

APB

External
Memory

Data Interface

DREAM
(Med.­grained
Processing)

Conf. Interface

Data Interface
PACT
XPP

(Coarse­grained
Processing)

Conf. Interface

Data Interface

Configuration AHB

Figure 1. MORPHEUS architecture

• The coarse-grained PACT XPP provides high computa-
tion density for stream-based algorithms with determin-
istic control and dataflow [5].

• The medium-grained DREAM targets computation inten-
sive applications that can iteratively run on small local
data memories [6].

• The fine-grained M2000 embedded FPGA is suited for
control-dominated tasks and variable data path widths [3].

Each HRE is seen by the system as a co-processor and
has access to fast on-chip memories for buffering of local
data. Off-chip memory access can be provided by multiple
solutions, such as an off-the-shelf IP or a state-of-the art,
multi-channel access optimizing DDR-SDRAM controller. In
addition, a Network-on-Chip (NoC) interconnect was imple-
mented in order to enhance the inter-HRE communication
capabilities. The NoC accelerates data delivery between HREs
via its spidergon design, [7] and enables processing of data
streams by removing the parallel data transmission bottleneck
common to centralized shared communication resources.

Finally, the MORPHEUS platform was designed to be
highly flexible and extendable in several aspects. A flexible
number of HREs and other peripherals can easily be added
to/removed from the NoC, which supports a flexible (even)
number of nodes. The architecture can therefore easily be
tailored to the needs of a wide range of applications with
considerably different requirements. For further information,
the architecture and toolset are described extensively in [3].

For demonstration purposes, a silicon prototype was pro-
duced to allow application mapping and testing with real
hardware. With the help of this prototype, it was shown in [8]
that the platform flexibility, along with support for run-time
reconfiguration, is critical to the successful mapping of such
an application and its efficient reuse of costly chip resources.
However, memory performance was found to be suboptimal.
Thankfully, the extendable structure of MORPHEUS makes it
an ideal platform for evaluation of the benefits to advanced
applications provided by high-performance memory solutions
within the reconfigurable computing paradigm.

III. SCALABILITY OF MEMORY PERFORMANCE

Heterogenous architectures such as MORPHEUS can cre-
ate the most challenging scenarious for memory controllers.
Therefore, a key feature of the platform is the scalability of the
memory subsystem. Due to area, power, and cost limitations
required by embedded SoCs, it is important not to overdimen-
sion a design when requirements can be met by a reduced

resource subset. At the same time, it is also important to be
able to support advanced applications with increased resource
requirements, should the need arise. In contrast to other re-
configurable architecture approaches, MORPHEUS addresses
a wide range of applications with very different memory
performance requirements.

Three scalability principles can be utilized with the MOR-
PHEUS architecture. The first is the integration of a low-cost,
basic memory controller connected to a single NoC node. This
option is described in III-A and is suitable for applications with
modest memory requirements.

The second option, described in III-B, integrates an ad-
vanced QoS access optimizing memory controller, which is
scalable from 1 to 8 client read/write ports that can be
connected to multiple NoC nodes. This solution can meet
significantly higher memory demands.

A third and final scalability option for extremely high
memory performance demands (not explored in this paper)
is the integration of multiple CMCs, which is supported by
the NoC interconnect through its flexible number of nodes.

A. Basic Memory Controller
For the MORPHEUS demonstration prototype, the ARM

PrimeCell MultiPort Memory Controller (MPMC) [2] was
integrated to provide access to external memory. Its advan-
tages include basic QoS features and multiple client ports.
In addition, the off-the-shelf IP has been utilized in multiple
successful SoC designs by the project partner responsible for
the physical layout and production of the silicon prototype.

However, for such a high-performance platform, the MPMC
has major disadvantages that will become even more signif-
icant for extended platform variations with more processing
power. The data bus has a maximum width of 32 bits for access
to SDRAM and SRAM memories. For DDR-SDRAM, the
maximum data bus width shrinks to 16 bits. More significantly,
the MPMC does not support access optimization strategies,
and can only internally buffer one outstanding read and write
request, which creates a significant performance loss over
theoretical maximum data rates.

Despite these disadvantages, the lightweight MPMC (26
KGates) is sufficient for many applications that do not require
frequent high-speed access to external memory. In addition, the
“silicon-proven” quality of the IP allows designers to integrate
the peripheral into a target system very quickly, which also led
to its selection for the MORPHEUS demonstration prototype.

B. Advanced QoS Access Optimizing Memory Controller
As previously stated, high-end applications designed for

MORPHEUS require large amounts of memory and significant
memory throughput to fully demonstrate its potential as a high-
performance reconfigurable architecture. Without these archi-
tectural properties, each of the high-performance processing
units will exhibit significant idle periods.

To prevent this data starvation and to eliminate external
memory bottlenecks, a bandwidth-optimized DDR-SDRAM
memory controller (CMC) (75 KGates), which was designed
for high-performance FPGA and ASIC platforms, was ex-
tended with a high-speed NoC interface (26 KGates) for
use with the MORPHEUS platform. Despite its focus on
maximizing data rates, the controller also uses traffic shaping
and supports multiple service levels to reduce latency when

MPMCConfig
NoC AHB Ports

[AHB]

[AHB]

[AHB]

 NI_MPMC

Prog Bus

DMA

DMA Prog

AHB Subsystem

[NoC Data]

NoC

To External
Memory

Figure 2. MPMC implementation architecture

necessary. Optimizations such as bank interleaving; which ex-
ploits the internal structure of DRAMs by accessing a second
bank while another is busy; request bundling, which groups
read and write requests together to minimize switch cycles;
and variable-length buffers, which store multiple outstanding
requests, can be used to significantly increase throughput and
have been included in the CMC.

Despite the CMC’s focus on throughput and achievement
of up to 75% of the theoretical maximum DDR data rate at a
given clock speed, access latencies also remain low compared
to other solutions. A description of the controller architecture
and access-optimizing strategies, its NoC interface, and pre-
liminary throughput and latency results lies outside the scope
of this paper and is available in [1] and [9].

IV. MEMORY CONTROLLER INTEGRATION

As described above, the extendable nature of the MOR-
PHEUS platform supports multiple external memory controller
solutions. This paper considers two such solutions. Informa-
tion regarding the utilization of both memory controllers is
summarized in Sections IV-A and IV-B.

A. MPMC Integration
Fig. 2 shows the silicon prototype’s NoC connection to the

memory controller. It uses the MPMC in combination with
its own network interface, the NI_MPMC, which serves two
purposes. First, it contains a direct memory access (DMA)
unit, which may be programmed by the ARM9 via the AMBA
bus subsystem to independently execute an NoC transfer.
Secondly, it contains the bridges to handle the several protocol
translations that must take place for a complete transaction
with the MPMC. The NoC utilizes the protocol based on the
high-performance STNoC described in [7]. It uses an advanced
data protocol (NoC Data) for data transfers, and a more
streamlined configuration protocol to transfer configuration
information. But while the NoC uses ports based on the NoC
Data protocol to send and receive packets to peripherals such
as the memory controller, the MPMC communicates using
only the AMBA Advanced High-performance Bus (AHB)
protocol. Therefore, when writing data from the NoC, the
NI_MPMC translates incoming requests from NoC Data sig-
nals to AHB signals before relaying the request onto the
MPMC. When returning data from a read request from the
NoC, the NI_MPMC must again translate before putting the
data on its output ports. This introduces undesired latency
overhead to each memory request sent to the MPMC.

The NoC uses 64-bit data buses and a 64-bit word size,
and its flexible NoC Data protocol is capable of transferring
packets ranging in size from 1-byte to 64-byte packets. The
MPMC has a 32-bit data bus, and scatter-gather techniques

CMC
NoC STNoC Ports

[NoC Data]

NoC

To External
Memory

Figure 3. CMC implementation architecture

may be used to reassemble 64-bit data words. The MPMC is
also capable of handling AHB bursts [2], which allows it to
take advantage of multiple STNoC packet sizes.

B. Advanced Memory Controller Integration

The high-performance QoS CMC was designed to commu-
nicate directly with the NoC native NoC Data and configu-
ration protocols via an advanced interface described in [1]. No
additional translation between protocols is needed. Therefore,
as shown in Fig. 3, the NI_MPMC can be completely removed.
This also removes the DMA within the NI_MPMC, which
means that transfers must only be setup by the DMA of the
peripheral requesting data. Although not shown in Fig. 3,
the Prog Bus from Fig. 2 still exists to program all DMA
transfers. However, since the CMC performs direct transfers
with the NoC, Prog Bus is not involved in CMC memory
requests, as there is no DMA to program. The CMC is
therefore connected directly to the NoC via a configurable
number of nodes that have direct access to a CMC client
port (up to 8). This direct connection removes the significant
latency overhead required by expensive translations when
using the MPMC.

V. TEST CASE APPLICATION DOMAIN

Several applications were selected to be mapped to the
heterogeneous computing platform. These include image pro-
cessing applications used in intelligent surveillance systems,
the PHY-layer for the IEEE 802.16e/j wireless standards, and
real-time post-processing applications for digital film.

The application selected in this paper to evaluate the mem-
ory performance of the heterogeneous architecture is the Film
Grain Noise Reduction (FGNR) application, which belongs
to the real-time high-resolution image processing application
domain. This application represents a real-world case study
that requires enormous data rates due to its large input image
size and real-time processing constraints.

A. Application Requirements

Real-time processing of high-resolution film or images
requires high-performance processing architectures, as men-
tioned in Section I. The most common processing tasks
are encoding, decoding, and post processing of digital film
data, tasks which traditionally have not been executed in real
time. With the increasing popularity of video distribution and
broadcast methods such as video on demand, however, real-
time encoders have become a necessity. Professional post-
processing systems are also beginning to demand real-time
computation because it allows immediate evaluation of results.

This real-time constraint implies that the algorithms must
process continuous data streams to meet deadlines. The com-
putation model of the MORPHEUS architecture explicitly
supports stream-based processing. However, without adequate
throughput to and from external memory, such applications

Discrete Wavelet Transformation

FlexWAFE FPGA 1

Motion
 Estimation

Compensation

87% slice usage
1.4 Mibit BRAM usage

ME
160 Mibit

ME
160 Mibit

MC
390 Mibit

FlexWAFE FPGA 2

Haar
2D DWT + NR

Haar -1

85% slice usage
3.1 Mibit BRAM usage

FlexWAFE FPGA 3

2D DWT + NR

83% slice usage
3.0 Mibit BRAM usage

DWT FIFO red
1280 Kibit

DWT FIFO gr/bl
2560 Kibit

DWT FIFO gr/bl
2560 Kibit

DWT FIFO red
1280 Kibit

33 11

9 3

1.5 1.5

0.75 0.750.75 0.750.75 0.750.75 0.75

1.5 1.5

3

3

3

3

3

3

3

Legend: data rate in Gbit/sx

Motion CompensationMotion Estimation

FWD

RGB->Y
Frame
Buffer

Frame
Buffer

MC

BCKWD

Temporal
1D DWT

Haar

3 Level 2D DWT
with Noise Reduction

3 Level 2D DWT
with Noise Reduction

Temporal
1D DWT-1

Haar -1

Noisy
input image

Denoised
output image

Figure 4. Advanced noise reduction algorithm

become data-starved and cannot meet real-time requirements,
despite stream processing support.

Of all the applications implemented on the heterogeneous
reconfigurable platform, the FGNR application exhibits the
most demanding memory requirements, processing several
data streams at a total of 28 GiBit/s (19.5 GiBit/s read,
9.5 GiBit/s write at 2K1 resolution). These requirements show
that the FGNR application will receive the greatest advantages
from a multi-channel bandwidth-optimized memory controller.

B. Film Grain Noise Reduction Application
Film grain noise reduction is a valuable technology for the

digital cinema market, allowing reduction or removal of the
undesired noise that is often introduced during analog to digital
source conversion. In this context, a lossless algorithm, which
implies exhaustive search comparisons, is a necessity due
to the stringent quality requirements of digital cinema data.
Therefore, algorithms such as 3DRS [10] that are less band-
width intensive than full-search algorithms are not applicable.
The underlying theory of the algorithm used for the application
is outlined in [11], and an FPGA-based implementation of the
application is presented in [12].

Fig. 4 depicts the algorithm decomposed into three distinct
modules, each with different processing characteristics and
massive data requirements: a bidirectional Motion Estimation
(ME) unit, a Motion Compensation (MC) unit, and a 2.5
dimensional Discrete Wavelet Transformation (DWT). The
processing requirements of each module are described in [8].

The computational requirements can be met by the three
MORPHEUS HREs due to their support for run-time reconfig-
uration. In order to process a frame entirely, the final mapping
of the application requires reconfigurations of the DREAM
and XPP, the two heavily-utilized HREs. However, with re-
configuration times as low as 2 clock cycles for the frequently
reconfigured DREAM and 1000 cycles for the less frequently
reconfigured XPP, this step becomes trivial. Therefore, from
the application’s point of view, the architecture can be seen as a
reconfigurable stream-processing platform that can effectively
process data as fast as it arrives.

The final mapping to the heterogeneous reconfigurable
architecture, including a description of necessary HRE recon-
figurations, is shown in detail in [8].

VI. PERFORMANCE EVALUATION

This section describes the experiments used to evaluate
the heterogeneous reconfigurable platform using the described
memory controller solutions.

12K implies 2048x1556 pixels/frame, 32 bits/pixel, and 24 frames/s

4x4 8x8 16x16 32x32 Sequential
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

MPMC: Applica-
tion-Controlled
MPMC: AHB
Ports
CMC: STNoC
Ports

Access Patterns

T
hr

ou
gh

pu
t

(G
iB

yt
es

/s
)

Figure 5. Write throughput per block

A. Experimental Setup
The following experiments are designed to quantify mem-

ory throughput and access latency available to the MOR-
PHEUS HREs using both of the described memory controller
solutions. Memory requests were generated during simulation
of the complete MORPHEUS architecture using the CMC and
MPMC in a Modelsim 6.4C environment. The simulations
utilized memory traces extracted from the FGNR application,
which was fully implemented on the MORPHEUS platform.
The traces exhibit two caterogies of memory access patterns.
The first, produced by the MC module, uses a block-by-block
method pattern to read and write image data; the second
access pattern consists of reads and writes to consecutive
addresses until the entire image is processed, as seen in the ME
module. The block-by-block method divides the image into a
given block size, then reads each of these blocks individually,
row by row. This represents a streaming data access pattern,
especially at larger block sizes where large, consecutive data
chunks are accessed. Both memory controllers are idle during
the comparatively lengthy DMA reprogramming time between
neighboring blocks.

Throughput measurements were taken both for the read
and write of the entire image, which includes the DMA
reprogramming time, and for the read and write of a single
block, which only considers the active period of the memory
controller. All experiments use a 32×32-pixel image. This
size was selected to allow the entire image to be stored in
on-chip memory when necessary. Larger images could easily
be supported by removing this requirement or increasing on-
chip memory sizes. However, the small image size has no
direct impact on the experimental results and will not effect
memory throughput or latency. These values change with
varying access patterns, but not with varying image sizes.

The first experiment measured the throughput and latency
of the MPMC memory controller exactly as it is implemented
in the MORPHEUS silicon prototype. A C application, which
mimics the MC and ME memory access patterns, was used to
program a DMA to handle all NoC transactions.

At the time of our experiments, the provisions to assemble
multi-word NoC transfers were not implemented in the NoC
infrastructure for use in applications, including the one used in
the above test. Therefore, two experiments were designed to
place requests directly on the ports of the memory controllers.
This allowed the comparison of each controllers’ handling of
large, multi-word NoC Data packets, assuming ideal trans-
lation to AHB in the MPMC case.

MPMC (GiByte/s) CMC (GiByte/s)
Block Size App.-controlled AHB Ports STNoC Ports Speedup
MC: 4x4 Write / Read 0.026 / 0.012 0.022 / 0.015 0.314 / 0.157 5.00 / 10.18
MC: 8x8 Write / Read 0.019 / 0.011 0.019 / 0.015 0.433 / 0.298 20.02 / 19.28
MC: 16x16 Write / Read 0.017 / 0.012 0.018 / 0.015 0.662 / 0.604 35.65 / 38.98
MC: 32x32 Write / Read 0.017 / 0.012 0.018 / 0.016 0.662 / 0.604 36.84 / 38.94
ME: Sequential Write / Read 0.017 / 0.012 0.018 / 0.015 0.662 / 0.598 37.08 / 38.62

Table I
WRITE / READ THROUGHPUT FOR BLOCK-BY-BLOCK ACCESS

It must be noted that the MPMC controller supports Flash,
SRAM, SDRAM and DDR-SDRAM memories [2]. However,
to reduce complexity of the physical IO interface as well as
costs for the prototype, all SDRAM ports were removed and
SRAM was used for external memory. Therefore, while CMC
results are presented for DDR-SDRAM, it was only possible
to perform the above MPMC experiments with SRAM, which
has faster access times than SDRAM at single-data-rate op-
eration. With the SDRAM ports available, the MPMC could
again utilize DDR-SDRAM memory. However, improvements
provided by double-date-rate access are immediately negated
by the required MPMC data bus width reduction from 32 to
16 bits when using DDR-SDRAM [2]. The CMC’s use of
DDR-SDRAM memory with a 64-bit data bus presents itself
here as an appropriate expansion over both the 32-bit SRAM
implementation found in the MORPHEUS prototype and the
available 16-bit DDR-SDRAM MPMC configuration. Perfor-
mance improvements due solely to data bus width increase and
double-data-rate operation are duly attributed below, thereby
making the comparison fair.

B. Throughput Results and Analysis

Tables I and II present the results of the block-by-block
and full image throughput experiments described above. The
tables present write and read data rates in the same column.
Measured values were the same for each block in an image.
Bold numbers indicate the values selected for the speedup
calculation. These values were obtained by measuring through-
put rates directly on the MPMC AHB ports and the CMC
STNoC ports, which allows for the most fair comparison.
For all throughput experiments, purely application-controlled
results, which were generated by the application running on
the simulation platform, are presented for the MPMC only,
as this was not possible with the CMC (see Section VI-A).
However, this is not a critical issue for our tests, since, as
clearly shown in Fig. 5, the observed values show marginal
differences between application-controlled memory requests
and those obtained by stimuli that reconstruct application
behavior during simulation.

The results show that in the block-by-block MC experiments
in Table I, the CMC throughput bests the MPMC throughput
by a minimum factor of 5 and a maximum factor of 39. In
all cases, a factor of 2 can be attributed to the CMC’s use
of DDR-SDRAM, where two data words are written/read per
clock cycle, and an additional factor of 2 speedup is due to the
CMC’s 64-bit data bus. However, the remaining increase must
be credited to the CMC’s access optimization techniques and
bandwidth-optimized design. CMC data rates increase with
block size until 16×16, while MPMC data rates remain nearly
constant for all block sizes in both read in write directions.
A single row of a 16×16 block contains 64 bytes, which is
exactly the size of a full NoC Data burst, as well as the

size at which the CMC performs optimally [9]. This explains
why no significant increases are seen above this block size.
Rows of blocks smaller than 16×16 are read and written by a
burst smaller than a full 64-byte data burst. However, because
these read and write requests are smaller in size, less data
is read/written per time unit than the CMC supports. For all
block sizes 16×16 or greater, this is no longer the case, and
the CMC’s burst-oriented design and larger data path are fully
utilized. When block-size is not an issue, as in the case of the
sequential ME writes/reads in Table I, similar data rates are
observed. This is due to the fact that this access pattern, like
those of block size 16×16 or greater, also accesses memory
in full 64-byte bursts, allowing maximum throughput.

Fig. 5 concisely illustrates this analysis in graphical form.
These observations hold for both read and write requests. A
read graph is omitted, as it exhibits an identical relationship.

Table II presents results when considering the entire image.
The increased precision shown here is due to extremely small
values in the 4×4 block case. When processing an entire
image, the time required to reprogram DMAs involved in the
transfer becomes relevant, as these reprogramming times can
reach more than 7000 cycles and occur when accessing pixels
from different blocks. This occurs frequently when the MC
processes an entire image, and the frequency increases with
decreasing block size. It should be noted that although the
CMC’s connection to the NoC does not contain a DMA, a
DMA belonging to another peripheral must be programmed to
execute a transaction with the CMC; therefore, DMA repro-
gramming time is still relevant to the CMC throughput when
processing an entire image. This large delay dominates the
measurement window, which leaves both memory controllers
idle for the majority of the time period under examination
and reduces the relative significance of CMC’s performance
gains over the MPMC. Accordingly, the speedups in Table II
are more modest than those in Table I. At block size 32×32,
which matches the size of the entire image, as well as in the
sequential pixel-by-pixel ME write/read test, there is no longer
interblock reprogramming time. Therefore, the optimized de-
sign of the CMC again greatly outperforms the MPMC when
the dominating idle cycles can be removed. Countermeasures
to optimize DMA operations to automatically reduce such
delays are outside the scope of this paper.

C. Latency Results and Analysis

Despite its bandwidth-optimized designed and deep in-
ternal buffers to facilitate memory access optimization, the
CMC consistently offers significantly lower latencies than
the MPMC. The results of several latency experiments are
provided in Tables III and IV. Data is presented only for
write data due to similarities in the read and write results.
Table IV examines a special case, the average latency of the
final word in a block, as it represents a worst case for the

MPMC (GiByte/s) CMC (GiByte/s)
Block Size App.-controlled AHB Ports STNoC Ports Speedup
MC: 4x4 Write / Read 0.00093 / 0.00064 0.00094 / 0.00078 0.00098 / 0.00082 1.01 / 1.05
MC: 8x8 Write / Read 0.00310 / 0.00266 0.00349 / 0.00282 0.00425 / 0.00341 1.19 / 1.21
MC: 16x16 Write / Read 0.00960 / 0.00702 0.00984 / 0.00817 0.02109 / 0.01680 2.10 / 2.06
MC: 32x32 Write / Read 0.01703 / 0.01183 0.01779 / 0.01550 0.66227 / 0.60359 36.84 / 38.94
ME: Sequential Write / Read 0.01702 / 0.01183 0.01779 / 0.01548 0.66227 / 0.59791 37.08 / 38.62

Table II
WRITE / READ THROUGHPUT FOR ENTIRE IMAGE

CMC. When the final word of a block is transferred, the CMC
has already experienced a “warm-up” period and its internal
request buffers, used to optimize memory requests, are at their
fullest. This could imply increased access latencies.

It should be noted that the CMC was designed to communi-
cate using the NoC’s native protocol and consequently is not
subjected to increased latencies caused by complex protocol
translations. These differences can been seen by comparing the
MPMC application-controlled column with the CMC column
in Table III. Since this gives the CMC a clear advantage but is
not specifically related to the memory controller architecture
itself, a more interesting comparison is between the MPMC
AHB port and CMC columns. Here, the protocol translation
times are removed from the MPMC, providing a more direct
comparison between the bold columns. These values are
used for the percent reduction calculations. The CMC still
outperforms the MPMC by 67% in the average case and 37%
in the worst case (maximum latency). The worst case is again
examined for all access pattern types in Table IV. For each
pattern, the CMC completes memory requests faster than the
MPMC. This is a significant victory for the SDRAM-based
CMC, since SRAM latencies are much faster than SDRAM
latencies when only the memory module (without controller) is
considered. Therefore, even if the time required for the MPMC
protocol translation is made negligible, it is clear that the
MORPHEUS platform using the CMC will experience greatly
reduced memory access latencies.

VII. CONCLUSION

In this paper, we have examined a heterogeneous recon-
figurable architecture and quantified the performance of its
scalable memory subsystem using two memory controllers.

MPMC CMC
App.-controlled AHB ports STNoC ports % Reduction

Latency cycles cycles cycles
Avg. 126.19 70.94 23.31 67%
Max 161.00 84.00 31.00 37%
Min 41.00 24.00 15.50 35%

Table III
WORST CASE LATENCY FOR WRITE ACCESSES, BLOCK SIZE 4×4

MPMC CMC
AHB ports STNoC ports % Reduction

Access Type cycles cycles
4x4 84.00 29.00 63%
8x8 84.00 29.00 65%
16x16 84.00 18.00 79%
32x32 84.00 18.00 79%
Sequential 84.00 18.00 79%

Table IV
WORST CASE LATENCY OF FINAL WORD WRITES

Through thorough experimentation and careful analysis, we
have shown vast throughput and access latency improvements
offered by a high-performance memory controller solution,
which enables real-time processing of significantly larger
resolutions on the heterogeneous reconfigurable platform. This
demonstrates the potential of the MORPHEUS platform for
data-intensive applications such as the FGNR.

A final important observation is that these results allow
developers of high-performance image processing algorithms
to make accurate estimates on the performance of potential
MORPHEUS applications, as well as quickly calculate, based
on the integrated memory solution, the application scalability
with respect to image size. For example, the CMC offers a
throughput speedup factor of just over 36 for sequential read
and write accesses. Since the amount of raw image data scales
quadratically with image resolution, a developer can quickly
see that the CMC enables real-time processing of resolutions
6 times greater than those supported by the MPMC.

REFERENCES

[1] S. Whitty and R. Ernst, “A Bandwidth Optimized SDRAM Controller
for the MORPHEUS Reconfigurable Architecture,” in Parallel and
Distributed Processing Symposium (IPDPS). IEEE, April 2008.

[2] ARM Ltd., PrimeCell MultiPort Memory Controller (PL175), ARM
Ltd., 2003.

[3] N. Voros, A. Rosti, and M. Hübner, Eds., Dynamic System Recon-
figuration in Heterogeneous Platforms - The MORPHEUS Approach.
Springer Netherlands, 2009, vol. 40.

[4] F. Thoma, M. Kühnle, P. Bonnot, E. M. Panainte, K. Bertels, S. Goller,
A. Schneider, S. Guyetant, E. Schüler, K. D. Müller-Glaser, and
J. Becker, “MORPHEUS: Heterogeneous Reconfigurable Computing,”
in Proceedings of 17th International Conference on Field Programmable
Logic and Applications (FPL07), August 2007.

[5] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Wein-
hardt, “PACT XPP—A Self-Reconfigurable Data Processing Architec-
ture,” in The Journal of Supercomputing, 2004.

[6] F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, P. Rolandi, C. Mucci,
A. Lodi, A. Vitkovski, and L. Vanzolini, “A dynamically adaptive
DSP for heterogeneous reconfigurable platforms,” in Proceedings of the
Conference on Design, Automation and Test in Europe. ACM Press
New York, NY, USA, 2007, pp. 9–14.

[7] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,
“Spidergon: a novel on-chip communication network,” in Proceedings
of the International Symposium on System-on-Chip, 2004, pp. 16–18.

[8] S. Whitty, H. Sahlbach, R. Ernst, and W. Putzke-Röming, “Mapping
of a Film Grain Removal Algorithm to a Heterogeneous Reconfigurable
Architecture,” in Proceedings of Design, Automation and Test in Europe
(DATE), April 2009, pp. 27–32.

[9] S. Heithecker, “Communication and Memory Scheduling in Reconfig-
urable Image Processing Systems,” Ph.D. dissertation, 2008.

[10] G. de Haan, P. Biezen, H. Huijgen, and O. A. Ojo, “True motion
estimation with 3D recursive search block matching,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 3, pp. 368–379, October
1993.

[11] S. Eichner, G. Scheller, U. Wessely, H. Rückert, and R. Hedtke,
“Motion compensated spatial-temporal reduction of film grain noise in
the wavelet domain,” in SMPTE Technical Conference, New York, 2005.

[12] S. Heithecker, A. do Carmo Lucas, and R. Ernst, “A High-End Real-
Time Digital Film Processing Reconfigurable Platform,” EURASIP Jour-
nal on Embedded Systems, Special Issue on Dynamically Reconfigurable
Architectures, vol. 2007, pp. Article ID 85 318, 15 Pages, 2007.

