
A Recursive Approach to End-To-End Path Latency
Computation in Heterogeneous Multiprocessor Systems

Simon Schliecker, Rolf Ernst
Institute of Computer and Communication Engineering

Technische Universität Braunschweig, Germany
[schliecker | ernst] @ ida.ing.tu-bs.de

ABSTRACT
This paper proposes a method for the derivation of end-to-
end delays of applications that involve processing on multi-
ple components in a heterogeneous multiprocessor system.
The procedure precisely captures the pipelined and paral-
lel processing of multiple events along an application path
by accurately capturing the resource timing and avoiding
the pay-bursts-only-once problem. Both time-triggered and
event-triggered task activation schemes with arbitrary event
patterns are supported.

In contrast to previous work, complex application topol-
ogies are allowed: The approach considers path forking and
merging, as well as functional cycles and non-functional cy-
clic dependencies. The basis for the proposed method is
an iterative compositional performance analysis, that allows
computing event models in such systems. Based on the event
models and local performance abstractions we propose a re-
cursive approach to the derivation of the worst-case latency.

Categories and Subject Descriptors C.3 [Special-
Purpose and Application-based Systems]: Real-time
and embedded systems General Terms: Performance, Ver-
ification Keywords: real-time, multiprocessor, path latency

1. INTRODUCTION
Commonly, real-time systems that meet the computational

requirements of today’s demanding applications are com-
posed from a variety of heterogeneous components, such as
processors, busses, or hardware units. This composition op-
timizes important aspects of a design: The component spe-
cialization delivers high performance at a reduced cost and
the application can be parallelized among the involved com-
ponents which leads to an increased throughput. When such
a system is expected to execute under real-time constraints,
its temporal behavior needs to be investigated for compli-
ance of the resulting timing with the application’s require-
ments. For this, formal methods are without alternative
when it comes to the reliability of their results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

To allow the application of such methods in a produc-
tive environment, several factors are important beyond the
proven correctness: The results need to be as accurate as
possible, because any overestimation will directly translate
into an overdimensioning of the actual components, which
ultimately means higher costs. Furthermore, to allow design
space exploration, the analysis needs to be time-efficient and
scale well to realistic system topologies and sizes.

Event-driven task activations have often been seen as a
problem for the analysis of such multi-component systems,
as local response time analysis can only be performed when
the timing of the task activating events is known. In sys-
tems with cyclic dependencies, there is often no sequence
of local analyses that allows a direct solution. For this rea-
son, compositional analysis approaches [23, 4, 18, 8] rely on
event models to express the possible event timing and derive
conservative event models through iteration.

This paper proposes a two-step approach to system-level
performance analysis. In a first step, the task activating
event models are derived throughout the system. For this,
the amount of dynamic, event-triggered task activations is
bounded by event models that are provided by a composi-
tional performance analysis. On this basis accurate system-
wide information can be derived, namely the end-to-end
path latency of applications that involve the processing of
multiple tasks on multiple processors. The proposed ap-
proach greatly improves the accuracy of simpler approaches
by acknowledging the effect of pipelined processing and the
fact that overload situations are of transient nature. It
avoids the pay-bursts-only-once problem that is present in
other analyses. Still, we provide a versatile analysis, by al-
lowing to combine a heterogeneous set of components and
scheduling policies, with complex application topologies in-
cluding functional cycles and non-functional cyclic depen-
dencies.

The remainder of this paper is structured as follows: First,
we present and evaluate the work related to the proposed ap-
proach in Section 2. We then introduce the new method to
derive end-to-end latencies via multiple tasks on multiple
processors that allows arbitrary event models and consid-
ers event pipelining in Section 3. We turn to diverging and
merging path topologies in Section 4 and cyclic dependen-
cies in Section 5. We conclude the paper with experiments
(Section 6) and our conclusion in Section 7.

2. RELATED WORK
The performance analysis problem is addressed by various

compositional approaches that separate the problem into

local component analyses and the modeling of event traf-
fic between them. In Network Calculus [11] and the Real-
Time Calculus [4] based on it, the local resource behavior is
modeled as the execution time provided to the processing of
events of a certain stream within a time window of given size
∆t. Such a resource curve is depicted in Fig. 1a, for min-
imum (β−(∆t)) and maximum supplied service (β+(∆t)).
The approach derives output event models and remaining
resource capacity by folding operations in continuous time
domain.

Figure 1: Models of Resource Service.

The opportunities of relying on simpler event and resource
models have been explored in [6]. Here, the basic metric to
model the real-time performance of the components are the
tasks’ worst (and best) case response times. This simple
metric has been the focus of numerous research in single
processor scheduling theory such as [10][1][24]. A common
procedure for its derivation is symbolic simulation of a criti-
cal instant scenario. Various extensions have been proposed
to improve the analysis results (e.g. by considering offsets
[13] or variable task execution times [12]) and consider real-
istic scheduling behavior (e.g. FlexRay protocol [16], cache
related preemption delay [20]).

A different approach to multiprocessor analysis is cho-
sen in the holistic approaches of [25][5][15] where the classi-
cal single-processor scheduling theory is systematically ex-
tended and can be tailored toward a specific combination
of input event model, resource sharing and communication
policy. The global view on the system allows to take global
correlations into account. However, in the case of a large
number of such dependencies, the complexity of the analy-
sis grows with system size and heterogeneity. In practice,
deterministic networks such as TDMA are therefore highly
useful to simplify the analysis procedure. Our analysis will
not rely on such a holistic view, but rather perform a hi-
erarchical analysis, extracting all relevant information from
local resources before composing them on the system level.

The timing behavior of a system can also be modeled with
the help of dataflow graphs in [3]. Properties such as the
buffer requirements or the throughput of a system are then
derived on the basis of max-plus algebra [2]. While the ap-
proach delivers accurate results for static systems and pre-
dictable arbitration policies, it does not allow to capture
general schedulers in which the guaranteed service supplied
to one application depends on the load imposed by another.

All of the above approaches bring a method to compute
the end-to-end latency of events that are processed by se-
quential tasks on multiple resources. The simplest way to
conservatively determine the latency is by accumulating the
local worst-case response times as is done in e.g. [22] and [6].
However, this procedure is inaccurate in the case of bursty
event occurrence owing to the ‘pay-bursts-only-once” prob-
lem. A burst of events can in general occur at the input of
any task along a path — leading to large local worst case

response times — but the same event processed along the
path can not experience this delay at each task.

Better estimates can be achieved through the convolu-
tion of component behavior along the path as is done in
[11][4]. However, these methods rely on the concept of con-
tinuous time service curves. In general the folding operations
can therefore be computationally intensive. The approaches
have not been extended to cover analysis dependencies of
functional cycles. The proposition of Section 3 is to perform
similar folding operations in discrete time domain using the
multiple event busy time. This naturally limits the com-
puted values to the critical candidates.

In [7] an efficient method to compose the latency of pipeline
stages is presented. The key idea is the derivation of a sub-
stitute single processor system which is then investigated for
schedulability. However, it is specifically aimed at homoge-
neously scheduled systems, and does not allow for any cyclic
functional or non-functional dependencies.

2.1 System Model
Tasks represent a sequence of operations with known min-

imum and maximum execution time. A task is activated by
an event, and produces an event before the execution of the
activation is finished. Tasks are mapped to resources that
arbitrate between the tasks mapped to it according to their
scheduling policy, which causes task activations to possibly
interrupt each other.

2.2 Event Models
A key element of compositional performance analysis is

the expression of the traffic flow between different compo-
nents with the help of event models. In [4] and [6] event mod-
els describe the maximum and minimum number of events
η that may occur during a time interval of given size ∆t.
Figure 2 shows such an event model representation on the
left.

Figure 2: Event Model Representation.

An event model can also be expressed by the distances
of the contained events. This is shown on the right side
of Figure 2. The functions δ−(n) and δ+(n) represent the
minimum and maximum distance between the occurrence of
any n events in the stream. The δ functions are therefore
meaningfully defined only for n ≥ 2. Both the δ and the η
representation can be converted to each other, such that the
δ−(n) function can be represented by the η+(∆t) function
and vice-versa (the same is true for δ+(n) and η−(∆t)). The
conversion can be done as follows:

δ−(n) = inf
0≤∆t,∆t∈R

{∆t | η+(∆t) = n} (1)

η+(∆t) = max
2≤n,n∈N

[{n | δ(n) < ∆t} ∪ {1}] (2)

In this paper we will mainly utilize the δ representations.
This representation has the strong advantage of being a dis-
crete function of n, rather than the η representations, which

are continuous. This allows us to conveniently investigate a
discrete set of relevant events in our formulas, rather than
operating with continuous functions, in which only the steps
contain true information.

Correct δ functions have some fundamental properties (e.g.
super-additivity [11]), but no rules are imposed on the pa-
rameters with which they are actually represented. For a
compact description, the standard event models in [17] rely
on the three parameters event stream period P, event stream
jitter J , and minimum distance between any two events
dmin. The δ-function of e.g. a bursty event stream can then
be expressed as follows:

n ≥ 2 : δ+(n) = (n− 1)P + J (3)

δ−(n) = max((n− 1)dmin, (n− 1)P − J) (4)

2.3 Resource Model
In [1, 24], the busy period is defined as the time inter-

val from the occurrence of a “critical instant” until the re-
source is idle for the first time. One of the task activations
within this busy period then experiences the worst case re-
sponse time Rmax. This concept has been generalized in
[19], where the multiple event busy time function was intro-
duced to represent the amount of time necessary to process
a certain number of events that arrive within the same busy
window. For example, B+(1) is the maximum busy window
inflicted by a single event that arrives after the previous
was finished. B+(2) is the maximum busy window size that
is spanned by two events, where the second arrives before
the first is finished. The minimum busy time B− is defined
correspondingly.

Definition 1 (Multiple Event Busy Time). The n-event
busy time B+

i (n) (B−i (n)) of a task i is given by the max-
imum (minimum) time it may take i to process n events,
given that all but the first of the n events arrived before the
preceding was finished.

Figure 1b) shows an example minimum and maximum
busy time function. Comparable to the service curves in
network calculus, the multiple event busy time is indepen-
dent of the actual activating event model of the investigated
task i.

As an example, Theorem 1 provides the multiple event
busy time for static priority preemptive scheduling of inde-
pendent tasks without preemption costs. However, the mul-
tiple event busy time can also be provided for other schedul-
ing policies [19].

Theorem 1. The multiple event busy time B+
i (n) for a task

i under static priority preemptive scheduling with indepen-
dent tasks is given by

B+
i (n) = n · Ci +

X
j∈hp(i)

(η+
j (B+

i (n)) · Cj

where

Ci, Cj is the maximum core execution time of task i, j.

hp(i) is the set of tasks with higher priority than i.

η+
i (∆t) is the maximum number of events that lead to an

activation of task i in a time window of size ∆t.

A proof for this theorem can be found in [19]. Equation 5
can be solved iteratively until a fixed-point has been found.

2.4 Compositional Performance Analysis
In the multiprocessor performance analysis of [6] the anal-

ysis of individual components is interleaved with the prop-
agation of event models. This procedure is repeated until a
fixed-point representing conservative estimates of the event
traffic anywhere in the system is found. This framework is
shown in Figure 3. A description of the analysis procedure
follows.

Figure 3: Compositional Analysis Loop.

First, the environmental input event models representing
the minimum and maximum amount of events that the sys-
tem is exposed to are specified (1). All other input event
models within the system are initialized with optimistic start-
ing points, which are iteratively refined during the analysis
procedure. These event models are supplied to the individ-
ual resources (2), where they are used for local analysis (3).
This local analysis provides timing information for each task
mapped to the resource (such as the best-case and worst-case
response times (Rmin and Rmax) based on single processor
scheduling theory [10][24], or the more expressive multiple
event busy time B+(n) and B−(n) introduced in the previ-
ous section).

Based on the components timing information, the output
event models are calculated. These output event models
can in turn be input event models to other components, or
outputs to the environment. The output event models are
compared to those used in the previous analysis iteration (4).
If all are the same the analysis has converged, otherwise the
corresponding local analyses are repeated with the refined
inputs.

All event models can only become more generic with each
iteration [18, 21, 9], meaning that each iteration contains the
previous models. Thus, the complete procedure is monoto-
nic. The analysis is complete if either all event streams
converge toward a fixed-point, or if an abort condition, e.g.
the violation of a timing constraint has been reached.

In this paper we assume that all task activating event
models are known. Thus, in the case of event-driven task
activations and dynamic scheduling, a compositional perfor-
mance analysis has preceded the investigation of the path
latencies as described in the following sections.

3. PATH LATENCY
A common problem in real-time systems is that multiple

tasks on the same or different processors are subsequently
involved in the processing of an event. For example, mul-
tiple controllers can be involved in a sensor-actor chain.

Figure 4: Example For Worst-Case Path Latency of Event 0 along the path {C0, T1, C2, T4}.

But also streaming applications have throughput constraints
that are determined by the sequential processing on multi-
ple resources. Such a processing chain opens opportunities
to use specialized components, and benefit from increased
throughput through event pipelining. However, these bene-
fits can only be exploited for real-time systems, if an accu-
rate analysis is available that captures the timing behavior.

The classical approach to derive the end-to-end latency
[6][22] has been to accumulate the individual task worst-
case response times along the path. This simple summation
is then a conservative estimate of the end-to-end latency.
But obviously it also leads to a large overestimation in the
case of bursty event arrivals: If a burst enters the system
this translates into large local worst-case response times, as
an event may have to wait for preceding events of the same
stream to be finished. Usually, such a burst can occur any-
where along the considered path, and consequently all local
worst-case response times will be relatively large. In reality
however, an event that has been delayed by its predecessors
on one resource can not be fully delayed by the predecessors
again on the successive resource. During its waiting time
the preceding events have continued to be processed on the
successive resources.

Note that the calculated local worst-case response times
and traffic estimates may be correct and conservative, only
can they not be experienced by the same event traversing a
path. This effect has been called the “pay-burst-only-once”
phenomenon [11]. Similar to the approach in network calcu-
lus, we avoid this problem by providing a dedicated analysis
for the complete path that considers the correlation between
token arrival times and local response times. We build on
this analysis to consider more complex topologies such as
merging and diverging paths and functional cycles. The
rationale behind the improved path latency analysis is ex-
plained in the following example.

3.1 Example
Consider a system with 2 CPUs and 2 Busses, for which

a possible gantt diagram is depicted in Figure 4. A critical

message needs to be periodically transported via the path
{C0, T1, C2, T4}, and arrives already with a small jitter. On
the two CPUs, higher priority tasks T2 and T3 are period-
ically activated, with no known correlation to T1 and T4
(such as offsets).

Once the messages have been transported over Bus1, two
scenarios are possible that may lead to a worst-case latency
of an arbitrary event 0:

1a) The interference by the higher priority task T1 is aligned
with the arrival of event 0 (indicated by the small trian-
gle), and thus the corresponding activation will expe-
rience the worst-case multiple event busy time B+

T2(1).

1b) The interference by T1 is aligned with the arrival of
the preceding event −1, and thus the corresponding
activation is delayed by the unfinished previous acti-
vation. In this case both events −1 and 0 have been
processed B+

T2(2) after the arrival of event −1.

Task activations further in the past may not interfere in this
example due to a sufficient distance between the activating
events. Scenario 1b) produces a later production time of
event 0 at the output of CPU1:

latin→T2 = max[0 +B+
C1(1) +B+

T2(1),

0− δin(2) +B+
C1(1) +B+

T2(2)] (5)

This reasoning can be continued for the subsequent re-
sources. On Bus2, the additional latency of event 0 is
straight-forwardly bounded by B+

C2(1). There can be no in-
terference from preceding activations, and thus no scenarios
need to be checked.

On the next component, CPU2, there are again two rel-
evant scenarios which may cause the largest latency incre-
ment for event 0 to be processed by task T4. Event 0’s
finishing time is maximized, if the interference of task T3 is
aligned with the arrival of event 0, as depicted in Scenario
2a. Aligning the interference with the arrival of the previ-
ous event, as shown in Scenario 2b, can not lead to a larger
production time of event 0 at the output of T4.

The worst-case path latency for event 0 is in this example
given by Equation 6, in which the different possible scenarios
are listed. Only two events may interfere either on CPU1 or
CPU2, because the arrival of three events is always further
apart than the time to process two events on any resource.

latin→T3 = max[(6)

0 +B+
C1(1) +B+

T2(1) +B+
C2(1) +B+

T4(1),

0− δin(2) +B+
C1(1) +B+

T2(2) +B+
C2(1) +B+

T4(1),

0− δin(2) +B+
C1(1) +B+

T2(1) +B+
C2(1) +B+

T4(2)]

The concept of the worst-case path latency can be gen-
eralized to the worst-case processing time for a number of
events. The classical latency is then a special case of this
n-event latency for n = 1. This metric can be useful, for ex-
ample, when a series of samples needs to be collected before
a valid output can be calculated. Also, it allows to con-
sider multiple events in larger time frames, which allows to
contain the influence of transient effects.

3.2 Pipelined Path Latency
First, we will introduce the concept of causal dependence,

which provides the relationship between events at the input
of a task and those produced by it. For the scope of this
paper we assume that each task is activated once at the
moment when one event has arrived at each of its input
ports (“AND activation semantic”), it is then ready until it
has been assigned sufficient time on the processor and then
terminates. Each task activation produces exactly one event
at each of its output ports before it terminates.

All events are numbered according to the sequence of their
occurrence — events occurring later receive higher numbers.
We will later focus on an arbitrary event 0, thus preceding
events will have negative numbers. The arrival time of an
event n at the resource to which task i is mapped is denoted
with ei−1(n). The time at which the resulting task activa-
tion produces an event is denoted by ei(n). Tasks process
the events of an event stream in-order. This is a typical as-
sumption in scheduling theory matching the design practice.
Prioritized events are modeled with separate event streams.

Along a path of tasks, defined in the following definition,
the output events of one task become the input events that
activate the successive task.

Definition 2 (Path). A path, P = {T1, Tend} is a fully
ordered set of tasks between the path beginning T1 and the
path end Tend, such that for each task i ∈ P, each activation
of i is causally dependent on an activation of its predecessor
i− 1.

Definition 3 (Causal Dependence of Events). An event b is
causally dependent on event a, if b is produced by the same
task activation that consumes a, or the task activation that
produces b is causally dependent on the task activation that
consumes a.

Definition 4 (Causal Dependence of Task Activations). A
task activation B is causally dependent on another task ac-
tivation A, if B is activated by an event that is causally
dependent on the event that has led to A.

Definition 5 (Numbering). A task activation is activated
for the n-th time when it has received n events at each of its
inputs. Each task activation produces exactly one event with
the same number.

With these definitions, we can formally define the path
latency as illustrated in the above example.

Definition 6 (Path Latency). The n-event end-to-end la-
tency of path P = {T1, Tend}, is defined as the maximum
distance between the arrival of an arbitrary event 0 at the
input of T1 and the production of the n-th causally depen-
dent event at the output of the last task Tend.

latP(n) = max eend(n− 1)− e0(0) (7)

The maximum value of latP(n) depends on the actual tim-
ing of the events that are processed along the path as well
as the timing of all other events in the system. In our ap-
proach, we abstract the timing of the other events with the
help of the multiple event busy time model per involved
task, which represents the local worst-case behavior. We
compose these local results to derive a maximum value for
latP(n) that takes into account the inherent pipelining of
event processing along the path.

Because the events arriving at the first task of the path
belong to the same event stream, their arrival times are cor-
related, so that their minimum (and maximum) distances
are given by their comprising event model. Thus, if the ar-
rival time of one event is known, all preceding and successive
events have a certain minimum and maximum distance from
this event according to (8) and (9).

ai(p) ≥ ai(q) + δ−i (q − p+ 1) ∀p, q ∈ N, p < q (8)

ai(p) ≤ ai(q) + δ+
i (q − p+ 1) ∀p, q ∈ N, p < q (9)

These inequations can be used to bound the latest possible
arrival times of events at any task where the input event
model is known. For the derivation of path latencies, this
bound is particularly interesting at the beginning of a path
(i.e. for i = 1).

Lemma 1. With respect to the arrival of an event 0 at task
i, the event n, with n 6= 0 arrives at task i no later than

ei−1(n) ≤

(
ei−1(0)− δ−(−n+ 1), if n < 0

ei−1(0) + δ+(n+ 1), if n > 0

where δ−(n) (δ+(n)) is the minimum (maximum) distance
between any n events arriving at task i.

Proof. All events leading to activations of task i are con-
strained by their corresponding event stream, which defines
a minimum δ−(k) and maximum δ+(k) distance between
the occurrence of any k events. Any event preceding event 0
(n < 0) has a minimum distance to the occurrence of event
0, and can thus not arrive later than ei−1(0)− δ−(−n+ 1).
Any event succeeding event 0 (n > 0) has a maximum dis-
tance to the occurrence of event 0, and can thus not arrive
later than ei−1(0) + δ+(n+ 1). 2

The following lemma provides an upper bound on the time
at which an arbitrary activation of a task i in the system is
finished (ei(n)), relative to its activation (ei−1(n)), and the
preceding activations of the same task (ei−1(n− k)).

Lemma 2. The exit time ei(n) of any event n produced by
task i is bounded by

ei(n) ≤ max
k≥0
{ei−1(n− k) +B+

i (k + 1)} (10)

where

• ei−1(n− k) is the arrival time of the k-th event before
event n.

• B+
i (k + 1) is the maximum multiple event busy time

for k + 1 events to be processed by task i.

Proof. The output event n is produced at time ei(n)
by the activation of task i that is activated by the event n
that arrives at time ei−1(n). There are two cases: Either
the previous activation of task i is finished when the input
event arrives, or it is not.
Case 1: ei−1(n) > ei(n − 1) (previous activation finished).
In this case, following the definition of the busy time, the
activation n is finished no later than ei−1(n) +Bi(1).
Case 2: ei−1(n) < ei(n − 1) (previous activation not fin-
ished). The input event n arrives while at least one previ-
ous event has not been produced. Let k be the number of
events that have not been processed. Thus, ei(n− k − 1) <
ei−1(n) ≤ ei(n − k). (We assume that an event arriving
at the very instant at which the previous activation ter-
minates does not fall into the same busy interval.) In this
case, the multiple event busy time bounds the time at which
the busy interval that was started by event n − k (and to
which the event n now contributes to) is over: ei(n) <
ei−1(n−k)+B(k). k is unknown in general and depends on
the runtime behavior, but it is conservative to assume the
maximum exit time over all possible values of k. 2

The numerical computation of (10) requires the compari-
son of a possibly infinite number of event arrival times and
resulting busy times. However, the set of possible k’s is
well bounded, because during the worst-case response time
Rmax

i of i only a limited number of activations may occur
(formally, an upper bound for k is given by k < δ−i−1(Rmax

i)).
Another bound was proposed in [19], which is based on the
fact that the maximum busy time function B+

i grows sub-
additively, while the minimum distance between events at
the input δ−i−1 grows super-additively.

Using Lemma 1 and Lemma 2, it is possible to derive the
absolute values for the occurrence of events along a path
with respect to the arrival of event 0 at the input of the be-
ginning of the path. This allows computing the path latency
as defined in Definition 6 in the following theorem.

Theorem 2. The worst-case latency of path P = {T1, Tend}
can be recursively calculated as follows:

lat(n) = eend(n− 1)− e0(0) (11)

ei(n) ≤ max
k≥0
{ei−1(n− k) +B+

i (k + 1)} (12)

e0(n) ≤

(
e0(0)− δ−(−n+ 1), if n < 0

e0(0) + δ+(n+ 1), if n > 0
(13)

Proof. The theorem follows directly from Definition 6,
Lemma 2, and Lemma 1. 2

Theorem 2 allows to compute the worst-case path latency
for n = 1 events, as well as the maximum amount of time
between the arrival of event 0 at the path beginning, and
the production of the n-th causally dependent event at the
path end.

The minimum end-to-end latency can be calculated with
a similar method. However, for most realistic cases the min-
imum latency is simply the sum of the best case response
times — it is therefore not explored further in this paper.

4. FORK AND JOIN APPLICATION TO-
POLOGIES

Typical applications in embedded systems consist of more
than just a sequence of tasks that is sequentially activated
on the arrival of new data. In an automotive application for
example, data may be needed from different sensors before
computation can begin, and the computed results may be
distributed to multiple actuators afterwards. In multimedia,
intermediate parallelizations are very common, for example,
when the frame of a video stream is split into a number of
subframes that are then processed in parallel on an array
of hardware elements, before the result is again merged for
further processing. Such applications commonly feature join
and fork structures.

Figure 5: Possible application topologies: a) join
structure , b) fork structure

To address these application structures, the computation
of the event exit times from Lemma 2 can be extended. We
have defined that a task a) is activated for the n-th time no
later then when n events have arrived at each of its inputs
and b) produces the n-the event on each of its outputs no
later than when its n-th activation is finished. Firstly, a task
with multiple outputs will produce one event on each output
when it has finished execution.

Lemma 3 (Fork). Let a task i have multiple outputs and let
Si be the set of successor tasks that are connected to these
outputs via edges i→ s. If i finishes the activation n at time
ei(n) then event n arrives at the connected input of each of
the successor tasks no later than

∀s ∈ S : ei→s(n) = ei(n) (14)

Proof. Follows directly from the definition of the task
behavior. 2

When a task has multiple inputs in the given model it is
activated when it has received sufficient events on each of its
inputs. The following lemma bounds the event production
of a task i that has multiple inputs. For this an interme-
diate variable e′i−1(n) is introduced, which represents the
time at which task i has received sufficient events from its
predecessors to begin its n-th activation.

Lemma 4 (Join). Let task i have multiple inputs, and Pi

be the set of the direct predecessor tasks of i at each of its
inputs, then the event n is produced by task i no later than

ei(n) ≤ max
k≥0
{e′i−1(n) +B+

i (k + 1)} (15)

with

e′i−1(n) ≤ max
p∈Pi

[ep(n)] (16)

Proof. The task will be ready to execute its n-th acti-
vation when it has received an equal number of n events
from each of its direct predecessors. This will be the case
no later than e′i−1(n). Once an activation is ready, it will
be processed after B+

i (k+1), depending on the amount k of
unfinished preceding activations. The reasoning now follows
the proof of Lemma 2. 2

The events arriving at the different inputs of a task may
directly or indirectly come from different sources that may
or may not be related to each other. If some inputs of i have
a common root in a task r, the same production times er(n)
of events at the common root are used to compute the event
arrival times ep(n) from all subpaths. The maximum op-
eration in (16) will then automatically consider the longest
subpath.

Some of the inputs of i may also have independent roots,
i.e. when data from different sensors is required for an
activation, but that data is sent without synchronization.
The calculation of the worst-case event arrival times will
then require the token arrival times of tasks that have no
further predecessors. One of these tasks without prede-
cessors will be T1, i.e. the beginning of the investigated
path P = {T1, Tend}, for which e0(n) is defined in Theo-
rem 2. Other tasks without predecessors, denoted as “ex-
ternal sources”, may be completely unrelated. Each of these
sources must essentially have the same long-term through-
put to avoid buffer overflow at one of i’s input. Still, the
different sources may produce data with different patterns
or jitter, which causes an activation delay and increases the
latency along path P. The magnitude of this delay is given
by the distance between the arrival of an event along path
P and the arrival of the corresponding event on any of the
other inputs. Let P ext

i be the set of direct predecessors of
a task i that are not causally dependent on a task in path
P. Then the maximum delay to the activation of task i due
to such external events is bounded by the possible “drift”
between the arrival of events:

Di ≤ max
n≥2

max
p∈P ext

i

[δ+
p (n)− δ−i−1(n)] (17)

where δ+
p (n) is the maximum distance between events arriv-

ing at the predecessor p, which has been computed during
the compositional performance analysis step as explained in
Section 2.4. With this, we can rephrase (16) independently
of path external inputs:

e′i−1(n) ≤ max
p∈Pi\P ext

i

[ep(n)] +Di (18)

Computing (17) can be computationally elaborate, de-
pending on the parameters of the underlying event model. In
[8] the delay Di was analytically derived for the case where
the event models are represented as standard event models.

5. CYCLIC DEPENDENCIES
In a general multiprocessor setup, functional cycles and

non-functional cyclic dependencies may exist between dif-
ferent tasks. These disrupt a straight-forward analysis pro-
cedure as proposed in the previous section. However, our
goal is to admit both types of cyclic dependencies in order
to increase the scope of systems that can be investigated.
Our solution is two-fold: First, non-functional dependencies
are resolved by deriving the respective task activating event

models and compute the task’s multiple event busy times.
Secondly, functional cycles are tackled through a stop con-
dition that breaks an infinite recursion.

Figure 6: Cyclic Dependencies: a) non-functional
cyclic dependency, b) functional cycle

5.1 Non-functional Cyclic Dependencies
Non-functional dependencies are the implicit result of re-

source sharing in a system. Figure 6a) for example shows a
system with two tasks mapped to different processors. As-
sume a priority driven scheduling and let T4 and T2 have
the highest priorities on their respective resources. Then the
response time of T1 can not be computed without knowledge
of T3’s output event model, and T3’s output event model
can not be computed without an analysis of T1. Such cy-
clic dependencies are common in larger setups with multiple
processors and buses.

To tackle these dependencies, iterative analysis procedures
have been proposed that derive the actual event models in
the system through a fixed-point approach (see Section 2.4,
and [18, 4, 9, 21]). After the analysis has converged, task ac-
tivating event models δ−i , δ+

i are known for every task in the
system, whether it is time-triggered or event driven. These
event models are then the basis for computing for each task
the worst-case response time Rmax

i and multiple event busy
time function B+

i . With the help of these functions, the
path latency can be computed according to Theorem 2.

5.2 Functional Cycles
Functional dependencies are inherent to the application

structure, and independent of the hardware mapping. A
typical example of a functional cyclic dependency is a control
application that consists of a loop that contains a sampling
operation (sensor), the computation of a new parameter
(controller), and the controlling actuators (plant). Here,
sufficient throughput is required for control stability. Loops
are also common in signal processing applications, where the
result of a preceding activation is reused as an input for the
current filtering step.

In systems with such functional cycles, the recursive appli-
cation of Lemma 2 or Lemma 4 will cause an infinite recur-
sion, because an activation of a task i in a cycle depends on
the finishing time of a preceding activation of i. This prob-
lem can be addressed by bounding the necessary number of
recursions. The main idea is that in a schedulable system,
the processing of an event in the cycle can not be delayed
by events that have arrived sufficiently far in the past.

Formally, a cycle exists if a task activation n is causally

dependent on a preceding activation of the same task. Let
task i have an “external input” at which events arrive at
times ai(n), an output edge that goes to the successive task
along a cycle C, and a second input edge that comes from the
preceding task in C. Given that a path P is investigated, of
which task i is a part, then the external input will be the one
that comes from its predecessor i−1 along the path (ai(n) =
ei−1(n)). Task i then requires events on both the external
input and the backward edge in order to be activated. If
this happens we say that the event n is admitted into the
cycle.

The dependency constraint imposed by the limited re-
sources in a cycle can be modeled with tokens which limit
the number of external events that have been admitted into
the cycle but for which the corresponding events (tokens)
have not returned to the backward edge. For a given cy-
cle C, there are a number of tokens which either correspond
to events generated by preceding activations, or represent
initial placement of data that is required to admit the first
several events. We know from [2] that the number of tokens
in a cycle remains constant during execution, because each
activation of a task on the cycle will consume exactly one
token on its input and produce one token on its output edge.
Let dC be the number of such tokens for cycle C, then the
n-th activation of a task i ∈ C is causally dependent on the
n− dC-th activation of i.

Lemma 4 provides an upper bound on the time that the n-
th activation of task i is finished, which is when i has received
events on all its inputs, including the backward edges of the
cycles C of which it is a part. Based on this lemma, we
define that an event n is admitted into the cycle at time
a′i(n).

a′i(n) ≤ max[ai(n),max
C∈C

eC(n− dC)] (19)

eC(n−dC) is a function of the time that task i was started
for the n − dC-th time and the time that was necessary to
process token (n − dC) by tasks on the cycle. In order to
bound the latter, we first establish an upper bound on the
amount of time a token may be processed in a cycle.

Lemma 5 (Response Time Bound in Cycles). In a cycle C
with a total number of dC tokens, the response time of an
arbitrary task j ∈ C is bounded by Bj(dC).

Proof. Each activation of j consumes one token from its
input edge and produces one on its output edge sometime
later before it terminates. Thus the number of tokens on
the cycle s constant dC, and there may be no more than
dC simultaneous activations of task j at any time. Fur-
thermore, none of these activation is influenced by succes-
sive activations due to in-order processing of the activations.
Therefore, the maximum time for any activation to finish is
bounded by the multiple event busy time Bj(dC). 2

Obviously, if a task j is part of multiple cycles, its response
time can not be larger than Bj(dmin), where dmin is the
smallest dC of all cycles C ∈ C that j is a part of. Lemma 5
can directly be used to bound the round-trip time of tokens
in a cycle, i.e. the latest possible time after the admission of
an event n into the cycle that it has taken the corresponding
token to be returned to the backward edge.

Lemma 6 (Round-Trip in Cycles). In a cycle C with a total
number of dc tokens, any token has traversed the cycle no

later than
P

j∈C Bj(dC):

eC(n) ≤ a′i(n) +
X
j∈C

Bj(dC) (20)

Proof. Follows directly from Lemma 5. 2

To derive the time a′i(n) at which event n is admitted
into the cycle, we need to check whether it is influenced
by preceding events that have not been processed by the
cycle. With the help of Lemma 6, we can establish that the
processing of previous tokens on a cycle C does not impose
a constraint on the n-th activation of task i, when

ai(n) ≥ a′i(n− dC) +
X
j∈C

Bj(dC) (21)

In order to find out whether condition (21) is indeed ful-
filled for an event n, we need to check further into the past,
whether the admission of event (n− dC) into the cycle was
itself delayed by preceding tokens, which again may be de-
layed by their predecessors (n − qdC). The constraint to
break this recursion now relies on the fact that the mini-
mum distance to the arrival of previous events grows super-
additively, while the possible delay that these past tokens
may impose only grows linearly. Eventually thus, the dis-
tance to the arrival of previous events will be sufficiently
large to rule out any interference with the present activa-
tion.

This concept is formalized in the following theorem which
bounds the number of successive events that may not be
immediately admitted into a cycle.

Lemma 7 (Admittance of Preceding Events). Let a task
i be part of a cycle C and have an external input at which
events arrive at times ai(n) with a minimum distance of
δ−i (m) between any m arriving events. Then:

If there is a k ≥ 1 that fulfills the following inequation

δ−i (kdC + 1) > k
X
j∈C

Bj(dC) (22)

there must be for any event n at least one preceding event j
with j = n− qdc, 1 ≤ q ≤ k that was immediately admitted:

∃j, j = n− qdc, 1 ≤ q ≤ k : a′i(j) = ai(j) (23)

Proof. The proof is by contradiction. Assume that all
preceding events n − qdC, 1 ≤ q ≤ k arrive at the external
input in such a way that the corresponding tokens on the
cycle have not been returned to the backward edge, and thus
no incoming event is immediately admitted:

∀q, 1 ≤ q ≤ k : ai(n− qdC) < eC(n− (q + 1)dC) (24)

Let the arbitrary time between the arrival time and the
admittance time of the first of the events considered in the
theorem be denoted with D and thus:

a′i(n− kdC) = ai(n− kdC) +D (25)

By iterative application of (19) and (20) under the as-
sumption (24), we can deduce

a′i(n) ≤ a′i(n− kdC) + k
X
j∈C

Bj(dC) (26)

and with (25)

a′i(n) ≤ ai(n− kdC) + k
X
j∈C

Bj(dC) +Dn (27)

Also, we know from the properties of the incoming event
stream that events arrive at the input with a certain mini-
mum distance according to (8), and thus

ai(n) ≥ ai(n− kdC) + δ−i (kdC + 1) (28)

and because of ai(n) ≤ a′i(n), ∀n:

a′i(n) ≥ ai(n− kdC) + δ−i (kdC + 1) (29)

Equations (27) and (29) imply

δ−i (kdC + 1) ≤ k
X
j∈C

Bj(dC) +Dn (30)

In order to fulfill the condition of the theorem (equa-
tion (22)), Dn would need to be negative, which is impos-
sible because of (25) and ai(n) ≤ a′i(n), ∀n. Thus, we have
to conclude that the assumption (24) is not fulfilled for at
least one q and the theorem follows. 2

Theorem 7 can now be used to break the infinite recursion
in the analysis of the admittance time a′i(n) of an event n
by assuming

a′i(n− kdC) = ai(n− kdC) (31)

where k is the smallest integer that fulfills condition 22.
From this, the admittance times of the successive events
follow. If no such k exists, the cycle can not be deemed
schedulable, because the distance between incoming events
could then be steadily smaller than what can be processed
by the involved tasks in the cycle.

The smallest k that fulfils (22) can be computed numeri-
cally for any event model, or based on the parameters of the
specific event model. For example, in the standard event
model of equations (3) and (4) with parameters period P
and jitter J , k can be upper bounded by the following closed-
form inequation:

k ≤ Pdc − JP
j∈C Bj(dC)− PdC

(32)

With the computable bound on the activation and finish-
ing times of any task in the system, we have provided a ver-
satile method to compute the maximum end-to-end latency
— considering topological hurdles such as fork and join con-
structs, non-functional dependencies, and functional cycles.

6. EXPERIMENTS
We have conducted a set of experiments to show the va-

lidity and precision of the presented approach. Consider the
path {S0, S1} in the example of Figure 7 in which events
are processed along a diverging path via 6 tasks on 2 buses
and 3 CPUs. Each task may be disturbed by higher priority
events from another application. The higher priority appli-
cation is activated by source S2 and requires data from a
previous iteration to be available. External events arrive at
S2 with an average distance (period) of 100 and a jitter of
200, and at S0 with a period of 20.

The results of two parameter scenarios are plotted in Fig-
ure 8: In one scenario, all execution times are constantly 5
(”Constant ET”), in the other scenario all execution times
along path {S0, S1} are variable between 1 and 5 (”Variable
ET”). In either case, the response times are not constant,
because of the dynamic interference from the higher priority
application.

Figure 7: Example System.

Figure 8: Comparison of Path Latencies

The latency calculation that is based on the accumula-
tion of local worst cases (”Add WCRTs”) draws the expected
overestimation from the pay-bursts-only-once problem. The
effect becomes more substantial with growing timing uncer-
tainty (i.e. increasing input jitter at source S0, or intro-
duction of variable execution times). The proposed analysis
(”Proposed”) tackles this problem through correlating the lo-
cal worst case busy times. It is also relatively insensitive to
the increase of dynamism. In the given parameter range the
proposed method calculates a between 59% and 79% better
end-to-end latencies.

Figure 9: Example System and Comparison of End-
to-End Latency (from [14]).

Further experiments of small systems have been performed
in the scope of the comparative paper [14], in which real-
time calculus [4], SymTA/S [18], and other approaches were
compared. The path latency computation of this paper was
included in the experiments. In one experiment a short chain
of 3 tasks on 2 CPUs is investigated. A particular challenge
to the analysis is the correlation of events activating T3 and
those activating T1. It can be seen in Figure 9 that the
new path latency calculation “SymTA pipelined” is better
than the simple additive calculation (SymTA add”). Of all

approaches under comparison, our approach is in this exper-
iment closest to the actual worst cases derived with model
checking (”Uppaal”), often matching it accurately. This was
owed to the fact that the analysis on CPU1 better considers
the offsets between the activations of T2 and T3 according
to e.g. [13]. [14] also contains an evaluation of analysis times
— besides its accuracy, our analysis is also very fast.

The number of operations that will be performed to derive
the path latency depends on the number of tasks in the path
and the size of the busy time interval of each task, i.e. the
number k of possibly coinciding events in equation 12 due to
their input event model. In the worst case, all distributions
of the coincidences on the local resources may be checked
(e.g. in the example of Figure 4 with 2 relevant tasks and
a maximum coincidence of 2 events, 3 busy time combina-
tions are possible). In general, given a maximum number of
b interfering events along a path of length l this leads to a
maximum number of

`
(l−1)+b

b

´
operations. In practice the

number is smaller, because the slower tasks dominate over
many candidates. In the given example that contains alter-
native paths, the total number of comparisons was between
31 in the case of no input jitter for S0 and 65 in the case
where the jitter was 200 (which corresponds to 10 coinciding
events at the input).

7. CONCLUSION
This paper has presented an efficient methodology to de-

rive end-to-end path latencies in a multiprocessor system
with heterogeneous components and complex application to-
pologies. The method is suitable to consider arbitrary event
models in large variety of different heterogeneous scheduling
policies. The approach considers pipelining and transient
overload effects that surface along the path.

In experiments, we have demonstrated that the derived
end-to-end latencies are quantitatively on par with special-
ized approaches based on network calculus. In addition, the
proposed recursive analysis process supports a larger spec-
trum of application topologies including functional cycles
and non-functional dependencies.

8. REFERENCES
[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. Wellings. Applying new scheduling theory to static priority
pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

[2] F. Baccelli, G. Cohen, G. Olsder, and J. Quadrat.
Synchronization and linearity. Wiley New York, 1992.

[3] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak,
and J. van Meerbergen. Predictable embedded multiprocessor
system design. Proceeding of the SCOPES workshop,
September, 2004.

[4] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework
for analysing system properties in platform-based embedded
system designs. Proc. 6th Design, Automation and Test in
Europe (DATE), pages 190–195, 2003.

[5] J. Gutiérrez, J. Garćıa, and M. Harbour. On the Schedulability
Analysis for Distributed Hard Real-Time Systems. Proceedings
of the 9th Euromicro Workshop on Real-Time Systems,
Toledo, Spain, pages 136–143, 1997.

[6] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the symta/s

approach. In IEE Proceedings Computers and Digital
Techniques, 2005.

[7] P. Jayachandran and T. Abdelzaher. A Delay Composition
Theorem for Real-Time Pipelines. Euromicro Conference on
Real-Time Systems (ECRTS), pages 29–38, 2007.

[8] M. Jersak, K. Richter, and R. Ernst. Performance analysis for
complex embedded applications. International Journal of
Embedded Systems, 1(1):33–49, 2005.

[9] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi. Cyclic
dependencies in modular performance analysis. In Proceedings
of the 8th ACM international conference on Embedded
software (EMSOFT), pages 179–188, New York, NY, USA,
October 2008. ACM.

[10] M. Joseph and P. Pandya. Finding Response Times in a
Real-Time System. The Computer Journal, 29(5):390, 1986.

[11] J. Le Boudec and P. Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer,
2001.

[12] A. Mok and D. Chen. A multiframe model for real-time tasks.
IEEE Transactions on Software Engineering, 23(10):635–645,
1997.

[13] J. Palencia and M. Harbour. Schedulability analysis for tasks
with static and dynamic offsets. In Proc. 19th IEEE
Real-Time Systems Symposium (RTSS98), 1998.

[14] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann,
S. Schliecker, R. Henia, R. Racu, R. Ernst, and M. G. Harbour.
Influence of different abstractions on the performance analysis
of distributed hard real-time systems. Design Automation for
Embedded Systems, pages 1–23, April 2008.

[15] P. Pop, P. Eles, and Z. Peng. Schedulability analysis and
optimization for the synthesis of multi-cluster distributed
embedded systems. Design Automation and Test in Europe
Conference and Exhibition (DATE), pages 184–189, 2003.

[16] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing
Analysis of the FlexRay Communication Protocol. Euromicro
Conference on Real-Time Systems (ECRTS), pages 203–213,
2006.

[17] K. Richter and R. Ernst. Event Model Interfaces for
Heterogeneous System Analysis. In Proc. Design Automation
and Test in Europe (DATE), 2002.

[18] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model
composition for scheduling analysis in platform design. In
Proceedings of the 39th conference on Design automation
(DAC), pages 287–292. ACM New York, NY, USA, 2002.

[19] S. Schliecker, J. Rox, M. Ivers, and R. Ernst. Providing
accurate event models for the analysis of heterogeneous
multiprocessor systems. In Proc. Intl. Conference on
Hardware/Software codesign and system synthesis
(CODES+ISSS), pages 185–190. ACM New York, NY, USA,
2008.

[20] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling Analysis
of Real-Time Systems with Precise Modeling of Cache Related
Preemption Delay. Real-Time Systems, 2005.(ECRTS 2005).
Proceedings. 17th Euromicro Conference on, pages 41–48,
2005.

[21] S. Stein, J. Diemer, M. Ivers, S. Schliecker, and R. Ernst. On
the convergence of the symta/s analysis. Technical report,
Technische Universität Braunschweig, Braunschweig, Germany,
November 2008.

[22] J. Sun and J. Liu. Bounding the end-to-end response time in
multiprocessor real-time systems. Proceedings of the 3rd
Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS), 1995.

[23] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus
for scheduling hard real-time systems. Circuits and Systems,
2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE
International Symposium on, 4, 2000.

[24] K. Tindell, A. Burns, and A. Wellings. An extendible approach
for analyzing fixed priority hard real-time tasks. Real-Time
Systems, 6(2):133–151, 1994.

[25] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and
Microprogramming, 40(2-3):117–134, 1994.

