U. Holtmann, R. Ernst: Some Experiments with Low-Level Speculative Computation
Based on Multiple Branch Predictions, Laguna Miguel, Kalifornien, 4.-6.11.1992.

Some Experiments with
Low-Level Speculative Computation
based on Multiple Branch Prediction for the
Synthesis of High-Performance, Pipelined
Coprocessors

Ulrich Holtmann

Dep. of CS
Abteilung Entwurf
integrierter Schaltungen

Rolf Ernst

Dep. of EE
Institut fiir Daten-
verarbeitungsanlagen

Technische Universitdt Braunschweig
W-3300 Braunschweig
GERMANY

Fax: (+49)531 391-5840
e-mail: holtmann@®eis.cs.tu-bs.de

Abstract

Coprocessor design is one application of high-
level synthesis. We want to focus on high-
performance coprocessors to speed up time
critical parts in hardware-software codesign
of embedded controllers [16].

Time critical software parts often contain
nested loops, often with data dependent
branches and data dependent number of
iterations. When (loop) pipelining is em-
ployed for high performance, the control
dependencies become a dominant limitation
to pipeline utilization. Branch prediction isa
possible approach, but is usually restricted to
few instructions and to one branch because of
hardware and control overhead. Multiple
branch prediction and speculative computa-
tion take a more global view on the program
flow. We give practical examples of how
speculative computation with multiple branch
prediction increases performance far beyond

an usual ASAP scheduling based on a CDFG.
For scheduling, speculative computation
requires a modification of the CDFG and, for
the allocation phase, the insertion of register
sets to save the processor status. The
controller needs slight modification.

We conclude that manual application of our
approach will in general be too difficult, such
that it can only be used in connection with
synthesis.

Introduction and Related Work

Coprocessor design is one application of high-
level synthesis. We want to focus on high-
performance coprocessors to speed up time
critical parts in hardware-software codesign
of embedded controllers [16]. Time critical
software parts often contain nested loops,
often with data dependent branches and a data
dependent number of iterations. In a "blue
screen” algorithm for the digital HDTV
television, e.g., 90% of the run time is spent in

146

only 10 lines (i.e. 1% of the program), which
contain 2 loops, 2 IF statements and 18-bit
integer arithmetic [15]. It is only because of
these loops that an expensive 32 bit RISC
processor must be used to even come close to
the time constraints.

The coprocessors we want to synthesize are
targeted to speed up such time critical
program sections ("point accelerators") and
not to speed up a specific class of operations
such as a FPU. We primarily aim at
maximum performance for the critical parts.
The algorithms to partition the software and
hardware components are not part of this
paper. We have analyzed around 20 programs
implementing small embedded control tasks
[1] and found that the program segments for a
high performance coprocessor are small pro-
gram sections (10..100 lines of C), which
contain 2 to 5 nested loops with several IF
statements, integer or floating point arith-
metics and data arrays of small to large size
(10 ... 100.000 Bytes). So internal registers as
well as off-chip memory access are neces-
sary.

The scheduling of pipelined loops is well
understood [2,12] and yields the necessary
high speed. We found, however, that in many
cases the decision to end the loop or to execute
another iteration is derived dynamically
inside the loops and is not known at compile
time. Known pipeline scheduling approaches
fail to fill the pipeline when such data de-
pendencies are involved.

If we still want to fold the loops with maxi-
murm density of up to one iteration per cycle, it
is necessary to begin the execution of the next
iteration before the evaluation of the loop
condition. This is an application of specula-
tive computation. Speculative computation
means that tasks are executed before this is
known to be necessary whenever no other task
is ready for execution [17]. Branch prediction
is one particular case of low-level speculative
computation. Branch prediction means that,
at a branch instruction, the target is predicted
whenever it is yet unknown. A branch
prediction must never influence the correct
execution of an algorithm. So, when a
prediction error occurs, all effects of
operations, which were initiated as a result of
the prediction, must be removed.

Branch prediction is well known in pipeline
processor design. Techniques were developed

to predict branches with a hit rate above 80%
[3,4,5]. The pipeline control point is that pipe-
line stage, from which on an instruction can
irreversibly change the processor state [6]. A
late control point can be used for branch
prediction. As soon as a value is written to a
register or memory, the control point is
reached, except when the previous value had
been saved and can be restored in case of a
prediction error. Hardware solutions exist,
where a special register pool ~ a "history
buffer” — stores the new register values until
the branch target is calculated [9,10]. Such
solutions have already been used in indus-
trial designs [19].

Multiple branch prediction goes even further.
(The "prediction life time" is the time
between the beginning of a branch prediction
and the final calculation of the real branch
target. We speak of multiple branch predict-
ion, if the prediction lifetimes of sequent
branches are overlapping.) It allows the
prediction and execution of additional
branches before the first branch prediction
has been evaluated. Multiple branch
prediction has been introduced in [20] and has
shown to be very efficient, in particular for
deep pipelining [7].

While for processor design, the circuit and
interconnect overhead is considerable [19],
already for single branch prediction, the
overhead in application specific hardware
can be very small, even for multiple branch
prediction, as we will show in the sequel.
While "history buffers" in processors are
only targeted to a single central register file,
we can even handle decentralized special
purpose registers which are necessary for
efficient high level synthesis. This is possible
by assigning individual "history" register
sets to each special purpose register and
adapting their size to the number of predicts
for which a variable must be saved.

So far the opportunities of a late control point
are not exploited in synthesis. Path based
scheduling [13] is a way to consider basic
blocks and branches together, but the control
dependencies are not changed. Percolation
scheduling [14] is able to fold sequential test
conditions and to execute them in parallel,
similar to multi-way independent branching
[18], but this scheduling technique is limited to
test conditions and has no effect on the control
point.

147

The Examples

We will apply speculative computation to four
examples. The first one, exam, has been
constructed just for the demonstrating of
speculative computation with multiple branch
prediction. Program bluel is that part of an
HDTV chromakey algorithm. Applying nor-
mal pipelining to it leads to an optimum
pipeline latency of 3 clock cycles. Speculative
computation then compresses the pipeline
latency to only 2 clocks. This is only a small
improvement because the algorithm contains
only few control dependencies and therefore
normal pipelining is already successful.
Another part of the same program, blue2, has
more control dependencies but is less often
executed. Here speculative computation leads
to a speed up of 3.

The third example, quick, is the inner part of
a quicksort algorithm. This is a hard exam-
ple, because the probability for a correct
branch prediction is only 0.67. But in spite of
this effect the overall speed up is nearly 3.

Example 1: exam

Figure 1 shows the given example exam. The
main part is a loop with two different termi-
nation conditions. Each iteration reads a
value from array tab and adds it to sum. The
first condition is the limitation of index i to
1_i and value tab(i) to1l_val. The second
condition arises when sum reaches the limit
1_sum. After the loop has finished, the values
of i, val and sum are used. The number of
iterations is clearly data dependent.

In figure 2 the control/data flow graph is
shown. It is an HBR graph, the CDFG we use
in our high-level synthesis system BSS [11].
The large "break"-box represents the loop.
The circles and ovals inside the loop are
actions, e.g. an increment or the read-access
to array tab. The two multiplexers in the
above part of the box represent the variables i
and sum. They change their outputs only in
the beginning of each iteration. The curved
lines are control dependencies which have an
effect on the order of actions. (Please, note that
tab[i] is read only once and stored in regis-
ter val.)

148

To simplify the example we assume that every
action needs 1 clock cycle to execute {not a
limitation to our approach). Because we want
to use a clock with high speed, the controller is
assumed to be pipelined, too, and needs some
time to respond to the signals from the data
path. Here, we assume a delay of one clock
cycle. This means, e.g., if the condition of a
branch is known at the end of clock cycle 1 the
first clock cycle processing the branch target
is 3. This is realistic in processors with a
clock period in excess of 50 MHz.

Figure 3 shows the best possible schedule
(ASAP), if no speculative computation is
permitted. No hardware constraints are
given, the order of execution is only limited
by data and control dependencies. Statement
"sum += tab[i]" is only reached when the
termination condition 1 1is fulfilled.
Therefore it must be tested (executed) before
the addition may start (see the curved lines in
figure 2 and 3a). The controller delay occu-
pies one further clock cycle, so the following
operation cannot be executed before cycle 3.
(the small boxes "1" and "2" in figure 3a
indicate the point in time, when the controller
has reacted to the condition). The increment
of the index must be placed in clock cyele 6,
because the statement is not reached, if
condition 2 is fulfilled. Although it is already
known in clock cycle 6 that the next iteration
will be executed this iteration must wait until
the end of clock cycle 6 because there is a data
dependency between the increment (actual
iteration, clock 6) and the read (next iteration,
clock 0). So no pipelining is possible (loop
unfolding [3] could save at least 1 cycle).
Using this schedule a new iteration can be
started only every 7 clock cycles.

Now we use speculative computation with
multiple branch prediction and ignore the
three control dependencies. We get the
schedule in figure 3b. Each iteration needs
four clock cycles, but a new iteration is started
every clock cycle. The high speed up is
achieved by the dense folding of the pipeline.
(See figure 4 how the four pipeline stages are
working in parallel.) As long as there is no
break, this new schedule is 7 times faster. It is
essential to note that this improvement is only
possible because the schedule ignores the
control dependencies due to the two
termination conditions.

The decision to execute the next iteration or to
end the loop is a branch. We predict the
branch because the following actions are
executed before the. branch condition is
reached. We always predict the jump to the top
of the loop, which is the best static prediction
for loops {3,4,7] shortening the critical path.
What will happen, if, e.g., condition 2 ends
the loop within iteration no. n? Because the
next iterations are already initiated, we get
the situation shown in figure 4. All shaded
actions have been executed "speculatively"
and their effects must now be made undone.
Because the loop breaks within iteration n, all
actions of following iterations are initiated
illegally. The increment of iteration n is also
illegal because of a control dependency (see
CDFG in figure 2). Our primary goal is not to
really make the speculative actions undone
but to restore the status at the end of iteration n.
We do this by simply extending all registers
to register sets. From a trace back, as shown
in figure 4, the number of illegal actions due
to a prediction error is known. For each
action the maximum number of illegal
actions is easily determined. The result of an
action, if any, is stored in a register. If there
are at most 1 illegal actions, it is necessary to
store at most i previous values. The register
becomes a register set with at most 1+1
entries. To "undo” the i actions means to
replace the actual value with the one written i
times before. In this example the register sets
of i, val and sum need 5, 4 and 3 entries,
respective.

A register set acts as a ring buffer where the
new value is always written to the top. Figure
S5a shows a possible implementation with
(expensive) dynamic edge-triggered flip-
flops. Another implementation (5b) uses
(cheaper) transparent latches which are
written in a cyclic order controlled by a
modulo counter.

After loop termination the correct status of the
data path must be found during a "restore
phase”. In both cases (of fig. 5) the restore
phase is a simple change of the counter value
(i.e. the buffer pointer). In both cases nothing
else needs to be done.

Figure 6 shows the final net list. The shaded
parts of the register sets for i, val and sum are
those registers which are only necessary for
speculative computation.

Example 2: keyl

The most frequently executed part of the
chromakey algorithm mentioned above is
"keyl” which is shown in figure 7. Because it
depends on two nearly identical loops, only
the first of them is explained in the following.
The other has always the same schedule and
same results.

The loop searches for a minimum value in a
key table and reads a value from the array
"vtab" in each iteration. Because vtab is a
larger table and, therefore cannot be an on-
chip register, a read access to the external
memory/cache is necessary. Assuming a
20ns clock cycle this read access will need 2
clock cycles. The function "abs", returning
the absolute value of an integer, is performed
by a conventional ALU with a following
multiplexer. The IF and the assignment
"iabsv=ihilf" can be collapsed to a compa-
rison and a multiplexer. Their execution,
therefore, needs only one clock. In the dia-
grams only the comparison "<" is shown.
Normal optimum pipelining leads to a
pipeline latency of 3 clocks (see figure 8a).
Although it is already known in clock cycle 2
that the next iteration will follow, this itera-
tion has to wait until the index is incre-
mented. Application of speculative comput:
ation compresses the pipeline from 3 to 2
clocks (fig. 8b).

Figure 9 shows that three actions are illegal
when the loop breaks (terminates). But, these
values are not used outside the loop, so it is not
necessary to add any register. In general,
this means, whenever a value is not used
outside the loop, no extension to a register set
is necessary. This can reduce the overhead.

Example 3: key2

Figure 10 shows the segment key2 which is
another part of the chromakey algorithm. In
every iteration the loop reads a value from
vtab (mapped onto the external RAM) every
iteration and tests it. As long as the while-
condition is fulfilled, the index is decre-
mented. The "or" of the test is chained with
comparison operations and needs no addi-
tional clock (figure 11). To save the correct

149

values for the restore phase, register set cr
needs 3 entries and tabl 2 (see figure 12).

Example 4: Quicksort

Figure 13 shows a quicksort algorithm. The
darker part is the inner loop which is

synthesized. Because the THEN- and ELSE-.

part belonging to "IF (up)” condition are very
similar, only the THEN-part is shown in the
diagrams to simplify the figures. It is not
necessary to predict the IF conditions because
the criterion is already caleculated. The re-
maining difficult branches are no. 1 which
breaks the loop and no. 2, an IF statement.
While branch 1 can be predicted with a very
high accuracy of 99%, the IF is predicted to
"FALSE" with a hit rate of only 67%. This
values have been derived by a program
profiler. According to the prediction that the
THEN-clause of the IF is not executed the
scheduler is able to start the next iteration
every clock cycle.

Figure 14 shows the schedules for normal
pipelining and for pipelining with specu-
lative computation. As long as the branches
are correctly predicted the schedule in figure
14b is 6 times faster. The "rst” actions
implement the restore phase after a prediction
error at the IF statement (see box "2" for the
exact point in time). They restore the correct
values of val and 1 (or u respective). After
restoring, the THEN-clause of the IF can be
executed which depends on the "write"” and
the two "cp" actions.. The "cp" actions
perform only a simple copy from one register
into another.

Because the overall prediction accuracy is
only 67% the typical situation is that after two
correct predictions a false one follows. Figure
15 shows this situation. The dashed actions
have never been executed (they belong to the
THEN-clause of the IF which were not taken).
The shaded actions have been executed specu-
latively because of the prediction in iteration
n+2. Now they become illegal and have to be
made undone what is done by the restore
actions "rst”. Then, the THEN-clause of the
IF statement of iteration n+2 is executed and
the next iteration will follow. The average
execution time is approximated as follows:

150

probability of correct prediction *
no. of clock cycles on predicted path
_ + probability of prediction error *
no. of clocks cycles on other path
(including time for correction).

In our case: 0.67*1 + 0.33*5 = 2.32. Compared
with the normal ASAP schedule this means a
speed up of 6/2.32 = 2.586. The registers for 1, u
and val have to be extended to register sets
with 3 entries each.

Results

We used speculative computation with mul-
tiple branch prediction for the three realistic

programs kevl, key2 and quick described
above.

The speed up depends mainly on the number
of iterations which we derived from a
program profiler, Table 1 shows the speed up
and hardware overhead due to the register
sets. We calculated hardware overhead for
static latches (as in figure 5b) using the cell
library of LSI Logic 1.5 um gate array.

program keyl key2 quick
-sort
speed up 1.5 3.0 2586
pipeline latency
without spec. comp. |3 5 6
with spec. comp. 2 2 1
avg. no. iterations 120 8 -=n
branch prediction
accuracy 9% 88% 67%
hardware overhead |0% 13% 15%
no. additional
registers 0 3 6

table 1: speed up of realistic algorithms as
a result of speculative computation
with multiple-branch prediction

It is possible to use another restore scheme
with less hardware and more clock cycles by
actively "undoing" operations. For the
algorithm exam, e.g., the register count may
shrink from 13 to 7 while the restore phase
growths from 1 to 2 clocks. But these schemes
are more sophisticated and not part of this
paper.

Summary

We have demonstrated the use of low-level
speculative computation combined with
multiple branch prediction for application
ASICs, in particular coprocessors. We did
experiments with several examples and
compared the results with normal ASAP
scheduling. The speed up is of a factor
1.5...8.0, while the hardware overhead is of
only 0...19 %.

The approach can be used for synthesis but
automatic overhead minimization is still an
open problem. For complex tasks, however,
synthesis seems the only way to apply
efficient low-level speculative computation in
circuit design.

References

[11 J. Steinleitner, "Design and Imple-
mentation of a benchmark for small
'embedded systems' with real-time con-
straints”, master thesis, Institut fiir Daten-
verarbeitungsanlagen, Technische Uni-
versitdt Braunschweig, Germany, 1991 (in
German).

[2] G. Goossens et al., "Loop optimization in
register-transfer scheduling for DSP-
systems," 26th DAC, pp. 826-831, 1989.

[3] J.E. Smith, "A Study of Branch Predic-
tion Strategies," SIGARCH Newsletter, Vol.
9, No. 3, pp. 135-148, 1981. '

[4] J.K.L. Lee, "Branch Prediction Stra-

tegies and Branch Target Buffer Design,"
COMPUTER, pp. 6-22, Jan 1984.

[51 D.R. Ditzel and H.R. McLellan,
"Branch Folding in the CRISP Micro-
processor: Reducing Branch Delay to Zero,"
Proc. 15th Ann. Symp. on Computer
Architecture , pp. 2-9, 1987.

[6] R.W. Holgate and R.N. Ibbett, "An
Analysis of Instruction-Fetching Strategies
in Pipelined Computers," IEEE Trans. on
Computers, Vol. C-29, No. 4, pp. 325-329,
April 1980.

[7]7 R. Ernst, "Long Pipelines in Single-
Chip Digital Signal Processors - Concepts
and Case Study,” IEEE Trans. Circuits and
Systems, Vol. 38, No. 1, pp. 100-108, Jan
1991, :

[8] P.Y.T. Hsu, "Highly Concurrent Scalar
Processing,” Proc. 14th Ann. Symp. on
Computer Architecture, pp. 386-395, 1986.

[91 G.S. Sohi, "Instruction Issue Logic for
High-Performance, Interruptable Pipelined
Processors,” Proc. 15th Ann. Symp. on
Computer Architecture, pp. 27-34, 1987.

{101 A.R. Pleszkun et al.,, "WISQ: A
Restartable Architecture Using Queues,”
Proc. 15th Ann. Symp. on Computer
Architecture, pp. 290-299, 1987.

[11] U. Holtmann, "Hierarchical Behaviour
Representation in the Braunschweig
Synthesis System,” IFIP International
Workshop on Applications of Synthesis and
Simulation, Lenggries, Germany, Aug 25-
28,1991 :

[12] M.S. Quale, L.K. Grover, "Software
Pipelining for Loop Synthesis," 5th Int.
Workshop on High-Level Synthesis, Biih-
lerhshe, Germany, March 3-6, 1991.

[13] R. Camposano, "Synthesis using Path-
Based Scheduling: Algorithms and
Exercises,” 4th Int. Workshop on High-
Level Synthesis, Shawmut Inn, Kenne-
bunkport, Maine, USA, October 15-18, 1989.

[14] R. Potasman et al., "Percolation Based
Synthesis," 27th DAC, pp. 444-449, 1990.

[15] C. Ricken, "Optimierung der automati-
schen Einpegelung eines HDTV-Chroma-
key-Mischers, "master thesis, Institut fir
Nachrichtentechnik, Technische ‘Univer-
sitdt Braunschweig, Germany, 1992.

[16] R. Ernst, J. Henkel, "Hardware-
Software Codesign of Embedded Controllers
Based on Hardware Extraction,” Int.
Workshop on Hardware-Software
Codesign, Estes Park, Colorado, 30.9.-
2.10.1992.

[17] F.W. Burton, "Speculative Computation,
Parallelism, and Functional Pro-
gramming," IEEE Trans. on Computers,
Vol. C-34, No. 12, pp. 1190-1193, December
1985.

[18] J.A. Fisher, "2N-Way Jump Micro-
instruction Hardware and an Effective
Instruction Binding Method," Proc. of
MICRO 13. In: SIGMICRO Newsletter, pp.
64-75, Sep.-Dec. 1980.

[19] K. Diefendorff, M. Allen, "Organization
of the Motorola 88110 Superscalar RISC
Microprocessor,” IEEE Micro, pp. 40..63,
April 1992,

{20] R. Ernst, "Architecture of a Monolithic
Digital Signal Processor with a Novel

Control Flow Concept,” ESSCIRC, Delft,
1986, pp. 110-112.

151

:ta’b’[iji<='élivai) {
um e tabll] s
if i sum ?:l_su;n)

. use i, tab[i], sum

ﬂ break condition (we call every break, condtion or branch
which may end the loop a "break condition®)

Figure 1:
This program, named "exam", is a typical algorithm: the main
part of the runtime is spend in loops which mostly perform
integer arithmetic, use arrays, have several IF's and
data-dependent break conditions.

it is no complete procedure but a part from a larger program
which the HW/SW co-design system decided to be executed on
a coprocessor.

The loop inside the shaded box is to be synthesized. The
small boxes "1™ and "2" point to conditions which may end the
loop. "use ..." means that a variable calculated inside the loop is
read by statements outside the loop (when the loop has ended).

Figure 2:
CDFG of "exam". The statements of the program have internally called "val™. The curved lines describe the

been transformed into actions with the same
behaviour. "tabli]" has become a read-action what

Legend:

;;—l break block: describes ali kinds of loops: REPEAT,
WHILE, FOR/... . The body contains the actions
< QJ which are executed every iteration. The block
- stops when one of the break conditions becomes
true.

block multiplexor: used to describe variables within

ﬁ loops. The output changes only at the beginning of
each iteration. The left input is only used in the first
iteration.

@ (simple) action: performes data calculation
}p data connection & data dependency
——>—— control dependency
break condition which ends the block

The value of tab[i} is ridden only one time and

control dependencies. For example: the addition of
the statement "sum += tabl[i]" is pointed by the "&"

means that tab[] is an array and that the access to an ~ what means that these statement is only executed

element needs some time.

when the WHILE-condition is true.

152

(@)

o

®

O <|@®®

21

 [BOE
NceE

(b)

m The point in time when the controller is able to react to
the break condition

\ Control dependency. The action where the arc is

\[’ pointing to is only executed if the condition calculated
by the action on the other side is true.

Figure 3:

Two possible schedules of "exam®. The schedule on the left
side (a) uses no speculative computation. The two empty
clocks are considered necessary due to the control
dependencies (see the curved lines). Because of data
pedendencies no pipelining is possible and each iteration
takes 7 clock cycles.

The other schedule (b) uses speculative computation and is

able to apply a very dense pipelining with one iteration
starting every clock.

“a8jouos

Legend:

E ALU performing a comparison

tab this register file stores the
array "tab”

Register set for a variable. The
shaded entries are the hardware
overhead for speculative
computation

break condition

Figure 6: Controller and datapath for example "exam”. The boxes "i", “val®
and "sum"” are register sets as described in figure 5.

153

Jaljonucd

These action has

been executed

speculatively. Due
to an incorrectly

predicted break
condition (branch)
it now becomes
illegal and must be
made undone.

break condition

~— OCCUI'S

-t— controller reacts

n+1 | . n+2
iteration

Figure 4: The situation if condition 2 breaks the loop within iteration n. The shaded

actions have been executed speculatively and now they become illegal.
Because of the loop break in iteration n, all actions of following iteration have

been initiated illegally. The increment of iteration n is also illegal because of a
control dependency (see CDFG).

normat /
,normal / . \ ¢ restore [2] '
restore [T}/ . < —_— %q:rl"te_?‘r
restore new] 0.2
£ vae | o g | restore [T
= =
< 2 >§ s < i %n W
write o _FF el . new
[—r— - a
"sum"” n . value
\ - ¥ » actual) \ write >%a;
L FFRLL value *sum" E’,
N \ =
“FF _)
——eed actual
value
(a) (b) E—
Flgure 5:

Two possibe low-cost implementations of the register set storing variable "sum” of

[[] branch condition

program "exam®: a shift register with master-slave (dynamic) flipflops (a) or a ring
buffer with static latches (b). '

154

int vtab[255];
.int htab[255];
int iabsv, iabsh,
crl, cxr2, cr, cb,
i, 4hilf, iabav, ilabsh;

__ break condition (we call every break, condition
iabsy = 512 or branch which may end the loop a "break
i condition”)

iiLch;fi+{

Figure 7:

"blue1” is part of the blue screen algorithm. Although
"blue1” is only 1% of the complete program it needs
90% of the processor time.

The loops inside the shaded boxes are to be
synthesized. The small box "1" points to the ending
" condition of the loops. "use ..." means that the

- use labsv, labsh; variables "iabsv" and “iabsh" calculated inside the
loops are read after the loop has ended.

©
@

The point in time when the controller is able
to react to the break condition

®/®

Control dependency. The action where the
arc is pointing to is only executed if the
condition calculated by the action on the

* other side is true.

——

Figure 8:

Schedule of "key1® with pipelining (a) and pipelining combined with speculative
computation (b). To simplify these figure only the first of the two loops is shown
(the second has exactly the same schedule).

155

void quick (int L, int T,
int field[])
{
int free, crit, up,
l, u, val;
free=u;
crit=field[free];
up=TRUE;
1l=L; u=U-1l;

- vhile {l<u) {

if up) { - ‘
val-field[l] ;
. 4fr (val>crit). {

v “field [free] wal,
[2] o :ree=l Cet

if (val<krit) {
field(free] wal,

break }

condition u--;
<&— OCCUrS }
}
— controller

reacts field[free]l=crit;

if (I<free-1l)
quick (L, free-1l);

if (free+l<U)
quick (free+l,U);

iteration n

These action has been executed -
speculatively. Due to an incorrectly [[] break condition (may end the loop)
predicted break condition (branch) it
now becomes illegal and must be
made undone.

Figure 13:

The inner loop of this Quicksort
algorithm is to be synthesized. The
break condition no. 1 (the

Figure S: ‘ WHILE-condition) is predicted to
The situation when "key1" breaks the tru? with an average accuracy of
loop within iteration n. The shaded 99% due a profiler report. The
actions have been executed condition pf the inner IF is predicted
speculatively and now they become to false with an accuracy of only 67%
illegal (profiler). The schedule in figure 14

will show that it is not necessary to
predict the condition "up" of the first
'IF because this value is always'
known in time.

Because the THEN- and the
ELSE-part of the first IF-statement
are nearly identical only the
THEN-part will be shown in the
following figures.

156

int wtab[255];
int ul, low, cr;

[[] break condition may end the loop

Figure 10:

"key2" is part of the blue screen algorithm. It is less
critical than "blue1” but-has more complex control

dependencies.

The shaded loop is to be synthesized. After the loog
has ended the values of "cr" and "vtablcr]" are read.

e
1163

break condition

Figure 11:
a: Schedule for "key2". No

pipelining is possible because
of a data dependency from the

decrement to the read.
b: Schedule possible due to
speculative computation.

The "or" is chained together
with the two comparisons in the -

(b) same clock cycle.
g
These action has been executed speculatively.
e@@ (Due to an incorrectly predicted break condition
= read (branch) it now becomes illegal and must be
@ made undone.
EX
@
2]
Eless e .
break Flgure 12:
cendition The situation when the break condition 2 breaks the
~%—2 occurs loop within iteration n. The shaded actions now have
controller become illegal.
reacts

157

2 R B O (CET

(b) CECHE

[[1 break condition

Control dependency. The action where the
arc is pointing to is only executed if the
condition calculated by the action on the
other side is true.

Figure 14:

Schedule for "quick" without (a) and with (b} speculative
computation. The "rst” actions perform the restore phase
after an incorrectly predicted condition of the inner
IF-statement. As soon as the restore phase is completed
the actions belonging to the body of these IF are executed.

——

prediction: "IF-condition false"

the controlier reacts to the
0 incorrect prediction! incorrectly predicted branch:
: ~t the dashed illegal actions are

1 @@ / made undone by restore

e N . actions (rst)
O |o%e | <

:/“" E L g g By, £
3 ‘;'{S't/' : o @ e
o |drtegpiiopy| s st & e

5 o || @ @
’ —«— the IF-body is now continued

6 : n+

7 @ n+2 n+3 (illegal) n+4 (illegal)

; redundant actiocns -> not executed

n+3ﬂ ®o, n+4 -
(>) incorrect prediction
@ restore-action for undo of illegally executed actions
speculatively executed action which now becomes illegal

Figure 15:
The IF-condition is predicted correctly with a probability ~ The shaded actions have been executed speculatively
of only 0.67. The figure shows a typical situation: the and now they become illegal and have to be made
IF-condition of two following itterations is predicted undone. This is done by the outlined rst-actions. As
correctly but not the third. soon as the restore-phase is completed the IF-body is

executed and the next iteration (no. n+3) will follow.

158

