
Learning Early-Stage Platform Dimensioning
From Late-Stage Timing Verification

Kai Richter, Marek Jersak
Symtavision GmbH

Braunschweig, Germany
{richter,jersak}@symtavision.com

Rolf Ernst
Institut für Datentechnik und Kommunikationsnetze

Technische Universität Braunschweig
Braunschweig, Germany
ernst@ida.ing.tu-bs.de

Abstract— Today's innovations in the automotive sector are, to a
great extent, based on electronics. The increasing integration
complexity and stringent cost reduction goals turn E/E platform
design into a challenging task. Timing/performance is becoming a
key aspect of architecture design, because the platform must be
dimensioned to provide just the right amount of computing
power and network bandwidth, including reserves for future
extensions, in order to be cost efficient. In other words, it must be
as powerful as needed but as cheap as possible. Finding this sweet
spot is a key challenge. Therefore, OEMs and Tier-1 are in search
of new methods, processes, and timing analysis techniques that
assist in early platform design stages. In this paper, we
demonstrate how some selected techniques that are established
for verification (in late design stages) can also be used to guide
the design (in early stages). We present examples in the areas
ECU (OSEK), buses (CAN, FlexRay) and gated networks. Flow
and applicability aspects are highlighted. As a key result, we
show that and how we can learn from late-stage verification for
early-stage design. Finally, we also outline future challenges in
the area of multi-core ECUs.

I. INTRODUCTION
Today's innovations in the automotive sector are, to a great

extent, based on electronics. The increasing integration
complexity of automotive systems, the many vehicle variants
which a single E/E platform must support and stringent cost
reduction goals turn E/E platform design into a highly
challenging task. Electronics cost is determined by many
factors, including topology and the processing and
communication technologies used. Although
timing/performance is just one aspect of architecture design, it
is a key one. The platform must provide just the right amount
of computing power and network bandwidth, including
reserves for future extensions, in order to be cost efficient.
Finding this sweet spot, where neither reliability nor
extensibility are sacrificed while keeping cost to a minimum, is
a key challenge. This means it has become clear that timing and
performance issues must essentially be included in the early
design stages. The question is: How?

OEMs and Tier-1 are in search of new methods, processes,
and timing analysis techniques that assist in early platform

design. A re-volutionary early-stage solution might appear
some day. More likely is an e-volution of existing timing and
performance analysis technologies that are established in later-
stage verification already and can be transferred to earlier
stages. In fact, we can learn a lot from the way later-stage
timing verification has found its place, and finally transfer key
concepts and techniques also to earlier design stages. In other
words, we put the cart before the horse.

In this paper, we highlight the technology transfer from late
stages to early stages using examples from ECU (OSEK), bus
(CAN), and gated network design from real-world industrial
applications of timing and scheduling analysis. We specifically
look at the flow and process aspects as well as on the amount
and detail of data needed for the analysis, which is typically
critical in early stages. This procedure has proved to be
effective in practice.

The paper is organized as follows. The next section outlines
the envisioned design flow, separated into “learning from
verification of existing platforms” and “applying to early
design of new platforms”. In Section 3, we summarize three
projects in which this approach has been applied in industry for
ECU hardware selection, bus design, and network
dimensioning. Section 4 focuses on the integration and
interfaces between the different players (OEMs and Tier-1s,
function and network designers, etc.). In Section 5 we provide
an outlook on future multi-core ECUs. Finally, in Section 6 we
draw our conclusions.

II. FROM LATE VERIFICATION TO EARLY DESIGN

Before learning from late-stage verification, we summarize
the most prominent techniques and discuss their applicability.
The most prominent late stage timing verification techniques
are:

• testing, i.e. measurement and tracing (on target or
prototype),

• timed simulations (on detailed target model),

• worst-case execution time analysis (on target object
code), and

• scheduling analysis (on abstract target model). This document is based on the TIMMO project in the framework of the
ITEA 2, EUREKA cluster programme Σ! 3674, funded by the German
Ministry for Education and Research (BMBF) under the funding IDs
01IS07002(B-I,K). The responsibility for the content rests with the authors.

Not all of them are directly suitable for analysis at an early
platform design step, simply because their input data is not
(yet) available. In this context, abstraction, accuracy, and
information interfaces are important.

A. Abstraction
On the one hand, a technique must be able to cope with

situations in which much less data is available as it is in a
typical late-stage verification situation. On the other hand, the
techniques must keep their key expressiveness and focus on the
effects they consider. This means, the abstraction must not
ignore the nature of the effects to be analyzed.

B. Accuracy
As a second requirement, the successful techniques must

also provide valuable results with only little info on final
implementation, i.e. without detailed task layout, detailed
signal-to-frame mapping, and finalized gateway strategy. This
includes reasoning about the accuracy of the results.
Interestingly, the absolute accuracy is not so far an issue as the
relative accuracy is when e.g. comparing two platform
candidates.

The examples in this paper start at verification and
gradually “reduce” the system models such that they are
applicable earlier with valuable results.

C. Interfaces
A third requirement is that the techniques must be

compatible with established industry supply chains. This means
they must support interfaces that allow exchanging information
about components without disclosing too much IP. These
interfaces must also be applicable across company borders and
let OEMs, Tier-1 and other suppliers to exchange key
information about the model components.

Of similar importance are interfaces that support the
transitions between early design, middle implementation, and
late verification, because timing and performance are aspects
that are best considered through the entire design process.
Clearly, a seamless transition and refinement strategy is
desirable.

D. The Learning Process
Let’s briefly consider how well each technique fulfills these

requirements.

Testing is not applicable in the early stage because no
implementation is available and the target has not been chosen
(the very definition of ‘early stage’).

Timed simulation partially avoids this problem because no
target is necessary. However, to produce meaningful results the
simulated target model has to be highly accurate, and
simulation always requires executable code. Both conditions
can be difficult to meet in the early stage. In fact, timed
simulation is most successful in SW-development either for a
platform which has been chosen but is not yet available in HW,
or because the superior debugging capabilities of the simulator
are needed.

Scheduling analysis, in contrast, is abstract by nature. It
works at the level of the operating system or bus protocol and
analyses timing effects resulting from integration of tasks and
messages on controllers and buses, respectively. This focus is
key, because there are rare cases in which a single task or
message causes performance problems. Much more often, their
integration creates bottlenecks.

Scheduling analysis considers integration without the need
for an executable system model. This makes scheduling
analysis a promising candidate for being applied also in the
early design stage. Scheduling analysis is applicable to system
models of very different level of detail. In addition, scheduling
analysis allows for “what-if analysis”, i.e. the analysis can be
applied to a hypothetic data set without any coding, building,
wiring, or other implementation work to be done. If put into the
right context, this can tell about possible performance reserves,
optimization possibilities, or upcoming bottlenecks before the
entire system is build.

Obviously, such “what-if analysis” can tell, if or not a
platform provides enough computation and/or communication
performance to realize the envisioned application. This way, it
directly supports the exploration of different possible design
decisions and variants in platform design.

This is illustrated in the V-model view of Figure 1. In
addition to the late-stage verification of a known platform (step
1: top-right of the V-model), there are two more application
areas of earlier-stage “what-if scheduling analysis”:

• when an existing platform is to be extended, modified,
or optimized (step 2)

• when a new platform is being build (step 3)

The next section briefly outlines the techniques behind
scheduling analysis. After that we give concrete examples from
customer projects, namely from Daimler [1], Volkswagen [2]
and EDAG [3]. The examples are from different domains
(ECU, bus, and network) but have one key aspect in common.
All projects started at the verification (top-right in the V-
model) and then gradually transferred the experience to earlier
steps in the process.

detailed verification,
known platform

exploration of
future platforms

evaluation of future modifications
of a known platform

1

2

3
learning

le
ar

ni
ng

learning

Figure 1. Learn from verification, exploit in design

III. SCHEDULING ANALYSIS – TECHNOLOGY SKETCH
Scheduling analysis has its roots in the early 1970’s [4].

The basic objective is to map the resource sharing strategy (OS
scheduling or bus arbitration) into a set of equations that can be
solved to determine latency and response times [5], peak loads,
buffer sizes, etc., thereby carefully considering the corner cases
of system execution. Several popular sharing mechanisms for
ECUs and buses have been extensively researched. OSEK [6],
for instance, is based on static priorities with preemptive,
deferred, and non-preemptive tasks [4][7]. Extensions exist to
account for fine-grain OS timing influences such as offsets
[8][9] and sporadic interrupts [10]. In a similar way, CAN [11]
networks can be described by non-preemptive static-priority
techniques [7]. FlexRay [12] Networks can be described by
TDMA analysis [13]. Recently, new techniques for system-
level end-to-end analysis were introduced [14][15][16]. This
way, techniques for analyzing a large amount of real-world OS
and arbitration mechanisms exists, most of them integrated into
SymTA/S [17].

In all mentioned contributions (and many more that can
simply not be mentioned all here), the basic idea is to create a
formal (i.e. mathematical) model that a) covers the relevant
load arrival into the system (tasks activation, interrupts, etc.)
and b) captures the corresponding reaction into equations for
certain properties (latency, buffer sizes, etc.). This clear focus
on timing-relevant influences resulted in very small and
efficient models with only few parameters. Examples are
function execution times or frame cycle times. Neither details
of the executed code, nor the content of the transmitted data, is
of interest, as long as the “arrival of system load” can be
described.

This powerful abstraction into few key parameters is the
key enabler for both, the systematic and efficient analysis of
timing and performance including full corner-case coverage,
and the early application by means of “what-if” analyses for
sensitivity analysis and design space exploration [18][2][19].

The SymTA/S analysis framework that has been used in the
three commercial case studies is comprised of the key research
results from three decades including the cited contributions.

IV. CASE STUDIES

A. ECU Hardware Selection
Volkswagen Steering Systems has applied SymTA/S

scheduling analysis during the development of its new electro-
mechanical steering system for the Volkswagen Tiguan [2].
The required safety concept was developed according to the
functional safety standard IEC 61508. One of the safety
mechanisms is a watchdog on a second processor that
supervises the internal timing of the software through a
request-response mechanism. If the response signal does not
arrive in a predefined timeframe, the system is assumed to have
failed, and the fail-safe mode is activated. This means that
every late delivery of control signals is interpreted as a system
failure, even if it is just a consequence of a temporary peak
load on the CPU and would not harm the overall function at all.

1) Verification
Volkswagen has verified the timing using the SymTA/S

tool framework. This verification included scheduling analysis
on the main controller and end-to-end timing analysis for the
request-response mechanism. This way, Volkswagen
eliminated false positives in failure detection and maximized
the availability of the steering system. In a similar setting,
SymTA/S was also used at BMW [20].

2) Hardware Selection
During the design of this system, Volkswagen could re-use

an existing SymTA/S verification model from the previous
generation of the steering system. Due to cost reasons, much of
the system software was re-used unchanged, so also large parts
of the SymTA/S model were already available at project start.
And the design group had experience with timing and
scheduling analysis already.

Based on this re-used SymTA/S model, Volkswagen
“virtually verified” several software and hardware
modifications with SymTA/S before key decisions were taken.
Such sensitivity analysis, a special type of “what if analysis”,
was used to detect unused CPU performance and to select the
slowest (cheapest) possible CPU hardware. At the same time,
Volkswagen guaranteed the desired function availability
according to IEC 61508.

The key parameters for this virtual verification were worst-
case execution times (WCET) of functions and CPU speed
values. It was shown that, after some initial learning, these
could be used as a sufficient communication base between
software developers, ECU integrators and hardware suppliers.
As a result of the “what-if scheduling analysis”, Volkswagen
could safely decide for a much slower processor that initially
envisioned, this way saving a significant mount of hardware
cost.

It must be noted that full accuracy was not required in the
early estimations, because the entire system was continuously
re-analyzed as soon as more implementation details became
available. In other words, the verification itself was seamlessly
integrated into the design process, while the accuracy was
constantly increasing, from first estimates to the final target.

2. Selecting New Hardware

3. Determining Software Extensibility

1. Securing Availability

Re-Using SymTA/S Model from 1. Generation

Sensitivity Analysis
(“What if ?”)

Figure 2. SymTA/S „What-if“ Analyses at Volkswagen Steering Systems –
Figure courtesy of Volkswagen

3) Future Extensibility
Finally, the sensitivity analysis also helped in deliberately

preserving some amount of CPU power for future software
updates and extensions. Volkswagen considers having the
abstract scheduling analysis models a key advantage for a
systematic extension of existing systems, and as a solid
argumentation base for the negotiation with suppliers [2].

4) Bottom Line
After collecting experience from verification, Volkswagen

has used “what-if scheduling analysis” extensively. The
communication with software developers and hardware
suppliers could be efficiently done through few scheduling
model parameters. Using estimates and a reduced amount of
information, Volkswagen could systematically reserve timing
budgets for future extensions. The systematic planning of the
next-generation ECU platform secured significant cost savings.
The three main steps are illustrated in Figure 2.

B. CAN Bus Extension
The second example is from EDAG, a leading German

engineering house. In a project for EDAG’s OEM customers, a
new ECU “Lane Departure Warning” was to be added to an
existing low-speed CAN bus in a mass production car. The key
question was, if (and how) the existing bus could be safely
extended to carry the additional messages of „Lane Departure
Warning (LDW)“ without critical influences on the existing
communication [3].

1) Verification.
EDAG has set-up a SymTA/S scheduling model of the

existing CAN bus and performed several analyses to
understand better the peak load situations in which additional
communication becomes most critical. This provided EDAG
with new insights into the bus under design.

2) Extension
Then, the new LDW frames were virtually added to the

SymTA/S model before the ECU was available for being
integrated into a lab prototype. EDAG has performed more
scheduling analyses in order to find out, in which configuration
the new frames have the smallest influence on the existing bus.
This “frame design” is a typical platform design task that
involves signal-to-frame mapping, CAN Id (priority) selection,
the assignment of a sufficient frame period, the selection of a
reasonable offset, etc. All these decisions influence the timing
in one or the other way.

The result of this assessment was that, from a timing and
performance perspective, the new frames could be safely added
to the bus. Figure 3. illustrates the enhancements in the overall
performance of the communication.

3) Robustness Against Dynamic Load
Finally, EDAG has further performed a larger number of

“what-if” scheduling analyses to determine the influence of
different dynamic load situations on the timing of frames. In
order to apply “realistic” dynamic load to the bus, several
existing bus traces (from verification) were used and key
abstract properties were extracted. These could then be re-used
and applied to other “virtual” bus models, thereby simulating

the external dynamic environment of a not jet build
communication platform.

This has significantly increased EDAG’s understanding of
the bus performance in the presence of temporary overload
and/or bus errors. The key parameters that were considered
were signals and their timing requirements (such as rates and, if
available, deadlines) and the allowed CAN Id (bus frame
priority) ranges that were available for bus extensions. For the
error robustness, EDAG considered different possible bus error
models including periodic errors, sporadic errors and burst
errors; all on a “virtual” SymTA/S bus scheduling model.

4) Bottom line
Like in the Volkswagen case, EDAG has learned from

verification, how to use abstract analysis and how to perform
“what-if” scheduling analysis with SymTA/S. EDAG explored
different options for integration the new LDW ECU to an the
existing low-speed CAN bus before the key decisions were
taken, how the new ECU was added. Finally, EDAG
determined the general extensibility of the existing CAN bus,
and its timing robustness against dynamic overload, e.g. due to
bus errors.

C. Gated Network Dimensioning
Daimler Research goes one step further. They are using

SymTA/S not only for analyzing and dimensioning individual
buses but for their entire network design covering different
topologies of CAN and FlexRay buses and gateways [1]. In
contrast to the two aforementioned examples, this example
does not have a specific application in mind. It rather aims at
methodological progress in the context of network topology
design for next-generation car platform of Mercedes-Benz.

1) Detailed Analysis of Existing Networks
Daimler started by setting up a detailed SymTA/S

scheduling analysis model of an existing network architecture.
In the common project, Symtavision and Daimler developed an
interface between SymTA/S and the central Daimler
architecture database. The database is realized by the
PREEvision tool from Aquintos (http://www.aquintos.com).
This way, most of the bus configuration information can be
efficiently imported into SymTA/S without manual modeling.

Figure 3. Bus Latency Times Before and After Optimization – Figure
courtesy of EDAG

Figure 4. Example for End-to-End latencies (for one particular frame) –
Figure courtesy of Daimler

The SymTA/S analysis results were then compared to
measurements that were taken on the corresponding real buses.
This provided good knowledge on the comparability of
measured data and the “calculated” scheduling analysis results.
Of course, the calculated values were higher than the measured
ones for several reasons. Most importantly, scheduling analysis
tends to be a bit pessimistic (to reduce modeling complexity)
while measurements are always too optimistic (because they
never reach all corner cases). A difference of 30% is not
uncommon for network latencies. The detailed timing diagrams
of SymTA/S illustrate which situation leads to one or the other
latency, so the designer can distinguish insufficient modeling
details from a clear measurement coverage problem. This way,
Daimler derived simple but expressive metrics on how to use
SymTA/S results when comparing network architectures.

2) Analysis of Future Networks
Next, Daimler set up a SymTA/S model of a network

architecture that was already envisioned for future cars but not
yet build. The configuration data was imported from
PREEvision and SymTA/S was used to determine the timing of
this not-yet-build network. Daimler was able to set-up a
SymTA/S model that based on a small set of configuration
parameters that a) are available early (or can be made available
with minor invasion of established process) and b) are
sufficiently expressive to reach the desired level of result
confidence for taking architecture and topology decisions.

In fact, the result accuracy is not sufficient for a final
verification (as it was in the Volkswagen ECU case above), but
it was sufficiently good for platform decisions. The particular
experience made during the detailed analysis of existing
networks (late-stage analysis), and the derived comparison
metrics mentioned above, are key enablers for applying timing
analysis techniques earlier in the process with high result
confidence.

3) Comparisons
Figure 4. shows a comparison of the measured and

calculated (SymTA/S) end-to-end network latency of one
particular frame on an existing CAN bus and the projected
latency of that same frame when one bus in the topology is
exchanged by a FlexRay bus segment.

Figure 5. Comparison of latencies in a CAN cluster – Figure courtesy of
Daimler

In a second comparison, Daimler focused on the latency
increase when more frames are added to the CAN bus (without
exchanging it by FlexRay), and also explored (with the
SymTA/S exploration framework) several options for
optimizations. Figure 5. shows the response time profiles of
three bus configurations: “Actual topology” is the current
latency profile of all frames, “future topology” indicates a huge
increase in bus latencies as a consequence of future bus
extensions (more frames), and “future topology optimized”
shows that this future load can be optimized significantly.

Such comparisons help deciding if and when to transition
from Can to FlexRay because of the increasing bus load, or
when to postpone this costly technology step.

4) Bottom Line
From detailed scheduling analysis and from comparisons

with measurements, Daimler has created competence in
network timing covering multi-bus topologies with gateways
and determined the latencies of future car networks, allowing
them to take performance- and timing-optimized platform
decisions.

This example shows once more that the proposed approach
“exploit verification experience during early design” is
effective in practice. And it shows which technology can be
transferred from late to early process steps (here: SymTA/S
scheduling analysis), and which can’t (here tracing and
measurements). As another side effect, one exploits many late-
stage fine-tuning and optimization possibilities.

Daimler concludes that “the project has brought great value
for the knowledge about timing of network architectures.” [1].

V. SYSTEM INTEGRATION
So far, we have considered individual views on early

system design. Tier-1s look at a single ECUs (as in the
Volkswagen example), individual OEM domain departments
look at one bus (as in the EDAG example), and the OEM
system department looks at the entire E/E network (Daimler
example).

Another challenge is that these players will have to
exchange information, especially requirements and guarantees
about their sub-systems or components. This was indicated in
all three projects:

• ECU extension needs estimates of software execution
times (WCET) of own and supplied software

• Bus extension needs info on signal rates and maximum
allowed jitters (typically come from the control
engineers and can be in-house or at Tier-1s)

• E/E Platform design needs, in addition to information
on the combined communication requirements, also
info and control over the gateway strategy.

In the mentioned projects, we have used and extended
established standards such as DBC, FIBEX, OIL to the needs
in the project; and we developed interfaces to other
configuration tools such as PREEvision. On the long term,
standardized ways to exchange timing information are
required. There are two relevant ongoing activities.

First, the EU-funded industry-driven TIMMO project [21]
aims at defining a Timing Augmented Description Language
(TADL), along with a detailed methodology when and how to
exchange such TADL models. Several OEMs and Tier-1
suppliers develop TIMMO together with key software and tool
vendors (incl. Symtavision) and two universities.

Secondly, timing has also become a hot topic in
AUTOSAR [22]. The existing AUTOSAR templates are being
enriched by a timing view that supports predicting, analyzing
and verifying ECU and system timing along the entire process.
Symtavision has recently become an AUTOSAR development
member and contributes its expertise to the development of
these necessary AUTOSAR extensions in work package In
WPII-1.2.

The SymTA/S analysis techniques do support such
interfaces in terms of appropriate model parameters and the
possibility to include black-box models of parts of the system
with very small model footprint [23]. Focusing on the right
data is crucial for an efficient and effective cooperation
between OEMs and Tier-1s [24].

VI. MULTI-CORE ARCHITECTURES
Currently, most ECUs contain a single core CPU possibly

enhanced with specialized peripheral processors to offload
some of the time critical and control functions. In the future,
multi-core ECUs with homogeneous cores, with shared
memory and uniform or non-uniform memory access will
emerge. An obvious application is the merging of several
ECUs into a single unit. This move, enabled by AUTOSAR,
will improve function integration as in body electronics or
sensor fusion, and it will save cost and improve
maintainability. Here, virtualization is important, i.e. keeping
task execution isolated, yet profiting from on-chip buses and
memories as an efficient means to implement AUTOSAR SW
component communication.

In this type of application, multi-core CPUs turn an ECU
into a highly integrated “networked system” micro cosmos that
(at first glance) appears similar to networked systems as of
today. However, while virtualization works for functionality,
sharing chip resources leads to further timing dependencies that
go beyond networked systems, since program and data memory
accesses use the same chip infrastructure. Memory accesses are

often less regular and predetermined and require new analysis
algorithms as presented in [25]. The algorithm is compatible to
SymTA/S.

A second type of application will be high-performance
domains such as engine control or advanced driver assistance.
In this case, the multi-core architecture will be used to
distribute the load of a single application over several cores.
This also turns the shared memory communication of today
into a distributed communication between several cores, which
might share function units, such as coprocessors.

Traditionally, save sharing and communication in
automotive task systems uses OS supported locking and
synchronization mechanisms. When mapping such task
systems to multi-core architectures, new types of arbitration
conflicts emerge that require enhanced scheduling and analysis
algorithms. Examples are shared buses and caches, introducing
critical side effects leading to deviating results [26] that are
hard to predict. Therefore, we expect that automotive multi-
core scheduling will take an evolutionary approach extending
the current fixed priority scheduling towards partitioned fixed
priority scheduling, such as MPCP [27] or the algorithm by
Chen [28]. In [29], a first algorithm is presented that is
compatible to SymTA/S and can be combined with memory
access analysis as described above. It can be used to analyze
such evolutionary multi-core scheduling extensions.

Some more research is needed to also cover later multi-core
generation issues, such as cache coherence, multithreading, and
migration, as well as global scheduling algorithms that are
discussed in the research community. A main issue for such
architectures will be predictability.

VII. CONCLUSION
In this paper, we have shown that and how timing analysis

techniques can assist in developing cost efficient automotive
E/E platforms. In particular, we have demonstrated how
scheduling analysis that is established for verification (in late
design stages) can also be used to guide the design (in early
stages), because it meets some particular requirements in terms
of abstraction, accuracy, and interfaces. This allows finding the
sweet spots with respect to performance and cost.

We outlined three industrial projects, in which our
customers use SymTA/S scheduling analysis, in particular
“what-if” analysis, for early-stage platform performance
assessment as one important step in platform design. In all
three projects, however, this early application of scheduling
analysis was preceded by using scheduling analysis for detailed
platform verification in late stages. The experience made in
verification enabled our customers to exploit the abstraction
possibilities of the technology and adopt and reduce the models
such they could be used for “what-if analyses” in several ways,
from software extensibility analysis, to CPU selection, to bus
configuration, to topology decisions.

We ultimately believe that gathering late-stage experience
is the key enabler for adopting new technology also to early
stages. This is not an automotive-only observation. Clearly, the
same flow can be expected in aerospace, multi-media, etc.

REFERENCES
[1] M. Traub, V. Lauer , J. Becker , M. Jersak, K. Richter , M. Kühl. Using

timing analysis for evaluating communication behavior and network
topologies in an early design phase of automotive electric/electronic
architectures. SAE World Congress, Detroit, April 2009

[2] T. Jablonski, C. Busse, D. Brinkema, M. Jersak, K. Richter. Timing
Analysis as a Safety Case. Hanser Automotive Magazin, 11.2008

[3] M. Girlach, Usage of SymTA/S for investigation of the K-Matrix in a
vehicle development project. 1st SymTA/S News Conference,
Braunschweig, Sept. 2007

[4] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[5] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, 1986.

[6] OSEK Steering Committee. OSEK Open systems and the corresponding
interfaces for automotive electronics. http://www.osek-vdx.org/.

[7] K. Jeffay, D. F. Stanat, C. U. Martel. On Non-Preemptive Scheduling of
Periodic and Sporadic Tasks. IEEE Real-Time Systems Symposium, San
Antonio, Texas, December 1991

[8] K. Tindell. Adding time-offsets to schedulability analysis. Technical
Report YCS 221, University of York, 1994.

[9] J. C. Palencia and M. G. Harbour. Schedulability analysis for tasks with
static and dynamic offsets. In Proceedings of the IEEE Real-Time
Systems Symposium, page 26. IEEE Computer Society, 1998.

[10] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard
real-time systems. Journal of Real-Time Systems, 1(1):27–60, 1989.

[11] CAN in Automation Website. http://www.can-cia.org
[12] FlexRay Consortium Website. http://www.flexray.com/
[13] H. Kopetz and G. Gruensteidl. TTP - a time-

triggered protocol for fault-tolerant computing. In Proceedings 23rd
International Symposium on Fault-Tolerant Computing, pages 524–532,
1993.

[14] L. Mangeruca, M. Baleani, A. Ferrari, and A. Sangiovanni-Vincentelli.
Semantics-preserving design of embedded control software from
synchronous models. IEEE Trans. Software Eng., 33(8):497–509, 2007.

[15] S. Matic and T. A. Henzinger. Trading end-to-end latency for
composability. In RTSS ’05: Proceedings of the 26th IEEE International
Real-Time Systems Symposium, pages 99–110, Washington, DC, USA,
2005. IEEE Computer Society.

[16] N. Feiertag, K. Richter, J. Nordlander, J. Jonsson. A Compositional
Framework for End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics, IEEE RTSS 08, Workshop
Compositional Theory and Technology for Real-Time Embedded
Systems, Barcelona, December 2008.

[17] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter and R. Ernst.

System Level Performance Analysis – the SymTA/S Approach. IEE
Proceedings on Computers and Digital Techniques, Vol 152, issue 2,
March 2005.

[18] A. Hamann, M. Jersak, K. Richter, R. Ernst. A framework for modular
analysis and exploration of heterogeneous embedded systems. Real-
Time Systems, volume 33, pages 101-137, July 2006.

[19] R. Racu, A. Hamann, R. Ernst. A Formal Approach to Multi-
Dimensional Sensitivity Analysis of Embedded Real-Time Systems.
Euromicro Conference on Real-Time Systems, Dresden, Germany, July
2006

[20] M. Jersak, K. Richter, H. Sarnowski, P. Gliwa. The Right Timing
Analysis Tools Increase Safety and Productivity. ATZe worldwide
Edition: 2009-01

[21] ITEA-2 Project TIMMO. http://www.timmo.org
[22] AUTOSAR Partnership. http://www.autosar.org/
[23] K. Richter and R. Ernst, Event Model Interfaces for Heterogeneous

System Analysis, In Proceedings of Design, Automation, and Test in
Europe Conference, Paris, France, 2002.

[24] K. Richter, How OEMs can get Suppliers On Board for Designing
Extensible Networks. In Proceedings Embedded World Conference,
Nuremberg, 2007.

[25] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, R. Ernst. Reliable
Performance Analysis of a Multicore Multithreaded System-On-Chip. In
Proc. 6th Int. Conf. on Hardware Software Codesign and System
Synthesis (CODES+ISSS), Atlanta, USA, Oct. 2008.

[26] B.B. Brandenburg, J.M. Calandrino, J.H. Anderson. On the Scalability
of Real-Time Scheduling Algorithms on Multicore Platforms: A Case
Study. Real-Time Systems Symposium, Barcelona, Dec. 2008.

[27] R. Rajkumar. Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers Norwell, MA,
USA, 1991.

[28] C.M. Chen and S.K. Tripathi. Multiprocessor priority ceiling based
protocols. Tech. Rep. Univ. of Maryland, 1994.

[29] M. Negrean, S. Schliecker, R. Ernst. Response-Time Analysis of
Arbitrarily Activated Tasks in Multiprocessor Systems with Shared
Resources. In Proc. Design, Automation, and Test in Europe (DATE),
Nice, Apr. 2009.

