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Abstract— Today's innovations in the automotive sector are, to a 
great extent, based on electronics. The increasing integration 
complexity and stringent cost reduction goals turn E/E platform 
design into a challenging task. Timing/performance is becoming a 
key aspect of architecture design, because the platform must be 
dimensioned to provide just the right amount of computing 
power and network bandwidth, including reserves for future 
extensions, in order to be cost efficient. In other words, it must be 
as powerful as needed but as cheap as possible. Finding this sweet 
spot is a key challenge. Therefore, OEMs and Tier-1 are in search 
of new methods, processes, and timing analysis techniques that 
assist in early platform design stages. In this paper, we 
demonstrate how some selected techniques that are established 
for verification (in late design stages) can also be used to guide 
the design (in early stages). We present examples in the areas 
ECU (OSEK), buses (CAN, FlexRay) and gated networks. Flow 
and applicability aspects are highlighted. As a key result, we 
show that and how we can learn from late-stage verification for 
early-stage design. Finally, we also outline future challenges in 
the area of multi-core ECUs. 

I. INTRODUCTION 
Today's innovations in the automotive sector are, to a great 

extent, based on electronics. The increasing integration 
complexity of automotive systems, the many vehicle variants 
which a single E/E platform must support and stringent cost 
reduction goals turn E/E platform design into a highly 
challenging task. Electronics cost is determined by many 
factors, including topology and the processing and 
communication technologies used. Although 
timing/performance is just one aspect of architecture design, it 
is a key one. The platform must provide just the right amount 
of computing power and network bandwidth, including 
reserves for future extensions, in order to be cost efficient. 
Finding this sweet spot, where neither reliability nor 
extensibility are sacrificed while keeping cost to a minimum, is 
a key challenge. This means it has become clear that timing and 
performance issues must essentially be included in the early 
design stages. The question is: How?  

OEMs and Tier-1 are in search of new methods, processes, 
and timing analysis techniques that assist in early platform 

design. A re-volutionary early-stage solution might appear 
some day. More likely is an e-volution of existing timing and 
performance analysis technologies that are established in later-
stage verification already and can be transferred to earlier 
stages. In fact, we can learn a lot from the way later-stage 
timing verification has found its place, and finally transfer key 
concepts and techniques also to earlier design stages. In other 
words, we put the cart before the horse. 

In this paper, we highlight the technology transfer from late 
stages to early stages using examples from ECU (OSEK), bus 
(CAN), and gated network design from real-world industrial 
applications of timing and scheduling analysis. We specifically 
look at the flow and process aspects as well as on the amount 
and detail of data needed for the analysis, which is typically 
critical in early stages. This procedure has proved to be 
effective in practice. 

The paper is organized as follows. The next section outlines 
the envisioned design flow, separated into “learning from 
verification of existing platforms” and “applying to early 
design of new platforms”. In Section 3, we summarize three 
projects in which this approach has been applied in industry for 
ECU hardware selection, bus design, and network 
dimensioning. Section 4 focuses on the integration and 
interfaces between the different players (OEMs and Tier-1s, 
function and network designers, etc.). In Section 5 we provide 
an outlook on future multi-core ECUs. Finally, in Section 6 we 
draw our conclusions. 

II. FROM LATE VERIFICATION TO EARLY DESIGN 

Before learning from late-stage verification, we summarize 
the most prominent techniques and discuss their applicability. 
The most prominent late stage timing verification techniques 
are: 

• testing, i.e. measurement and tracing (on target or 
prototype), 

• timed simulations (on detailed target model), 

• worst-case execution time analysis (on target object 
code), and 

• scheduling analysis (on abstract target model). This document is based on the TIMMO project in the framework of the 
ITEA 2, EUREKA cluster programme Σ! 3674, funded by the German 
Ministry for Education and Research (BMBF) under the funding IDs 
01IS07002(B-I,K). The responsibility for the content rests with the authors. 



Not all of them are directly suitable for analysis at an early 
platform design step, simply because their input data is not 
(yet) available. In this context, abstraction, accuracy, and 
information interfaces are important. 

A. Abstraction 
On the one hand, a technique must be able to cope with 

situations in which much less data is available as it is in a 
typical late-stage verification situation. On the other hand, the 
techniques must keep their key expressiveness and focus on the 
effects they consider. This means, the abstraction must not 
ignore the nature of the effects to be analyzed.  

B. Accuracy 
As a second requirement, the successful techniques must 

also provide valuable results with only little info on final 
implementation, i.e. without detailed task layout, detailed 
signal-to-frame mapping, and finalized gateway strategy. This 
includes reasoning about the accuracy of the results. 
Interestingly, the absolute accuracy is not so far an issue as the 
relative accuracy is when e.g. comparing two platform 
candidates.  

The examples in this paper start at verification and 
gradually “reduce” the system models such that they are 
applicable earlier with valuable results.  

C. Interfaces 
A third requirement is that the techniques must be 

compatible with established industry supply chains. This means 
they must support interfaces that allow exchanging information 
about components without disclosing too much IP. These 
interfaces must also be applicable across company borders and 
let OEMs, Tier-1 and other suppliers to exchange key 
information about the model components.  

Of similar importance are interfaces that support the 
transitions between early design, middle implementation, and 
late verification, because timing and performance are aspects 
that are best considered through the entire design process. 
Clearly, a seamless transition and refinement strategy is 
desirable.  

D. The Learning Process 
Let’s briefly consider how well each technique fulfills these 

requirements.  

Testing is not applicable in the early stage because no 
implementation is available and the target has not been chosen 
(the very definition of ‘early stage’).  

Timed simulation partially avoids this problem because no 
target is necessary. However, to produce meaningful results the 
simulated target model has to be highly accurate, and 
simulation always requires executable code. Both conditions 
can be difficult to meet in the early stage. In fact, timed 
simulation is most successful in SW-development either for a 
platform which has been chosen but is not yet available in HW, 
or because the superior debugging capabilities of the simulator 
are needed. 

Scheduling analysis, in contrast, is abstract by nature. It 
works at the level of the operating system or bus protocol and 
analyses timing effects resulting from integration of tasks and 
messages on controllers and buses, respectively. This focus is 
key, because there are rare cases in which a single task or 
message causes performance problems. Much more often, their 
integration creates bottlenecks.  

Scheduling analysis considers integration without the need 
for an executable system model. This makes scheduling 
analysis a promising candidate for being applied also in the 
early design stage. Scheduling analysis is applicable to system 
models of very different level of detail. In addition, scheduling 
analysis allows for “what-if analysis”, i.e. the analysis can be 
applied to a hypothetic data set without any coding, building, 
wiring, or other implementation work to be done. If put into the 
right context, this can tell about possible performance reserves, 
optimization possibilities, or upcoming bottlenecks before the 
entire system is build.  

Obviously, such “what-if analysis” can tell, if or not a 
platform provides enough computation and/or communication 
performance to realize the envisioned application. This way, it 
directly supports the exploration of different possible design 
decisions and variants in platform design.  

This is illustrated in the V-model view of Figure 1. In 
addition to the late-stage verification of a known platform (step 
1: top-right of the V-model), there are two more application 
areas of earlier-stage “what-if scheduling analysis”: 

• when an existing platform is to be extended, modified, 
or optimized (step 2) 

• when a new platform is being build (step 3) 

The next section briefly outlines the techniques behind 
scheduling analysis. After that we give concrete examples from 
customer projects, namely from Daimler [1], Volkswagen [2] 
and EDAG [3]. The examples are from different domains 
(ECU, bus, and network) but have one key aspect in common. 
All projects started at the verification (top-right in the V-
model) and then gradually transferred the experience to earlier 
steps in the process.  
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Figure 1.  Learn from verification, exploit in design 



III. SCHEDULING ANALYSIS – TECHNOLOGY SKETCH 
Scheduling analysis has its roots in the early 1970’s [4]. 

The basic objective is to map the resource sharing strategy (OS 
scheduling or bus arbitration) into a set of equations that can be 
solved to determine latency and response times [5], peak loads, 
buffer sizes, etc., thereby carefully considering the corner cases 
of system execution. Several popular sharing mechanisms for 
ECUs and buses have been extensively researched. OSEK [6], 
for instance, is based on static priorities with preemptive, 
deferred, and non-preemptive tasks [4][7]. Extensions exist to 
account for fine-grain OS timing influences such as offsets 
[8][9] and sporadic interrupts [10]. In a similar way, CAN [11] 
networks can be described by non-preemptive static-priority 
techniques [7]. FlexRay [12] Networks can be described by 
TDMA analysis [13]. Recently, new techniques for system-
level end-to-end analysis were introduced [14][15][16]. This 
way, techniques for analyzing a large amount of real-world OS 
and arbitration mechanisms exists, most of them integrated into 
SymTA/S [17].  

In all mentioned contributions (and many more that can 
simply not be mentioned all here), the basic idea is to create a 
formal (i.e. mathematical) model that a) covers the relevant 
load arrival into the system (tasks activation, interrupts, etc.) 
and b) captures the corresponding reaction into equations for 
certain properties (latency, buffer sizes, etc.). This clear focus 
on timing-relevant influences resulted in very small and 
efficient models with only few parameters. Examples are 
function execution times or frame cycle times. Neither details 
of the executed code, nor the content of the transmitted data, is 
of interest, as long as the “arrival of system load” can be 
described. 

This powerful abstraction into few key parameters is the 
key enabler for both, the systematic and efficient analysis of 
timing and performance including full corner-case coverage, 
and the early application by means of “what-if” analyses for 
sensitivity analysis and design space exploration [18][2][19]. 

The SymTA/S analysis framework that has been used in the 
three commercial case studies is comprised of the key research 
results from three decades including the cited contributions. 

IV. CASE STUDIES 

A. ECU Hardware Selection 
Volkswagen Steering Systems has applied SymTA/S 

scheduling analysis during the development of its new electro-
mechanical steering system for the Volkswagen Tiguan [2]. 
The required safety concept was developed according to the 
functional safety standard IEC 61508. One of the safety 
mechanisms is a watchdog on a second processor that 
supervises the internal timing of the software through a 
request-response mechanism. If the response signal does not 
arrive in a predefined timeframe, the system is assumed to have 
failed, and the fail-safe mode is activated. This means that 
every late delivery of control signals is interpreted as a system 
failure, even if it is just a consequence of a temporary peak 
load on the CPU and would not harm the overall function at all. 

1) Verification 
Volkswagen has verified the timing using the SymTA/S 

tool framework. This verification included scheduling analysis 
on the main controller and end-to-end timing analysis for the 
request-response mechanism. This way, Volkswagen 
eliminated false positives in failure detection and maximized 
the availability of the steering system. In a similar setting, 
SymTA/S was also used at BMW [20]. 

2) Hardware Selection 
During the design of this system, Volkswagen could re-use 

an existing SymTA/S verification model from the previous 
generation of the steering system. Due to cost reasons, much of 
the system software was re-used unchanged, so also large parts 
of the SymTA/S model were already available at project start. 
And the design group had experience with timing and 
scheduling analysis already. 

Based on this re-used SymTA/S model, Volkswagen 
“virtually verified” several software and hardware 
modifications with SymTA/S before key decisions were taken. 
Such sensitivity analysis, a special type of “what if analysis”, 
was used to detect unused CPU performance and to select the 
slowest (cheapest) possible CPU hardware. At the same time, 
Volkswagen guaranteed the desired function availability 
according to IEC 61508. 

The key parameters for this virtual verification were worst-
case execution times (WCET) of functions and CPU speed 
values. It was shown that, after some initial learning, these 
could be used as a sufficient communication base between 
software developers, ECU integrators and hardware suppliers. 
As a result of the “what-if scheduling analysis”, Volkswagen 
could safely decide for a much slower processor that initially 
envisioned, this way saving a significant mount of hardware 
cost. 

It must be noted that full accuracy was not required in the 
early estimations, because the entire system was continuously 
re-analyzed as soon as more implementation details became 
available. In other words, the verification itself was seamlessly 
integrated into the design process, while the accuracy was 
constantly increasing, from first estimates to the final target. 
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Figure 2.  SymTA/S „What-if“ Analyses at Volkswagen Steering Systems –
Figure courtesy of Volkswagen 



3) Future Extensibility 
Finally, the sensitivity analysis also helped in deliberately 

preserving some amount of CPU power for future software 
updates and extensions. Volkswagen considers having the 
abstract scheduling analysis models a key advantage for a 
systematic extension of existing systems, and as a solid 
argumentation base for the negotiation with suppliers [2]. 

4) Bottom Line 
After collecting experience from verification, Volkswagen 

has used “what-if scheduling analysis” extensively. The 
communication with software developers and hardware 
suppliers could be efficiently done through few scheduling 
model parameters. Using estimates and a reduced amount of 
information, Volkswagen could systematically reserve timing 
budgets for future extensions. The systematic planning of the 
next-generation ECU platform secured significant cost savings. 
The three main steps are illustrated in Figure 2.  

B. CAN Bus Extension 
The second example is from EDAG, a leading German 

engineering house. In a project for EDAG’s OEM customers, a 
new ECU “Lane Departure Warning” was to be added to an 
existing low-speed CAN bus in a mass production car. The key 
question was, if (and how) the existing bus could be safely 
extended to carry the additional messages of „Lane Departure 
Warning (LDW)“ without critical influences on the existing 
communication [3]. 

1) Verification. 
EDAG has set-up a SymTA/S scheduling model of the 

existing CAN bus and performed several analyses to 
understand better the peak load situations in which additional 
communication becomes most critical. This provided EDAG 
with new insights into the bus under design.  

2) Extension 
Then, the new LDW frames were virtually added to the 

SymTA/S model before the ECU was available for being 
integrated into a lab prototype. EDAG has performed more 
scheduling analyses in order to find out, in which configuration 
the new frames have the smallest influence on the existing bus. 
This “frame design” is a typical platform design task that 
involves signal-to-frame mapping, CAN Id (priority) selection, 
the assignment of a sufficient frame period, the selection of a 
reasonable offset, etc.  All these decisions influence the timing 
in one or the other way.  

The result of this assessment was that, from a timing and 
performance perspective, the new frames could be safely added 
to the bus. Figure 3. illustrates the enhancements in the overall 
performance of the communication. 

3) Robustness Against Dynamic Load 
Finally, EDAG has further performed a larger number of 

“what-if” scheduling analyses to determine the influence of 
different dynamic load situations on the timing of frames. In 
order to apply “realistic” dynamic load to the bus, several 
existing bus traces (from verification) were used and key 
abstract properties were extracted. These could then be re-used 
and applied to other “virtual” bus models, thereby simulating 

the external dynamic environment of a not jet build 
communication platform. 

This has significantly increased EDAG’s understanding of 
the bus performance in the presence of temporary overload 
and/or bus errors. The key parameters that were considered 
were signals and their timing requirements (such as rates and, if 
available, deadlines) and the allowed CAN Id (bus frame 
priority) ranges that were available for bus extensions. For the 
error robustness, EDAG considered different possible bus error 
models including periodic errors, sporadic errors and burst 
errors; all on a “virtual” SymTA/S bus scheduling model. 

4) Bottom line 
Like in the Volkswagen case, EDAG has learned from 

verification, how to use abstract analysis and how to perform 
“what-if” scheduling analysis with SymTA/S. EDAG explored 
different options for integration the new LDW ECU to an the 
existing low-speed CAN bus before the key decisions were 
taken, how the new ECU was added. Finally, EDAG 
determined the general extensibility of the existing CAN bus, 
and its timing robustness against dynamic overload, e.g. due to 
bus errors. 

C. Gated Network Dimensioning 
Daimler Research goes one step further. They are using 

SymTA/S not only for analyzing and dimensioning individual 
buses but for their entire network design covering different 
topologies of CAN and FlexRay buses and gateways [1]. In 
contrast to the two aforementioned examples, this example 
does not have a specific application in mind. It rather aims at 
methodological progress in the context of network topology 
design for next-generation car platform of Mercedes-Benz. 

1) Detailed Analysis of Existing Networks 
Daimler started by setting up a detailed SymTA/S 

scheduling analysis model of an existing network architecture. 
In the common project, Symtavision and Daimler developed an 
interface between SymTA/S and the central Daimler 
architecture database. The database is realized by the 
PREEvision tool from Aquintos (http://www.aquintos.com). 
This way, most of the bus configuration information can be 
efficiently imported into SymTA/S without manual modeling.  

 

Figure 3.  Bus Latency Times Before and After Optimization – Figure 
courtesy of EDAG 



 

Figure 4.  Example for End-to-End latencies (for one particular frame) – 
Figure courtesy of Daimler  

The SymTA/S analysis results were then compared to 
measurements that were taken on the corresponding real buses. 
This provided good knowledge on the comparability of 
measured data and the “calculated” scheduling analysis results. 
Of course, the calculated values were higher than the measured 
ones for several reasons. Most importantly, scheduling analysis 
tends to be a bit pessimistic (to reduce modeling complexity) 
while measurements are always too optimistic (because they 
never reach all corner cases). A difference of 30% is not 
uncommon for network latencies. The detailed timing diagrams 
of SymTA/S illustrate which situation leads to one or the other 
latency, so the designer can distinguish insufficient modeling 
details from a clear measurement coverage problem. This way, 
Daimler derived simple but expressive metrics on how to use 
SymTA/S results when comparing network architectures. 

2) Analysis of Future Networks 
Next, Daimler set up a SymTA/S model of a network 

architecture that was already envisioned for future cars but not 
yet build. The configuration data was imported from 
PREEvision and SymTA/S was used to determine the timing of 
this not-yet-build network. Daimler was able to set-up a 
SymTA/S model that based on a small set of configuration 
parameters that a) are available early (or can be made available 
with minor invasion of established process) and b) are 
sufficiently expressive to reach the desired level of result 
confidence for taking architecture and topology decisions. 

In fact, the result accuracy is not sufficient for a final 
verification (as it was in the Volkswagen ECU case above), but 
it was sufficiently good for platform decisions. The particular 
experience made during the detailed analysis of existing 
networks (late-stage analysis), and the derived comparison 
metrics mentioned above, are key enablers for applying timing 
analysis techniques earlier in the process with high result 
confidence. 

3) Comparisons 
Figure 4. shows a comparison of the measured and 

calculated (SymTA/S) end-to-end network latency of one 
particular frame on an existing CAN bus and the projected 
latency of that same frame when one bus in the topology is 
exchanged by a FlexRay bus segment. 

 

Figure 5.  Comparison of latencies in a CAN cluster – Figure courtesy of 
Daimler 

In a second comparison, Daimler focused on the latency 
increase when more frames are added to the CAN bus (without 
exchanging it by FlexRay), and also explored (with the 
SymTA/S exploration framework) several options for 
optimizations. Figure 5. shows the response time profiles of 
three bus configurations: “Actual topology” is the current 
latency profile of all frames, “future topology” indicates a huge 
increase in bus latencies as a consequence of future bus 
extensions (more frames), and “future topology optimized” 
shows that this future load can be optimized significantly.  

Such comparisons help deciding if and when to transition 
from Can to FlexRay because of the increasing bus load, or 
when to postpone this costly technology step. 

4) Bottom Line 
From detailed scheduling analysis and from comparisons 

with measurements, Daimler has created competence in 
network timing covering multi-bus topologies with gateways 
and determined the latencies of future car networks, allowing 
them to take performance- and timing-optimized platform 
decisions. 

This example shows once more that the proposed approach 
“exploit verification experience during early design” is 
effective in practice. And it shows which technology can be 
transferred from late to early process steps (here: SymTA/S 
scheduling analysis), and which can’t (here tracing and 
measurements). As another side effect, one exploits many late-
stage fine-tuning and optimization possibilities.  

Daimler concludes that “the project has brought great value 
for the knowledge about timing of network architectures.” [1]. 

V. SYSTEM INTEGRATION 
So far, we have considered individual views on early 

system design. Tier-1s look at a single ECUs (as in the 
Volkswagen example), individual OEM domain departments 
look at one bus (as in the EDAG example), and the OEM 
system department looks at the entire E/E network (Daimler 
example). 

Another challenge is that these players will have to 
exchange information, especially requirements and guarantees 
about their sub-systems or components. This was indicated in 
all three projects: 



• ECU extension needs estimates of software execution 
times (WCET) of own and supplied software 

• Bus extension needs info on signal rates and maximum 
allowed jitters (typically come from the control 
engineers and can be in-house or at Tier-1s) 

• E/E Platform design needs, in addition to information 
on the combined communication requirements, also 
info and control over the gateway strategy. 

In the mentioned projects, we have used and extended 
established standards such as DBC, FIBEX, OIL to the needs 
in the project; and we developed interfaces to other 
configuration tools such as PREEvision. On the long term, 
standardized ways to exchange timing information are 
required. There are two relevant ongoing activities.  

First, the EU-funded industry-driven TIMMO project [21] 
aims at defining a Timing Augmented Description Language 
(TADL), along with a detailed methodology when and how to 
exchange such TADL models. Several OEMs and Tier-1 
suppliers develop TIMMO together with key software and tool 
vendors (incl. Symtavision) and two universities.  

Secondly, timing has also become a hot topic in 
AUTOSAR [22]. The existing AUTOSAR templates are being 
enriched by a timing view that supports predicting, analyzing 
and verifying ECU and system timing along the entire process. 
Symtavision has recently become an AUTOSAR development 
member and contributes its expertise to the development of 
these necessary AUTOSAR extensions in work package In 
WPII-1.2. 

The SymTA/S analysis techniques do support such 
interfaces in terms of appropriate model parameters and the 
possibility to include black-box models of parts of the system 
with very small model footprint [23]. Focusing on the right 
data is crucial for an efficient and effective cooperation 
between OEMs and Tier-1s [24]. 

VI. MULTI-CORE ARCHITECTURES 
Currently, most ECUs contain a single core CPU possibly 

enhanced with specialized peripheral processors to offload 
some of the time critical and control functions. In the future, 
multi-core ECUs with homogeneous cores, with shared 
memory and uniform or non-uniform memory access will 
emerge. An obvious application is the merging of several 
ECUs into a single unit. This move, enabled by AUTOSAR, 
will improve function integration as in body electronics or 
sensor fusion, and it will save cost and improve 
maintainability. Here, virtualization is important, i.e. keeping 
task execution isolated, yet profiting from on-chip buses and 
memories as an efficient means to implement AUTOSAR SW 
component communication.  

In this type of application, multi-core CPUs turn an ECU 
into a highly integrated “networked system” micro cosmos that 
(at first glance) appears similar to networked systems as of 
today. However, while virtualization works for functionality, 
sharing chip resources leads to further timing dependencies that 
go beyond networked systems, since program and data memory 
accesses use the same chip infrastructure. Memory accesses are 

often less regular and predetermined and require new analysis 
algorithms as presented in [25].  The algorithm is compatible to 
SymTA/S.  

A second type of application will be high-performance 
domains such as engine control or advanced driver assistance. 
In this case, the multi-core architecture will be used to 
distribute the load of a single application over several cores. 
This also turns the shared memory communication of today 
into a distributed communication between several cores, which 
might share function units, such as coprocessors.  

Traditionally, save sharing and communication in 
automotive task systems uses OS supported locking and 
synchronization mechanisms. When mapping such task 
systems to multi-core architectures, new types of arbitration 
conflicts emerge that require enhanced scheduling and analysis 
algorithms. Examples are shared buses and caches, introducing 
critical side effects leading to deviating results [26] that are 
hard to predict. Therefore, we expect that automotive multi-
core scheduling will take an evolutionary approach extending 
the current fixed priority scheduling towards partitioned fixed 
priority scheduling, such as MPCP [27] or the algorithm by 
Chen [28]. In [29], a first algorithm is presented that is 
compatible to SymTA/S and can be combined with memory 
access analysis as described above. It can be used to analyze 
such evolutionary multi-core scheduling extensions.  

Some more research is needed to also cover later multi-core 
generation issues, such as cache coherence, multithreading, and 
migration, as well as global scheduling algorithms that are 
discussed in the research community. A main issue for such 
architectures will be predictability. 

VII. CONCLUSION 
In this paper, we have shown that and how timing analysis 

techniques can assist in developing cost efficient automotive 
E/E platforms. In particular, we have demonstrated how 
scheduling analysis that is established for verification (in late 
design stages) can also be used to guide the design (in early 
stages), because it meets some particular requirements in terms 
of abstraction, accuracy, and interfaces. This allows finding the 
sweet spots with respect to performance and cost. 

We outlined three industrial projects, in which our 
customers use SymTA/S scheduling analysis, in particular 
“what-if” analysis, for early-stage platform performance 
assessment as one important step in platform design. In all 
three projects, however, this early application of scheduling 
analysis was preceded by using scheduling analysis for detailed 
platform verification in late stages. The experience made in 
verification enabled our customers to exploit the abstraction 
possibilities of the technology and adopt and reduce the models 
such they could be used for “what-if analyses” in several ways, 
from software extensibility analysis, to CPU selection, to bus 
configuration, to topology decisions. 

We ultimately believe that gathering late-stage experience 
is the key enabler for adopting new technology also to early 
stages. This is not an automotive-only observation. Clearly, the 
same flow can be expected in aerospace, multi-media, etc. 
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