
Cost-efficient worst-case execution time analysis in
industrial practice 1

Jan Staschulat, Jörn C. Braam, Rolf Ernst
Technical University Braunschweig, Germany
Hans-Sommer-Str. 66, D-38106 Braunschweig
Email: staschulat|braam|ernst@ida.ing.tu-bs.de

Thomas Rambow, Rainer Schlör Rainer Busch
Ford Forschungszentrum Aachen GmbH, Germany

Süsterfeldstrasse 200 D-52072 Aachen
Email: trambow|rbusch1@ford.com,

Rainer Schloer@gmx.de

Abstract— To guarantee real-time behavior of an embedded
application, a schedulability analysis can be used. Such an
analysis requires the worst case execution time (WCET) of the
application. While several academic approaches to conservatively
bound the WCET have been proposed in the last decade, common
practice in industry remains simulation and software tests.
One reason is that industrial requirements are not sufficiently
addressed by academic approaches.

In this paper we identify important industrial requirements
for WCET-analysis tools. Then, we describe the methodolgy
of a previously developed WCET-analysis approach and revise
important aspects of its methodology and its implementation to
address key industrial requirements. In a large-scale case study
the WCET-analysis tool is applied to a safety-critical automotive
control application to evaluate the applicability of the tool.
Furthermore, the faced challenges and the re-targenting costs
for a new processor are discussed.

I. INTRODUCTION

Timing requirements have become increasingly important
in embedded system design. For example, software control
applications continuously interact with their environment. To
accurately implement a control function, these systems not
only have to perform correctly but also have to provide the
computed results within specified time bounds.

Schedulability analyses are used to guarantee that an appli-
cation finishes within a given time bound, which is also called
real-time behavior. Such schedulability analyses assume that
the worst case execution time (WCET) of each application is
given. Then, the worst case schedule is constructed includ-
ing all interferences due to interrupts, task preemptions and
blocking times.

A simple technique to estimate the WCET is software
tracing and sampling. Industrial tools include RTA-Trace by
ETAS [9], CodeTEST by Freescale [11], and a hybrid tracing
and sampling approach by Nokia [18]. The concept is to
insert measurement points at the beginning and at the end
of each function to measure end-to-end execution times or
around critical sections to monitor special events. The program
is executed multiple times with different stimuli patterns, or
input data. The main problem of such an approach is that it is
difficult to guarantee that all execution paths are covered by the
specified input data. For a full path coverage, an exponential

1This work was partially funded by Ford University Research Program and
by ARTIST2 - Network of Excellence on Embedded Systems Design.

number of input data would be necessary, which is strictly
too time-consuming. Safe bounds of the WCET cannot be
guaranteed if only a subset of all input patterns is considered.

Many static timing analysis approaches have been proposed
in the last decade, e.g. [19] [1] [7] [15] [27] [10]. Some
commercial tools for static WCET-analysis are available, e.g.
aiT by AbsInt GmbH [1] and Bound-T by Tidorum Ltd [5]
and industrial experience reports have been published [22]
[6]. Most static analysis methods assume precise hardware
models to compute the execution time of individual basic
blocks. However, the main difficulty is that precise hardware
models are not always available and would be too expensive
to construct.

In measurement-based WCET analysis approaches, such as
[4] [20] [26] [27] [16], a program is partitioned into program
segments, whose execution time is then measured on real
hardware or on processor simulators. The size of a program
segment can be defined in several ways: by a single basic block
[16]; by a measurement block [20], whose size is manually
defined; or by a sequence of basic blocks, depending on the
number of execution paths of the program segment [26], the
structure of the control flow graph [4], and depending on
the input data dependency of conditions in control structures
[27]. The approach of probabilistic timing analysis by [4]
is commercially available by Rapitime by Rapita Systems
[21]. One drawback of this approach is that analysis precision
depends on the quality of test patterns. Test data for just
branch coverage are usually not sufficient to cover the dynamic
timing behavior due to caches and pipelines, as the history of
execution paths is not considered.

Measurement-based approaches have the advantage of being
cost-efficient and easily to re-targeted to new microproces-
sors, as only evaluation boards are necessary but not formal
model of the hardware. From the industrial perspective, these
requirements are very important for a fast development of an
embedded product [14].

In previous work we have developed a static timing analysis
tool SymTA/P, which is based on measurements and static
analysis. The main benefit is its easy retarget-ability to new
processor architectures. The approach can be applied to many
processors in a short time delivering safe bounds of the
worst case execution time. Thus, we argue that SymTA/P
is cost-efficient, because it is simple and not expensive to

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI

204

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ISoLA.2006.64

204

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

978-0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ISoLA.2006.64

204

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

apply the WCET-analysis to a new processor architecture.
However, several assumptions of the tool limit the applicability
to industrial projects.

The contributions of this paper are the following. We
identify important industrial requirements for WCET tools
as a result of a discussion with an automotive manufacturer.
As a second contribution, we describe which revisions were
necessary such that the previously developed WCET-analysis
tool meets these requirements. As a third contribution, we
present an industrial case study in which we demonstrate the
applicability of the WCET-analysis method and describe the
faced challenges.

The remainder of this paper is structured as follows. In
section II we present important industrial requirements for
WCET-analysis tools. In section III we give an overview of our
previously developed WCET-analysis tool and in section IV
we present the revised analysis framework. In section V
we present the industrial case study, before we conclude in
section VI.

II. INDUSTRIAL REQUIREMENTS

Although many methods for WCET analysis have been
proposed in academia in the last decade, very few approaches
are being used in industrial projects. One reason is that
industrial requirements differ from research goals in academia.
The following list is based on [14] and is a result of a
discussion with a automotive manufacturer who supplied the
case study, as presented in section V.

• Safe bounds. The results of the analysis must be safe.
This means that the execution time bound is always larger
than any execution time of the task.

• Integration. The method has to be integrated in the stan-
dard development process. In industry, software is often
developed with model-based tools, like Matlab/Simulink
[17] and source code is automatically generated, e.g. with
TargetLink by dSpace [25] or with ASCET by ETAS [3].

• Easy usage. The tool must work with minimal user
interaction.

• Cost-efficiency. Cost-efficiency is crucial in mass pro-
duction products, like automotive and telecommunication
market. Typically, several processor alternatives are ex-
plored and thus the WCET-method has to be customizable
to a new processor.

III. EARLIER WORK ON SYMTA/P

SymTA/P is an acronym for SYMbolic Timing analysis of
Processes. In this context, a process is a software task, or appli-
cation, that is uninterruptedly executed on a single processor.
In this section we give an overview of the functionality, the
employed methodologies and the limitations of the WCET-
analysis tool that has been developed in earlier work. [27],
[28]

A. Functionality of the tool

The tool calculates a safe upper bound of the WCET and a
safe lower bound of the best case execution time (BCET) of

a task written in the programming language C. The method
supports processors with pipelining as well as instruction
and data caches. The SymTA/P method is cost-efficient and
easy to re-target to new processors because it is based on
measurements on real hardware.

As an additional feature, a safe bound of cache-related
preemption delays for fixed priority preemptive scheduling is
calculated [23]. This is important for a tight schedulability
analysis in case several tasks share the same instruction cache.

B. Employed Methodologies

The SymTA/P method is structured in several modules:
Frontend, Backend, Cache analysis, and ILP solver, as show
in figure 1.

Frontend

Backend Cache analysis

ILP solver

C-code

Execution time interval

Stimuli User

Fig. 1. Overview of SymTA/P tool.

In the Frontend, the control flow graph is constructed from
source code and is partitioned into program segments. These
program segments are as large as possible but containing only
a single feasible path (SFP). A SFP is a sequence of basic
blocks whose control flow is independent of input data. For
example, a for-loop containing several if-then-else statements
whose conditions only depend on loop-iteration variables is
classified as a SFP. A FIRFilter (finite response filter) and
FFT (fast fourier transformation) are further examples. If these
conditions were dependent on input data then, the loop would
be classified as a multiple feasible path, where each program
segment has the size of a basic block.

In the Backend, the program is instrumented with instru-
mentation points and the execution time is measured for
each program segment. Measurements can be done on real-
hardware, e.g. an evaluation board, or on a cycle-accurate
processor simulator. Sufficient test patterns have to be provided
such that each program segment is executed at least once. The
amount of input data for this coverage criteria is comparable
to the branch coverage, which means that each condition is
executed taken and not-taken.

The problem of measurement-based approaches is to en-
force the worst-case initial hardware state. In practice it is
very difficult to specify them at the beginning of each program
segment. In the probabilistic WCET approach by [21], each

205205205

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

program segment is measured including the effects of the
execution history. Thus, all execution paths are necessary to
detect the worst case execution time of a program segment
because all possibilities of the the execution history have to
be considered. However, a full path coverage is too time-
consuming for large industrial projects. To tackle this problem
in SymTA/P, a conservative overhead is added to the measured
execution time of each program segment to account for the
worst case initial hardware state. The overestimation of the
WCET for a task scales with the number of program segments
on the worst case path.

A static cache analysis for instruction as well as data caches
is based on data flow analysis techniques. These analyses
provide a tight and safe bound for worst case cache behavior.
The analysis supports associative instruction caches assuming
LRU replacement strategy and direct mapped data caches with
write through and no-write allocate write miss strategy. We
further assume a constant cache miss penalty.

The WCET bound is calculated by implicit path enumera-
tion using the technique of integer linear programming (ILP).
The measured execution time plus the time overhead for the
initial worst case hardware state of each program segment has
been determined in the backend and cache analysis module.
The longest execution time of the task can be calculated by
an ILP solver by searching for the longest path (in terms of
execution time) in the control flow graph of the task.

C. Limitations

A research prototype has been developed, however, several
limitations exist.

1) The ability to partition control intensive software appli-
cations into logn SFP program segments is very limited,
e.g. in automotive ECUs. Automatically generated C
source code, e.g. by TargetLink [25] or ASCET-SD [3],
contains long switch-case statements with frequent
function calls in if-conditions. In this case, a SFP
program segment has the size of a basic block. This leads
to many instrumentation points and thus to a higher total
overestimation.

2) Program path analysis to identify SFPs is based on
symbolic simulation and is restricted to a subset of
the C programming language. Most importantly, sub-
function calls, switch-case statements, pre-compiler
statements and break-statements are not supported.

3) Global WCET calculation in the ILP solver module has
been limited to single functions. Sub-function calls are
not supported.

4) The WCET-tool requires Linux operating system. How-
ever in industry, any sophisticated tool has to be pro-
vided for the Windows operating system.

In summary, the WCET-tool has to overcome limitations due
to its methodology, e.g. the partitioning in program segments
(1), and several infrastructure restrictions, e.g. support of full
C syntax and semantics (2), support of sub-function calls (3)
and support for Windows operating system (4).

IV. REVISED SYMTA/P ANALYSIS FRAMEWORK

This section describes the necessary changes and enhance-
ments of the SymTA/P analysis tool to meet the industrial
requirements (section IV-A) and describes the design of the
analysis framework in detail (section IV-B to section IV-F).

A. Satisfying the requirements

The realized changes address technical issues, e.g. the
supported C language syntax, as well as theoretic issues,
e.g. the placement of instrumentation points to reduce the
measurement overhead.

Placement of instrumentation points
First, the placement of instrumentation points is revised. In a
novel instrumentation methodology the number of instrumen-
tation points is minimized while requiring only test patterns
for full branch coverage. The instrumentation method inserts
instrumentation points not at each basic block, which would
be necessary if no SFPs are found, but rather around larger
program segments [24].

1

2 3

4

5 6

7 8

9

10

1

2 3

4

5 6

7 8

9

10

1

2 3

4

5 6

7 8

9

10

b) measurement-probes c) branch-probesa) BB-probes

Fig. 2. Control flow graph with different instrumentation points.

The idea is to partition the program into program segments,
which are longer than a single basic block, but short enough
that test patterns for full branch coverage are sufficient. For
this purpose, the instrumentation methodology partitions the
instrumentation points into measurement probes and branch
probes. The term instrumentation point denotes the place in the
control flow graph. The terms measurement probe and branch
probe are concrete implementations for a given hardware
architecture that correspond to an instrumentation point.

An example of an instrumented control flow graph is shown
in Figure 2 in three variations. Figure 2 a) shows a traditional
instrumentation at each basic block. Figure 2 b) shows the
placement of measurement probes and Figure 2 c) shows the
placement of branch probes. Instead of separately measuring
10 basic blocks we insert only 3 measurement probes. The
timing analysis constructs an ILP based on a program segment
graph. A program segment is constructed by all possible paths
between two measurement probes. Due to space limitations,

206206206

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

the program segment graph is not shown here. A detailed
description is given in [24].

This method has two benefits. The first benefit is a reduced
number of time-critical measurement probes for which a time-
overhead has to be accounted for in the WCET analysis. The
purpose of the branch probes is to monitor which branch is
taken during program execution. The execution of of branch
probes is not time-critical, because only the c-line number is
monitored during program execution. The second benefit is
that test patterns for full branch coverage are sufficient.

Technical issues

Support of full C syntax and semantics. The Frontend has
been considerably revised to support the full C syntax and
semanctics, because the previous prototype was limited to a
small subset of C language. The program path analysis to iden-
tify SFPs has been extended to more complex control struc-
tures like nested loops, sub-function calls, switch-case
statements, pre-compiler statements and break-statements.

Sub-function calls. The WCET-calculation in the ILP solver
module has been extended to support sub-function calls, which
is essential for larger software applications. A bottom-up
approach is used by constructing a function call tree. First,
the WCET of functions are calculated that do not depend on
other sub-functions (e.g. at the leaf nodes). Then, the WCET
of all functions on the next higher level on the call tree are
computed. We assume non-recursive functions or that recursive
functions are bounded by the depth-level as the loop bound
for loops. Recursive function calls are not supported. Function
calls from different contexts are (not yet) supported. Each
function is analyzed once regarding its best case and worst
case timing behavior. Then, this timing characterization is used
in every callee. This analysis is not context-sensitive.

Windows operating system. The analysis framework has
been ported to Windows platform using the Cygwin [8]
environment. Cygwin is a software package which allows
Linux programs to be run on a Windows platform. Thus,
all programs have been re-compiled under Cygwin while the
graphical user interface, which is written in Java, is supported
natively by Windows.

B. Overview of modular framework

An overview of the framework is shown in Figure 1.
The hybrid approach consists of a path analysis module

(Frontend), an execution time measurement module (Back-
end), a cache analysis module, and a WCET calculation mod-
ule (ILP solver). In the following subsection, these modules
are described in more detail.

C. Program path analysis (Frontend)

The program path analysis module corresponds to the
Frontend in Figure 1. Based on the C source-code, the program
path classification and the control flow graph of a software
task are created by a Frontend parser, as shown in Figure 3.
This Frontend parser reads the abstract syntax tree, which is
generated by GNU gcc compiler, and performs a symbolic

simulation on the abstract syntax tree to determine input data
dependency. As mentioned above, this Frontend supports the
full C syntax and the identification of SFP was accordingly
extended.

GCC

C-code

Frontend parser

Abstract syntax tree

Control flow
graph

Path
classification

Definition instrumentation points

Program
segment graph

Fig. 3. Frontend.

Based on the control flow graph and the path classifi-
cation, the placement of measurement and branch probes
is implemented in the Definition instrumentation
points phase.

D. Execution time measurement (Backend)

The execution time measurement, called Backend, is shown
in Figure 4. Cycle-accurate processor simulators or cost-
efficient evaluation boards can be used to measure the exe-
cution time of program segments.

Program
segment graph

HW
spec.

Execution time/ segment

Instrumentation m-points

Measurement points

Stimuli
Processor
simulator

Evaluation
board

Debugger
script

Instrumented
source code

Back-annotation

Fig. 4. Backend.

If an evaluation board is used, the C source code is instru-
mented once with measurement probes and once with branch
probes. Each probe is a function call that is defined later in the
linking phase by processor dependent assembly instructions.

207207207

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

Then, both instrumented programs are executed with the
same set of input data. The first one delivers execution time
results for program segments, and the second identifies which
execution path was taken. With both information, the measured
execution time can be annotated back to the corresponding
program segment. For a complete WCET-analysis, sufficient
input data for full branch coverage has to be supplied.

If a cycle accurate processor simulator is used, a debugger
script is automatically generated that starts and stops the
execution of the program and traces the taken branches. The
output is also back annotated to the program segment.

E. Cache Analysis

The cache analysis in SymTA/P is shown in Figure 5.

C-code

Program
segment graph

Architecture-spec.

Memory trace

Cache analysis

Compilation and link

Cache accesses/
Segment

Fig. 5. Cache analysis of SymTA/P.

The measured execution time and the cache behavior are
estimated in two phases. First, the measurement is done by
assuming each cache access is a cache hit and in a second step
the cache analysis converts some cache hits to cache misses
to account for the worst case timing behavior. Based on the
program segment graph and the memory trace files, a static
cache analysis [28] is applied.

Practically, the cache hit assumption can be enforced by
storing the program code in the cache, e.g. the cache is
large enough, by storing the program code in equivalently fast
memory, such as Scratch-pad RAM on TriCore processor [13],
or by using a processor simulator where memory access times
can be configured, such as RealView Development Suite for
ARM cores [2].

F. WCET Computation

The longest and shortest paths in the control flow graph are
found using integer linear programming (ILP). This module
is shown in Figure 6. The measured execution time and the
cache access behavior are added and used as execution time
costs for each program segment. The ILP is constructed using
structural constrains, which are automatically generated from
the program segment graph. Loop bounds have to be specified
by the user to bound the maximum number of loop iterations.

If for some program segments no execution time was
assigned, the ILP solver issues a warning. In this case, the user

Execution time/
segment

Cache accesses/
segment

ILP generator

ILP solver

Execution time interval

Structural equations
Loop bounds

(User)

Program
segment graph

Execution time/ segment

Stimuli
(User)

Fig. 6. WCET-calculation with ILP solver.

can specify additional test patterns (stimuli) and can re-run the
timing measurement (Backend). Finally, the total best-case and
worst-case execution time become available.

V. CASE STUDY

In this case study we apply SymTA/P to a industrial project
of an real-time application. First we describe in section V-
A the software and hardware setup. Then, we describe in
section V-B preliminary steps and in section V-C the appli-
cation of SymTA/P. In section V-D we present the results
of the WCET analysis and in section V-E we list the faced
challenges. In section V-F we list which steps are necessary
for a customization and give an outlook in section V-G.

A. Software and hardware setup

The WCET-analysis is applied to a safety critical automotive
control application. It is part of an automatic start-stop func-
tion for a micro-hybrid vehicle. It consists of a C-source file
with about 5800 lines of code. The largest function has about
4200 lines. Totally, there are 11 functions in the application.

The measurement framework consists of a C167CR evalu-
ation board, a C compiler (Tasking), bootloader (I+ME Actia)
and a tailor-made measurement methodology for the C167CR
board. The C167CR evaluation board is equipped with 2kB
internal (on-chip) RAM for registers and stack and 256kB
static RAM for code. The board does not provide ROM.
Communication is only possible over serial bus; JTAG or other
debug interfaces are not available.

Now, we describe each step of the process of timing
analysis with SymTA/P. We have structured the process into
preliminary steps and application of SymTA/P.

B. Preliminary steps

Before we can apply SymTA/P the following preliminary
steps must be undertaken. The module of SymTA/P, in which
this feature is implemented, is denoted in parentheses.

• Generation of C code for application (Frontend)
The application is developed by Matlab/Simulink. The

208208208

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

C source code without assembly instructions was auto-
matically generated.

• Communication with microcontroller (Backend). With
a bootloader the program was loaded onto the evaluation
board. Since the C167CR board has only serial interface,
an additional protocol had to be developed to write
information back from the board to the host PC. We
have used a bootloader by IME+ACTIA and a terminal
program, which records all communication in a text file.

• Create test harness (Backend). Test patterns are manu-
ally defined using the Matlab/Simulink environment [17].
The tests are hierarchically structured in test sets and test
cases. Each test set consists of several test cases. A test
set corresponds to a sequence of input signals (test case).
A test case corresponds to a set of input signals for a
single simulation step of the application. In total, 65 test
sets are specified, with about 4,185 test cases for each
test set; in total, 272,022 test cases.

• Test pattern harness (Backend). The application reacts
to external signals, thus we wrote a test pattern harness
which controls the values of these signals and activates
the software application. Because of memory space re-
strictions and the high number of test cases, we developed
a method which compresses the total number of input
signals.

• Worst-case state overhead (Backend). For a conserva-
tive timing analysis in SymTA/P, the worst case system
state at the beginning of each program segment has to
be analyzed. The C167CR processor consists of a 4-
stage instruction pipeline [12]. The clock frequency is 20
MHz (50ns) and one CPU cycle needs two clock cycles.
(100ns). To simplify the following discussion we denote
an instruction cycle (I-cycle) as two clock cycles. Figure 7
shows the instruction pipeline with the stages: instruction
fetch (IF), instruction decode (ID), execute (EXE) and
write back (WB). The vertical line denotes the I-cycles.
Assume we could exactly measure the execution time at
each pipeline stage. For the simple C167CR processor
without cache and branch prediction, it is conservative to
assume an empty pipeline as worst case system state. The
total execution time of the program segment is the time
between the first instruction enters the pipeline (IF stage)
and the last instruction leaves the pipeline (WB stage): In
I-cycle 1 the first instruction is about to enter the pipeline
and in I-cycle 7 the last instruction is finishing in the WB
stage (dashed circles). Thus, the total execution time for
these instructions is 7 − 1 = 6 I-cycles.
Assume now that we insert an start-timer instruction (A)
before and a stop-timer instruction (B) at the end of
the program segment. The execution time is recorded
when the instruction is in the EXE stage. Then, the
measured execution time using start-timer and stop-timer
instructions is 7 − 3 = 4 I-cycles (solid circles). We
assume no additional overhead for the completion of the
timer operation (a special function register T6CON is
set at the C167CR processor). Thus, the underestimation

would be 2 I-cycles compared with exact measurement.
• Measurement overhead (Backend). To implement the

start-timer and stop-timer, we use the GPT2 timer of the
C167CR processor. It runs with one fourth of the CPU
clock (200ns) and thus has a maximum resolution of
two instructions (since one CPU-cycle takes two clock
cycles). If the program segment finishes in an un-even
number of I-cycles, then the timer would report one I-
cycle less then the correct value. Thus, to be safe, we
add one I-cycle as measurement overhead. In this analytic
discussion we assume no clock skew and jitter.

• Total added overhead for each program segment (ILP
solver). To summarize, we have to account two I-cycles
for the WC state and one I-cycle for the measurement-
overhead which amounts to three I-cyles. This overhead
of three I-cycles (300ns) is added to the measured exe-
cution time of each program segment in the ILP-solver
phase.

I-cycle IF DE EXE WB
1 A
2 1 A
3 2 1 A
4 3 2 1 A
5 B 3 2 1
6 B 3 2
7 B 3
8 B

Fig. 7. C167CR Pipeline with start (A) and stop (B) timer instruction.

C. Application of SymTA/P
We apply SymTA/P to the case study in the following steps:

Frontend, Backend and ILP solver. Because the C167 does not
have a cache, no cache analysis is performed.

• Frontend. In the path analysis module, the control flow
graph is automatically constructed for each function
and the code is instrumented with measurement and
branch probes. The control flow graph (for basic block
instrumentation) consists of 1102 nodes and the pro-
gram segment graph contains 893 program segments.
These numbers are totals, e.g. for all 11 functions of
the application. In this case study, 354 measurement
probes and 511 branch probes were inserted in the source
code. If each basic block were instrumented, 865 time-
critical measurement probes would be necessary. Thus
the new instrumentation method reduces the number of
time-critical measurement probes by 59% compared to
instrumenting each basic block.

• Backend. The implementation of the probes for the
C167CR processor is shown in Figure 8. The measure-
ment probe is a macro which outputs a system timer value
and the branch probe outputs only the c-line. Once the
execution time has been measured on the C167 board,
they are annotated back to the program segment graph.

209209209

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

• ILP solver. Finally, the longest execution path is calcu-
lated by the ILP solver. The ILP was automatically con-
structed and no additional user interaction was necessary
because the software did not contain loops.

D. Results

The static timing analysis results were compared to simula-
tion results. The entire application was instrumented by only
two measurement-probes: one after the first line of code and
one before the last line of code. Then, the total execution
time was measured between these measurement-probes. The
distribution of the execution times for all test cases is shown in
Figure 9. The longest execution time was 491 micro seconds
(µs). The range of execution time is between 326 and 491 µs.

0

5

10

15

20

25

326 357 380 407 417 427 438 448 474

Execution Time(micro s)

F
re

q
u

en
cy

Fig. 9. Execution time distribution obtained from simulation.

The static timing analysis of SymTA/P determines the
WCET of 797 µs, which is about 62% longer than the tracing
result. However, this cannot be considered as an overestima-
tion, because it cannot be guaranteed that the worst case path
was actually measured during tracing.

The time spent in each phase is summarized in table I. The
total time was about 54 hours for the entire case study.

Phase Time
Program path analysis (CFG) 6min
Instrumentation of measurement points (Board) 1min
Configuration and compilation in Tasking EDE 5min
Execution on C167 board (measurementProbes) 22h
Execution on C167 board (branchProbes) 20h
Back-annotation of timing results 11h
WCET calculation (ILP Solver) 1min
Total 54 h

TABLE I
TIME REQUIREMENT FOR EACH ANALYSIS PHASE.

E. Practical challenges in case study

The long running time for the static timing analysis is
unacceptable. The main reason is the execution time measure-
ment on the evaluation board and not the running time of the
SymTA/P analysis framework itself. The time for execution on
C167 board in Table I includes the communication via serial

line. Most of the time is spent for communication, which is
very slow. The running time could be significantly reduced
by using a more sophisticated measurement methodology, e.g.
JTAG interface or by using a evaluation board with sufficient
on-board memory. The bottleneck was the communication
between C167 board and the host PC. The back-annotation
software is a prototype and has not yet been optimized, which
is rather a technical issue.

F. Customization for new application

The Backend provides a framework that is easy to retarget to
new processors. In general the preliminary steps in section V-B
must be carried out. Most importantly, this includes

• Test patterns have to be specified for full branch coverage.
Usually these test patterns are already available from
previous functional test phases in industrial projects.
SymTA/P does not provide a test pattern generator. How-
ever, the WCET-calculation module highlights the source-
code lines that were not measured.

• The implementation of the measurement and branch
probes has to be defined for the new processor.

• The measurement framework has to be adapted to the new
microcontroller. This includes the communication to load
the program to the board, to start and stop the program,
to access system timers, and to write back timing results
to the host PC.

• The time overhead for the worst case initial hardware
state for each program segment has to be calculated.

G. Outlook

Traditional WCET-analysis approaches focus only on a
single task execution, but complex interactions with other
tasks have to be considered when caches are used. This
includes cache related preemption delays which are due to
task preemptions in preemptive real-time scheduling and, as
well as the cache contents at the beginning of a task activation,
because some cache lines might be availabe from a previous
activation.

Furthermore, latencies to background memory have been
assumed to be constant. However assuming a constant cache
miss penalty might result in pessimistic overestimations for
realistic applications.

VI. CONCLUSION

Performance validation is a key issue for real-time em-
bedded systems. In this paper we have presented industrial
requirements for WCET-analysis tools and revised an earlier
prototype to meet these requirements. Then, we described the
measurement-based WCET analysis methodology in detail and
applied it to a industrial case study. We have discussed the
faced challenges and pointed out open issues.

The SymTA/P analysis framework is cost-efficient and easy
to re-target to new processors because it is based on measure-
ments of program segments. In addition, the method is safe,
and provides a conservative upper bound of the worst case
execution time.

210210210

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

d e f i n e measurementProbe (l) T6CON &= ˜ (0 x0040) ; \
p r i n t f (” t i m i n g %u %lu00 \n ” , (l) , (((u n s i g n e d long i n t) \

(T5) << 16) | T6)∗ (TICK NS / 1 0 0)) ; T6CON |= 0 x0040 ;
d e f i n e b r a n c h P r o b e (l) p r i n t f (” b r an c h %u\n ” , (u n s i g n e d i n t) l) ;

Fig. 8. Implementation of probe functions for C167 evaluation board.

VII. ACKNOWLEDGMENTS

This work was partly funded by Ford University Research
Program and by ARTIST2 - Network of Excellence on Embed-
ded Systems Design. We would like to thank Jonas Diemer for
his valuable work regarding the hardware setup of the C167
evaluation board.

REFERENCES

[1] Absint GmbH, www.absint.de.
[2] ARM: Realview development suite. http://www.arm.com.
[3] ASCET-SD embedded control development systems for automotive

solutions. ETAS, August 2002.
[4] A. Betts and G. Bernat. Issues using nexus interface for measurement-

based wcet analysis. In WCET Workshop, Palma de Mallorca, Spain,
2005.

[5] Bound-t execution time analyser. www.bound-t.com.
[6] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper. Applying static

wcet analysis to automotive communication software. In Euromicro
conference on real-time systems (ECRTS), pages 249–258, 2005.

[7] A. Colin and I. Puaut. Worst case execution time analysis for a processor
with branch prediction. Journal of Real-Time Systems, 18(2-3):249–274,
2000.

[8] Cygwin Homepage. www.cygwin.com.
[9] ETAS. RTA-TRACE Datasheet, June 2004.

[10] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a flow analysis
for embedded system c programs. In IEEE International workshop on
object-oriented real-time dependable systems (WORDS), Sedona, USA,
2005.

[11] Nat Hillary. Beyond Profiling Gaining Control of Software Performance.
Freescale Simiconductor, Nov. 2005.

[12] Infineon Technologies AG. C167CR Derivatives, 16-Bit Single-Chip
Microcontroller, March 2003.

[13] Infineon Technologies AG. TC1796 User’s Manual, V1.0, 32 Bit Single-
Chip Microcontroller: System Units, June 2005.

[14] Raimund Kirner, Peter Puschner, and Ingomar Wenzel. Measurement-
based worst-case execution time analysis using automatic test-data
generation. In Proc. 4th Euromicro International Workshop on WCET
Analysis, Catania, Italy, June 2004.

[15] M. Lindgren, H. Hansson, and H. Thane. Using measurements to derive
the worst-case execution time. In RTCSA, 2000.

[16] T. Maier-Komor, A. von Bülow, and G. Färber. Metac and its use
for automated source code instrumentation of c programs for real-time
analysis. In Euromicro Conference on Real-Time Systems (ECRTS),
Work in Progress, 2005.

[17] The Mathworks Inc.: Matlab/Simulink. http://www.mathworks.com/.
[18] Edu Metz, Raimondas Lencevicius, and Teofilo F. Gonzalez. Perfor-

mance data collection using a hybrid approach. In CM SIGSOFT
Software Engineering Notes, Proceedings of the 10th European software
engineering conference, volume 30(5), 2005.

[19] A. Mok. Evaluating tight execution time bounds of programs by
annoations. In Workshop on Real Time Operating Systems and Software,
Pittsburgh, USA, 1989.

[20] Stefan M. Petters and Georg Färber. Making worst case execution time
analysis for hard real-time tasks on state of the art processors feasi-
ble. In Conference on Real-Time Computing Systems and Applications
(RTCSA), Dec. 1999.

[21] Rapita-Systems Ltd. www.rapitasystems.com.
[22] Jean Souyris, Erwan le Pavec, Guillaume Himbert, Victor Jegu, Guil-

laume Borios, and Reinhold Heckmann. Computing the wcet of an
avionics program by abstract interpretation. In Worshop on worst-case
execution time analysis, July 2005.

[23] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-
time systems with precise modeling of cache related preemption delay.
In EUROMICRO Conference on Real-Time Systems, Palma de Mallorca,
Spain, July 2005.

[24] Jan Staschulat. Instruction and data cache timing behavior analysis
in fixed priority preemptive real-time systems. PhD thesis, Technical
University Braunschweig, to appear, 2006.

[25] dSpace: TargetLink, automatic code generator. http://www.dspace.com/.
[26] Ingomar Wenzel, Bernhard Rieder, Raimung Kirner, and Peter Puschner.

Automatic timing model generation by cfg partitioning and model
checking. In Conference on Design, Automation and Test in Europe
(DATE), 2005.

[27] F. Wolf, R. Ernst, and W. Ye. Path clustering in software timing analysis.
IEEE Transactions on VLSI Systems, 9(6):773–782, 2001.

[28] F. Wolf, J. Staschulat, and R. Ernst. Hybrid cache analysis in running
time verification of embedded software. Journal of Design Automation
for Embedded Systems, 7(3):271–295, 2002.

211211211

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on January 8, 2009 at 11:35 from IEEE Xplore. Restrictions apply.

