
A Bandwidth Optimized SDRAM Controller for the MORPHEUS
Reconfigurable Architecture

Sean Whitty, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig, Germany
{whitty | ernst}@ida.ing.tu-bs.de

Abstract
High-end applications designed for the MORPHEUS com-
puting platform require a massive amount of memory and
memory throughput to fully demonstrate MORPHEUS’s
potential as a high-performance reconfigurable architec-
ture. For example, a proposed film grain noise reduction
application for high definition video, which is composed
of multiple image processing tasks, requires enormous
data rates due to its large input image size and real-time
processing constraints. To meet these requirements and
to eliminate external memory bottlenecks, a bandwidth-
optimized DDR-SDRAM memory controller has been de-
signed for use with the MORPHEUS platform and its Net-
work On Chip interconnect. This paper describes the con-
troller’s design requirements and architecture, including
the interface to the Network On Chip and the two-stage
memory access scheduler, and presents relevant experi-
ments and performance figures.

1 Introduction
Reconfigurable architectures have opened the door to ex-
citing new research directions and application domains,
many of which have been heavily investigated in recent
years. One such project, the “Multi-purpose Dynamically
Reconfigurable Platform for Intensive Heterogeneous Pro-
cessing” (MORPHEUS) project, is a European Integrated
Project (IST 027342) which addresses innovative solutions
for embedded computing based on a dynamically recon-
figurable platform and a corresponding toolset [14]. Its
goal is to provide a flexible heterogeneous platform for
HW/SW co-design via a unique architecture, composed of
reconfigurable computing units of varying granularity, as
well as an integrated toolset that can be utilized to easily
map and implement target applications.

The potential of the MORPHEUS platform will be
demonstrated in several application domains. These in-
clude reconfigurable broadband wireless access and net-
work routing systems, processing for intelligent cameras
used in security applications, and film grain noise reduc-
tion for use in high definition video. The image-based
applications have been shown to exhibit immense mem-
ory needs. For example, digital film applications require

an image resolution of 2K 1, with data rates of up to 2.1
GiBit/s necessary for real-time operation. Higher resolu-
tions of up to 4K and even 8K are on the horizon [15].

Satisfying such memory requirements is no easy task.
SDRAM interfaces have long been a performance bot-
tleneck, especially in network processing and multimedia
applications. A recurring issue with modern DRAM ar-
chitectures is relatively long access latencies [6]. DDR-
SDRAM and DirectRamBus DRAM (RDRAM) attempt
to reduce these latencies by accessing several consecutive
data words. This access technique, however, only lowers
latencies and does not increase throughput. To this end,
optimizations such as bank interleaving, which exploits
the internal structure of DRAMs by accessing a second
bank while another is busy, and request bundling, or the
grouping of reads and write requests into groups, can be
used to ensure maximum possible throughput across the
SDRAM data bus.

Using such techniques to increase throughput naturally
increases access latencies, as do complex access patterns.
However, applications developed for the MORPHEUS
platform are data rate hungry and can tolerate such laten-
cies. Furthermore, the onboard ARM processor is used
for control purposes and is not expected to make ex-
tended use of external memory. Therefore, a bandwidth-
optimized memory controller, designed to serve the needs
of high-performance reconfigurable architectures such as
the MORPHEUS platform, is presented in this paper. For
flexibility, the design also supports multiple service levels
to reduce latency when necessary. After a brief overview
of related work in Section 2, the memory controller re-
quirements are outlined in Section 3, and the architecture
itself is defined in Section 4. Section 5 examines synthesis
and performance results.

2 Related Work
For the MORPHEUS platform, the ARM PrimeCell Mul-
tiPort DDR Memory Controller [2] was considered as an
alternative solution to a custom SDRAM controller. Its
advantages include basic quality of service features and 8
available client ports. However, this controller was even-
tually found not suitable because it supports only a 32-bit

12K implies 2048x1568 pixels/frame, 30 bits/pixel, and 24 frames/s

1



data bus, does not support DDR access and most impor-
tantly, has no support for bank interleaving to optimize
data throughput.

The Imagine processor [1] uses a configurable memory
scheduler [8, 12], which can be optimized for applications
designed for the processor. The scheduler, however, is op-
timized for specific algorithms, making it less flexible. The
Prophid architecture in [9] describes a memory controller
for a DSP platform that focuses on data streams using large
FIFO buffers and round-robin arbitration. Taking a differ-
ent approach, Mishra et al. [11] explore optimization tech-
niques for known memory access patterns of a single pro-
cessor. None of these schedulers, however, support vastly
different access types at close to peak SDRAM through-
put.

Similar to our design is a memory controller IP offered
by Sonics [13], which handles different access patterns at
high average memory throughput. It also services more
than one priority level. Achieved data rates reflect the per-
formance of our design, which is very close to theoreti-
cal maximum values available with DDR-SDRAM. The
Sonics solution, however, is a complex seven-stage archi-
tecture, which drastically increases latencies over the lean
two-stage architecture used in the MORPHEUS SDRAM
controller when clock frequencies are roughly equal.

This work is based on the mixed QoS SDRAM controller
for FPGA-based image processing described in [5]. How-
ever, the controller has now been adapted for the MOR-
PHEUS architecture and optimized to provide maximum
throughput to the NoC interconnect.

3 Requirements
3.1 Context
Post-production for high definition video and digital film
processing in general require real-time or close to real-
time behavior in order to allow immediate feedback nec-
essary for interactive processing. This represents a sig-
nificant challenge, since the algorithms employed in each
step of a digital film processing chain tend to be highly
computationally intensive. Performance requirements are
far beyond what current DSPs or general purpose pro-
cessors can provide, especially with large image sizes.
Consequently, typical state-of-the-art products in this low-
volume, high-price market use FPGA-based hardware sys-
tems with fixed configurations. This implies that multiple
hardware platforms are required to implement the com-
plete post-production processing chain.

A novel idea is to develop a common platform for all
processing steps of the post-production chain. Such a
platform has to be reconfigurable to support each of the
required algorithms. Furthermore, this platform has to
provide the necessary processing power as well as data
throughput.

3.2 Application Requirements
The MORPHEUS project implements a key step in the
digital film processing chain: film grain noise reduction.

This application, amongst others, has been previously im-
plemented in the FlexFilm project [4]. The FlexFilm ar-
chitecture is a multiple-FPGA design, using three Xilinx
Virtex-II units to efficiently distribute the image process-
ing algorithms. In this respect, the FlexFilm architecture
is similar to the MORPHEUS platform, which uses three
heterogeneous reconfigurable entities (HREs) to carry out
processing tasks. The FlexFilm application set consists of
several individual algorithms that may or may not be ap-
plied to a particular film or video sequence. It is typical
that only a subset of these algorithms is used.

The noise reduction application will be mapped across
the three MORPHEUS HREs using a distribution like that
found in the FlexFilm project. Therefore, data transfer re-
quirements between processing units and to and from ex-
ternal memory will remain similar.

The application must process at least 3 MiPixel per
frame and 24 frames per second (assuming a 2048x1568
resolution). This results in approximately 5 to 200 G/op-
erations per second, depending on the complexity of the
chosen algorithm. The operations are usually simple arith-
metic tasks (e.g. addition, subtraction, and modulus) and
frequently access image data.

Additionally, the application requires a significant
amount of memory, specifically for the frame buffers
required by the motion estimation/motion compensation
stage and the synchronization buffers needed by the dis-
creet wavelet transform filtering. These buffers are too
large for internal RAM. Consequently, a large external
SDRAM is required to meet storage requirements. Fur-
thermore, the memory controller must support a minimum
of 2.1 GiBit/s per channel to avoid application data starva-
tion.

3.3 Reconfiguration Needs

A minimum requirement for successful operation of a
post-production digital film processing chain is a user-
driven reconfiguration between steps of the algorithm.
This reconfiguration is intended to allow multiple pro-
cessing steps to share one processing platform in a time-
multiplex fashion. An additional requirement, which is not
mandatory, is a data-dependent selection of processing pa-
rameters and corresponding adaptation of the algorithms,
e.g. the adaptation and adjustment of filter orders, during
run-time. Due to its run-time reconfiguration capabilities,
the MORPHEUS platform can support this requirement as
well.

4 Architecture
The MORPHEUS SDRAM controller (CMC) 2 consists of
three main components: the NoC-CMC interface, the two-
stage buffered memory access scheduler, and the DDR-
SDRAM interface. An architectural overview is shown in
Figure 1.

2CMC stands for Central Memory Controller

2



High Priority

Standard Priority

2-Stage
Buffered
Memory

Scheduler

AT

AT

AT

AT

Access
Controller

Data
I/O

W

W

R

R

DB

DB

DB

DB D
D

R
 -

 S
D

R
A

M
(e

x
te

rn
a
l)

R/W data bus

R

W

DB

AT

Read Port

Write Port

Address Translation

Data Buffer

Request Flow

Data Flow

Legend:

Example shown with 1 read and 1 write 
port for both standard and high priorities

Client 
Ports

NoC-CMC

W

NoC-CMC

NoC 
Ports

Figure 1: SDRAM controller architecture

4.1 General Architecture

Requests to the SDRAM controller are made by applica-
tions via the MORPHEUS Data Protocol interface, which
provides the connection from the MOPRHEUS Network
On Chip (NoC) to a configurable number (up to 8) of ap-
plication read and write ports. The MORPHEUS NoC is
based on the STNoC Network On Chip described in [3].

Many applications can perform concurrent memory ac-
cesses, however it is not guaranteed that requests to the
same memory address from different ports are executed in
order. See also Section 4.6.

Memory access requests first enter the NoC-CMC
Interface, where read and write requests from MOR-
PHEUS applications are buffered and converted from NoC
packets to regular CMC read and write requests and sent
to the CMC in burst request format (see Section 4.2). A
CMC burst consists of 8 consecutive data words, while a
data word is 64 bits in length.

After entering the CMC, memory access requests first
reach the address translator, where the logical address is
translated into the physical rank/bank/row/column quadru-
ple required by the SDRAM, where a "rank" designates
a single or group of SDRAM modules controlled by a
unique chip select signal.

Concurrently, at the data buffers, the write request data
is stored until the request has been scheduled; for read re-
quests a buffer slot for the data read from the SDRAM is
reserved.

The requests then enter the core part of the SDRAM con-
troller, the two-stage buffered memory access scheduler
(see Section 4.3). After one request is selected, it is exe-

cuted by the access controller and the data transfer to/from
the corresponding data buffer is initiated by the data I/O
module. Finally, external data transport and signal syn-
chronization for DDR transfers is managed by the DDR
Interface and its 64-bit data bus (see Section 4.5).

4.2 NoC-CMC Interface

The NoC-CMC Interface provides the connection be-
tween the CMC and the MORPHEUS Network On Chip.
The interface is responsible for ensuring adherence of NoC
requests and CMC responses to their respective transfer
protocols, as well as the internal buffering of memory re-
quests and data. In addition, it serves as an error detec-
tion unit by identifying unsupported CMC commands and
issuing the proper error response to the transfer initiator.
The interface consists of four components: Command Dis-
patch, Command Buffer Read, Command Buffer Write and
Response Dispatch.

4.2.1 Command Dispatch

The Command Dispatch module is responsible for ensur-
ing the validity of incoming requests, the forwarding of
valid requests, and the generation of error response pack-
ets. If a request is deemed valid, it is forwarded to the
proper Command Buffer. If an error is detected, the Com-
mand Dispatch module generates an error response packet,
which is transmitted to the Response Dispatch module.
See Table 1 for a list of supported commands. It should
be noted that the largest commands, ST64 and LD64, ex-
actly correspond to the size of one CMC burst transfer.

3



4.2.2 Command Buffer Write

The Command Buffer Write module accepts incoming
write requests from Command Dispatch and transfers
these requests in burst format to the CMC.

The internal buffer structure is divided into a data and
address buffer. Write requests, which can have different
word lengths, require only a single address, which is in-
dependent of request size. Therefore, the sizes of the two
buffers are independent. The only requirement is that the
data buffer should always be able to store more than one
complete burst. Also, because applications can best utilize
the CMC’s scheduling optimizations when working with
ST64 commands (8 data words, a complete burst), an ad-
dress buffer should be 1

8 the size of the data buffer.
When data is written from the buffer to the CMC, the

conversion of the request into a burst-oriented CMC re-
quest takes place. If a request is smaller than a burst, the
additional words remaining in the burst, which can be tech-
nically deemed “empty,” are masked out when the data is
written to SDRAM. The data masking is accomplished us-
ing a well-known technique that is novel to memory con-
troller data paths. The Command Buffer Write module ap-
pends a single “valid” bit to each data word when creat-
ing a burst request for the CMC. By increasing the size
of a write data word by this single bit, the mask is ef-
fectively transported through the memory controller and
delivered to the DDR Interface without any modifica-
tions to the controller core architecture. This bit is finally
stripped from the data word before the memory write oc-
curs.

4.2.3 Command Buffer Read

The Command Buffer Read module receives read requests
from Command Dispatch and forwards them to the CMC.
In addition, it is responsible for receiving data words read
from the CMC and converting this burst-oriented data into
valid NoC response packets.

The main component of the Command Buffer Read
module is a temporary storage FIFO. Using multiple point-
ers, this buffer keeps track of the position for the next in-
coming request, the position of the next request that will
be sent to the CMC, and the position of the read request
that next expects to receive read data from the CMC. A
relatively simple pointer management is possible due to
the internal CMC re-ordering of read requests into their
original request order.

Read requests that are smaller than a complete burst are
treated similarly as in Command Buffer Write. Addition-
ally, only the burst address of the request is passed to the

Supported memory commands
Signal Type Command length (bytes)
Write Access ST08, ST16, ST32, ST64
Read Access LD08, LD16, LD32, LD64

Table 1: Supported memory commands

CMC. A counter initialized to the lowest three address bits
is used to define the position of the first valid data word in-
side a burst. A second counter, which is set to the number
of words to be read, defines the final data word to be read.

4.2.4 Response Dispatch

Response Dispatch controls the distribution of response
packets to the NoC, as well as the management of the
response packet control signals. Since each of the other
three NoC-CMC Interface modules can transmit a re-
sponse packet, the Response Dispatch module has been
implemented with two separate buffers and a simple arbi-
tration algorithm. The first buffer handles write responses
and error responses, which always consist of a single cell
since no real data is transmitted. The second buffer is
responsible for read responses, which can consist of 1-8
data words. The transfer of the outgoing packet from the
buffers to the NoC is done using round-robin arbitration.

4.3 Two-Stage Buffered Scheduler

The two-stage buffered scheduler comprises the core of the
memory controller, performing access optimizations and
eventually issuing requests to SDRAM. Figure 2 shows the
scheduling stages.

4.3.1 Request Buffer, Request Scheduler

The single-slot request buffers are used to decouple the
clients from the following scheduling stages. The first
scheduler stage, the request scheduler, selects requests
from these buffers, one request per two clock cycles, and
forwards them to the bank buffer FIFOs. By applying a
round-robin arbitration policy, a minimum access service
level is guaranteed. As stated above, high priority requests
are serviced before standard priority requests when prior-
ity levels are enabled.

4.3.2 Bank Buffer, Bank Scheduler

The bank buffer FIFOs, one for each bank, store the re-
quests according to the addressed bank. The second sched-
uler stage, the bank scheduler, selects requests from these
bank buffer FIFOs and forwards them to the access con-
troller for execution. In order to increase throughput uti-
lization, the bank scheduler performs bank interleaving to
hide bank access latencies and request bundling to mini-
mize stalls caused by read-write switches.

Bank Interleaving exploits the SDRAM structure, which
is organized into independent memory banks. SDRAM
banks require 4 (read) to 6 (write) passive cycles after a
data transfer, during which the active bank cannot be ac-
cessed. By reordering memory requests to ensure consec-
utive accesses occur to inactive banks, a second bank can
be accessed during such idle times, effectively hiding these
latencies and significantly increasing data rates. As a sim-
ple example, one bank can be performing a read access
while a second bank is activated. When the first bank com-
pletes its data access, the read to the second bank is issued
immediately.

4



����
������

����
	
������

���
������

�������
	
������

�������
������

�������������

	����������������

Figure 2: Two-stage buffered scheduler

Request Bundling minimizes the effects of idle cycles re-
quired during bus direction switches. These stalls (1 for a
read-write change, 1-2 for a write-read change, depending
on the SDRAM module) can decrease overall throughput
by up to 27% [5]. By bundling like requests together into
continuous blocks, these stalls can be avoided.

4.4 Quality of Service (QoS)

While not a consideration for the MORPHEUS platform,
Quality of Service is important for modern SDRAM con-
trollers. In general, CPU cache miss and data path memory
requests show different memory access patterns. For effec-
tive operation, CPU cache miss memory accesses should
be served with a smallest possible latency, while data path
memory requests should be served with a guaranteed min-
imum throughput at guaranteed maximum latency. A more
detailed explanation can be found in [5] and [6].

To handle these requirements, two priority levels for
memory access requests have been implemented in the
CMC. High priority requests (smallest possible latency)
are always executed before standard priority requests. This
is implemented via distinct access paths for high and
standard priority requests and a modified bank scheduler
which always executes high priority requests first.

With any priority-based design, starvation at the lower
levels is often an issue. To avoid possible starvation of
standard priority requests (guaranteed minimum through-
put at guaranteed maximum latency), a flow control unit
is used to reduce the maximum throughput of high prior-
ity requests. The flow control unit can be configured to
pass n requests within T clock cycles (known as "sliding
window" in networking applications) to allow bursty CPU
memory accesses when necessary.

4.5 DDR Interface

A significant challenge for the CMC design was the timing
synchronization along the DDR-SDRAM data path.

For flexibility, the DDR Interface was designed to
be able to adapt to many timing requirements. For this
purpose, three features were included in the interface:

• Delay elements (DLLs) used to create proper timing
of the Data Strobe signals (dqs)

• Flexible Capture Unit for transferring data with sys-
tem clock

• Moving Data Valid Window for acquisition of data on
the internal data bus

In order to briefly describe the interface, as well as illus-
trate potential timing problems and our solutions, SDRAM
write and SDRAM read accesses will be examined below.
Consult [7] for more information.

4.5.1 SDRAM Write Access

Figure 3 represents a simplified example of a write request.
A burst of 8 data words (64-bit word size) is written into
DDR-SDRAM. The first data word is masked out (dqm
= 1), meaning this position is not overwritten in memory.
The Data dq and the corresponding Data Strobe dqs’,
which is the reference signal for data acquisition by the
memory, are generated by the CMC and therefore syn-
chronous to the system clock. If we assume the simpli-
fication that the PCB trace for the dq and dqs’ signals
are the same length, meaning that the data arrives at the
same time as the system clock, it becomes clear that the
Setup Time is violated. In this case, the DLLs shift the
dqs’ signal to the middle (timing-wise) of the data word
in order to generate the most tolerant timing situation pos-
sible (the DLLs are also subject to jitter, so the delay is not
constant). This creates a new delayed Data Strobe signal
called dqs.

The delay introduced to the dqs’ signal can only guar-
antee that the Data Strobe arrives at the SDRAM after the
data itself and therefore that the correct data is registered.
It must be noted, however, that different memory modules
on the chip can be placed different distances away from
the memory controller, amongst other possible tolerance
issues related to manufacturing. Therefore, the interface
was designed with maximum flexibility in mind. Each of
the 8 dqs signals has its own DLL, and all DLLs can be
configured independently of one another.

5



Figure 3: Burst write with data masking

Figure 4: DDR Data Valid Window

4.5.2 SDRAM Read Access
Improper timing synchronization can also create commu-
nication problems between the CMC and DDR-SDRAM
modules during read requests. After the CMC sends the
CAS signal, the memory module does not transfer the data
onto the dq bus and set the Data Strobe until the amount
of time specified by the CAS latency parameter (2, 2.5, or
3 clock cycles) has passed.

The DDR-SDRAM specifications require that all 8 Data
signals that belong to a single Data Strobe do not become
valid in the same instant. As shown in Figure 4, all Data
signals can only be acquired via a DQS edge during a given
time window. This time window is known as the Data
Valid Window and its duration can be calculated as follows,
using the SDRAM timings described in Table 2:

tHP = min(tCH · tCK , tCL · tCK) (1)
tQH = tHP − tQHS (2)
tDV = tQH − tDQSQ (3)

To provide timing synchronization, the Data Strobe sig-
nals can be supplied in the middle of the Data Valid Win-
dow, with the help of the DLL elements provided for the
DQS signals generated by the DDR-SDRAM during read

Parameter Description Unit

tCK clock period ns
tCH clock high-level width minimum tCK

tCL clock low-level width minimum tCK

tDQSQ DQS to last DQ valid ns
tQHS clock half period ns
tQH DQ-DQS hold ns
tDV data valid window ns

Table 2: SDRAM Timing Parameters

requests. This, in combination with the three-stage capture
unit, allows for proper acquisition of read data.

4.5.3 Alternatives to DLL Usage

As a possible alternative to the use of DLL elements, de-
lays built into the PCB trace itself were considered. Here,
the advantage is the removal of the complex logic used
to implement the interface using DLLs as well as a sig-
nificant savings in chip area. However, the disadvantages
of this solution prevented it from being considered for se-
rious use. The delay for individual signal lines must be
determined via its length on the board. With the memory
blocks used during testing [10], a delay of at least 0.85
ns is required. With an approximate propagation speed
of vsignal = 20 cm

ns , this would require a signal length of
l = 17cm. This length is unrealistic for a modern architec-
ture. In addition, for an exact length calculation all delay
times must be known, which would force the CMC to be
restricted to a specific memory module or in the best case,
those modules with almost identical timing behavior.

4.6 Memory Coherency

• Reads and writes from different ports to the same ad-
dresses are potentially executed out-of-order. Within
the same priority levels and provided that the bank
buffers do not fill up, a distance of 2n clock cycles,
with n being the number of ports, per priority level,
is sufficient to exclude hazards.

6



• Reads from one port to different addresses might be
executed out-of-order, however they finish in-order.
This implies that the application always receives the
requested data in-order. The reordering takes place
inside the data buffers.

• Writes from one port to different addresses might be
executed out-of-order. This is a non-issue, however,
since they occur at different addresses.

4.7 Configuration
CMC configuration parameters clearly depend on the type
of DDR-SDRAM used, the clock frequency, and overall
board layout. For the MORPHEUS CMC, many parameter
values have been determined based on design requirements
and cannot be changed. This is in contrast to the flexible
nature of the original CMC design, which was created for
use in a flexible FPGA environment.

Despite the requirement that many parameters, such as
address bus width, data bus width, and the number of
application ports must be determined before logic syn-
thesis, a certain degree of flexibility must remain in the
MORPHEUS CMC so that it may support different DDR-
SDRAM modules and to achieve proper timing under real
PCB conditions. To achieve this goal, a programmable
Configspace module was created, which allows run-
time, user-adjustable configuration of SDRAM timing,
SDRAM layout, and of the DDR path delay elements used
to generate necessary proper timing behavoir for the DDR
Interface.

5 Experiments and Results
To evaluate the CMC, logic synthesis was first per-
formed using Synopsys Design Compiler X-2005.09-SP4-
3. Then, using post-synthesis HDL, both throughput and
latency were tested using the MORPHEUS and CMC con-
figuration detailed in 5.1. Experiments were performed
in a ModelSim 6.2d environment using the 512MB DDR-
SDRAM modules described in [10]. Optimal values for
memory controller parameters such as bank buffer sizes
(8 buffers of depth 8), data buffer sizes (1 buffer of 512
entries per port), and flow control settings, as well as the
effect of request priorities, are provided in [5] and [6].
This allowed our experiments to focus solely on the per-
formance of the memory controller designed for use in the
MORPHEUS architecture.

5.1 Resource usage
The MORPHEUS platform is a complex design with nu-
merous integrated IPs, many of which consume significant
chip area resources. The CMC was therefore designed to
occupy a relatively small chip area and logic was min-
imized whenever possible. Resource usage heavily de-
pends on the CMC configuration. For the MORPHEUS
ASIC design, configuration values are fixed. Therefore,
precise resource usage can be reported.

The MORPHEUS CMC relies on the ST Microelectron-
ics 90 nm technology libraries, as well as Delay Locked

Module Size (KiloGates)

cmc_core 46.2
configspace 1.3
noc-cmc_port_0 26.2
noc-cmc_port_1 26.3
noc-cmc_port_2 26.3
Synthesizable area (KiloGates) 126

Table 3: CMC example resource usage

Loop technology libraries and custom memory modules
for internal storage. Custom macros are not included in
the synthesizable area report.

Table 3 shows the resource usage reported after logic
synthesis for the CMC on the MORPHEUS platform with

• 3 NoC-CMC client ports

• 6 standard priority application ports: 3 read, 3 write

• 64-bit client data bus, 64-bit DDR-SDRAM data bus

• 64-bit word size, 8-word burst length

• 200 MHz operating frequency (400 MHz DDR)

• 13-bit SDRAM address bus (13 row, 10 column)

• 4 SDRAM banks

• 2 chip selects

• QoS disabled (prioritization and flow control)

• 8 bank buffers for standard priority requests

The values in Table 3 are well within the target chip area
reserved for the CMC and leave room for further improve-
ments and increased internal buffer sizes.

5.2 Throughput
Using access patterns similar to the streaming patterns
generated by the film grain noise reduction algorithm out-
lined in Section 3, both read and write throughput were
tested.

The results in Table 4 clearly show that bandwidth
is directly correlated to proper utilization of the burst-
oriented design of the CMC. Although smaller commands
are supported, the controller can best utilize its out-of-
order scheduling features when processing a large number
of outstanding requests. These values are maximized via
ST64 and LD64 commands, which correlate to the CMC
burst length. With these commands, the CMC data rates
come satisfyingly close to the theoretical maximum DDR
throughput values at 200 MHz, with a total bandwidth uti-
lization of up to 75%.

As expected, because the CMC’s smallest data unit is
a burst, requests half the size of a burst access exhibit
approximately half the throughput. The slightly lower
throughput rates for the larger write requests compared
to reads is due to the different designs of the read and

7



Cmd Number of Accesses Throughput (GiBytes/s)

ST64 16384 1.985
ST32 16384 1.306
ST16 16384 0.653
ST08 16384 0.324
LD64 16384 2.360
LD32 16384 1.178
LD16 16384 0.593
LD08 16384 0.295

Table 4: CMC Data Rates

Cmd Avg. latency (cycles)

ST64 83
ST32 83
ST16 83
ST08 83
Cmd Min. latency (cycles) Max. latency (cycles)
LD64 32 60
LD32 28 63
LD16 26 53
LD08 25 50

Table 5: CMC Latencies

write data buffers and leaves room for future optimization.
Smaller burst lengths also negatively impact throughput
because with fewer outstanding requests, the scheduler has
less flexibility to take advantage of bank interleaving and
request bundling, leading to more idle cycles.

Average throughput is therefore application dependent.
If an application is designed to heavily utilize ST64
and LD64 commands, average throughput approaches the
maximum throughput attainable by the CMC.

5.3 Latency

Despite the CMC’s focus on optimizing throughput, la-
tency should not be ignored. Large buffer depths have a
negative effect on latency, as well as the access optimiza-
tion techniques employed by the schedulers. However,
the CMC’s internal FIFOs were kept at reasonable sizes
to minimize their effect.

In Table 5, average latencies for write commands are
presented. The same access patterns used in the through-
put experiments were used to test latency. Here, values
were measured from the receipt of an incoming request to
the transfer of data across the SDRAM data bus. Because
of its burst-oriented design, latencies are identical for write
operations of all sizes.

More interesting, however, are read access latencies,
which correspond to the time an application must wait for
requested data. Read latencies proved to be fully depen-
dent on the size of the read command issued to the con-
troller. As expected, the more data requested, the longer
the latency, which was measured from receipt of the re-
quest until the transfer of the response packet to the NoC.

6 Conclusion
In this paper, we have presented a novel bandwidth-
optimized SDRAM controller for the MORPHEUS het-
erogeneous reconfigurable platform. An application was
described which demonstrates requirements not supported
by other memory controllers accessible to the project. De-
spite the SDRAM controller’s focus on throughput and
achievement of up to 75% of the theoretical maximum
DDR data rate, access latencies also remain low compared
to other solutions. In cases where latency is especially crit-
ical, the CMC also provides different access paths for high
priority and standard priority requests to ensure that la-
tency sensitive tasks, such as CPU cache misses, are ser-
viced as quickly as possible. Finally, despite being de-
veloped for the MORPHEUS platform and designed for
an ASIC environment, the controller remains flexible. It
supports a configurable number of application ports and
various DDR-SDRAM modules. It also contains a con-
figurable interface to a NoC, which can be removed for
systems not requiring such an advanced interconnect.

References
[1] Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J. Kapasi, and Ab-

hishek Das. Evaluating the Imagine Stream Architecture. SIGARCH Comput.
Archit. News, 32(2):14, 2004.

[2] ARM Ltd. PrimeCell MultiPort Memory Controller (PL175). ARM Ltd.,
2003.

[3] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra. Spi-
dergon: a novel on-chip communication network. In Proceedings of the In-
ternational Symposium on System-on-Chip, pages 16–18, 2004.

[4] Amilcar do Carmo Lucas, Sven Heithecker, and Rolf Ernst. FlexWAFE - A
high-end real-time stream processing library for FPGAs. In DAC ’07: Pro-
ceedings of the 44th annual conference on Design automation, pages 916–
921, New York, NY, USA, 2007. ACM Press.

[5] Sven Heithecker, Amilcar do Carmo Lucas, and Rolf Ernst. A Mixed QoS
SDRAM Controller for FPGA-Based High-End Image Processing. In Work-
shop on Signal Processing Systems Design and Implementation, page TP.11.
IEEE, 2003.

[6] Sven Heithecker and Rolf Ernst. Traffic Shaping for an FPGA-Based
SDRAM Controller with Complex QoS Requirements. In Design Automa-
tion Conference (DAC), pages 575 – 578. ACM, June 2005.

[7] JEDEC. Double Data Rate (DDR) SDRAM Specification. JEDEC Solid State
Technology Association, jesd79c edition, March 2003.

[8] Brucek Khailany, William J. Dally, and Scott Rixner. Imagine: Media Pro-
cessing with Streams. IEEE Micro, pages 35–46, March/April 2001.

[9] Jeroen A. J. Leitjen, Jef L. van Meerbergen, and Adwin H. Timmer.
PROPHID: a Heterogeneous Multi-Processor Architecture for Multimedia.
In International Conference on Computer Design, pages 164–169, October
1997.

[10] Micron Technology, Inc. 512Mb DDR SDRAM Component:
MT46V64M8BN-5B. Data sheet, Micron Technology, Inc., April 2004.

[11] Prabhat Mishra, Peter Grun, and Nikil D. Dutt. Processor-Memory Co-
Exploration driven by a Memory-Aware Architecture Description Language.
In 14th International Conference on VLSI Design (VLISD01), pages 70 – 75.
IEEE, Jan 2001.

[12] Scott Rixner, William J. Dally, and Ujval J. Kapasi. Memory Access Schedul-
ing. In International Symposium on Computer Architecture, pages 128–138,
2000.

[13] Sonics Inc. Sonics MemMax 2.0 Multi-threaded DRAM Access Scheduler.
Data sheet, Sonics Inc., 2005.

[14] F. Thoma, Matthias Kühnle, Philippe Bonnot, Elena Moscu Panainte, Koen
Bertels, Sebastian Goller, Axel Schneider, Stéphane Guyetant, Eberhard
Schüler, Klaus D. Müller-Glaser, and Jürgen Becker. MORPHEUS: Hetero-
geneous Reconfigurable Computing. In Proceedings of 17th International
Conference on Field Programmable Logic and Applications (FPL07), August
2007.

[15] Thomson Grass Valley. Homepage. http://www.thomsongrassvalley.com,
2007.

8


