
Providing Accurate Event Models for the Analysis of
Heterogeneous Multiprocessor Systems

Simon Schliecker, Jonas Rox, Matthias Ivers, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
schliecker@ida.ing.tu-bs.de, rox@ida.ing.tu-bs.de, ivers@ida.ing.tu-bs.de,

ernst@ida.ing.tu-bs.de

ABSTRACT
This paper proposes a new method for deriving quantitative event
information for compositional multiprocessor performance anal-
ysis. This procedure brakes down the complexity into the analy-
sis of individual components (tasks mapped to resources) and the
propagation of the timing information with the help of event mod-
els. This paper improves previous methods to derive event models
in a multiprocessor system by providing tighter bounds and allow-
ing arbitrarily shaped event models. The procedure is based on a
a simple yet expressive resource model called the multiple event
busy time which can be derived on the basis of classical schedul-
ing theory — it can therefore be provided for a large domain of
scheduling policies. Our experiments show that overestimation by
previous methods can be reduced significantly.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Computer Systems Organization—Performance attributes
General Terms: Performance, Verification

1. INTRODUCTION
Formal performance verification is essential to safely verify the

compliance of current multiprocessor systems with real-time con-
straints. With increasing system complexity and continued func-
tional integration, system level performance issues are becoming
more complex and the analysis must often be adapted to different
systems. To counter this challenge, compositional approaches have
been proposed that break down the complexity into the analysis of
components (i.e. processors, busses, or memories) and a character-
ization of the events that are generated between theses components
(so called event models).

A key problem of compositional analysis is to accurately derive
the event models in the system, as this is the basis to determine
the amount of interference any execution or communication expe-
riences in the system. Commonly a task is assumed to be activated
once by each event in an input event stream and to produce one
event per execution at its output. Sharing resources among tasks
inevitably increases the dynamism of events in the output event
stream, which can be observed as a larger jitter. A model of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

resource timing is required to derive the amount of dynamism im-
posed.

Previous research relies on different resource abstractions for
this purpose. For example, the approach in [1] simply uses the task
response time bounds. As these bounds can be determined with
classical (single-)processor scheduling theory, this method allows
to address a large set of scheduling and arbitration policies. How-
ever, relying on the response time bounds alone yields conservative
results in cases where the worst case response time is only an effect
of a transient overload situation. In [2], resources are modeled with
more general service functions. This formalism has advantages
when it comes to hierarchical scheduling techniques and delivers
very accurate results. Since it is a load model, however, sequence
dependent behavior, such as number of context switches, blocking
effects including non-preemptive and collaborative scheduling, or
mutual dependencies (as in round robin) cannot easily be covered.

In this paper, we combine the advantages. We propose a new ab-
straction of resource timing, namely the multiple event busy time
model. This model is a direct extension of the classical busy win-
dow approaches such as [3] that symbolically derive worst case task
sequences considering context switches, blocking, release offsets,
or mutual dependencies. However, these methods only provide the
busy window of a critical instant until the resource is idle for the
first time. We therefore generalize this concept, by explictly con-
sidering the individual events in the busy window and also allowing
for idle times between them in our proposed method for deriving
event models at the task outputs.

In a last step, we show that this new method incorporates into a
compositional analysis framework, allowing performance analysis
of heterogeneous multiprocessor systems.

The paper is organized as follows: We present and evaluate the
work related to our approach in Section 2. We formally introduce
the multiple event busy time concept in Section 3.1. This con-
cept allows us to derive the accurate event models in Sections 3.2
and 3.3. Section 4 shows that the convergence of the compositional
multiprocessor performance analysis is still ensured when using the
proposed event model calculation. Finally, the experiments in Sec-
tion 5 show the quantitative advantage of the new method.

2. RELATED WORK
In general, a multiprocessor system consists of a set of tasks

which can be a computation or communication with known min-
imum and maximum execution time. Tasks are activated by events
and produce events when their execution is finished. Tasks are
mapped to resources that arbitrate between the tasks mapped to
it according to their scheduling policy, causing task activations to
possibly interrupt each other. Tasks generally process the events
of an event stream in-order. This typical assumption in scheduling

theory matches the design practice, prioritized events are modeled
with separate event streams.

The performance analysis problem is addressed by various com-
positional approaches that separate the problem into local compo-
nent analyses and the modeling of event traffic between them. In
Network Calculus [4] and the Real-Time Calculus [2] based on it
the local resource behavior is modeled as the execution time pro-
vided to the processing of events of a certain stream within a time
window of given size ∆t. Such a resource service curve is depicted
in Figure 1a, for minimum (β−(∆t)) and maximum supplied ser-
vice (β+(∆t)). Appropriate service curves have been provided e.g.
for static priority preemptive scheduling, EDF, TDMA, and others
[2]. But specific resource service curves are difficult to derive when
e.g. a preemption count is required, as for the calculation of context
switch overhead or cache related preemption delay. The approach
can also be computationally intensive as it derives output event
models and remaining resource capacity by folding operations in
continuous time domain. For this reason practical simplifications
have been suggested (e.g. stepwise evaluation [5], finite models of
event streams [6]).

Figure 1: Models of Resource Service.

The opportunities of relying on simpler event and resource mod-
els are presented in Section 2.2.

2.1 Event Models
A key element of compositional performance analysis is express-

ing the traffic flow between different components with the help of
event models.

Figure 2: Event Model Representation.

In [2] and [1] event models describe the maximum and mini-
mum number of events η+ and η− that may occur during a time
interval of given size ∆t. Figure 2 shows such an event model rep-
resentation on the left. An event model can also be expressed by the
distances of the contained events. This is shown on the right side of
Figure 2. The functions δ−(n) and δ+(n) represent the minimum
and maximum distance between the occurrence of any n events in
the stream. The δ functions are therefore sensefully defined only
for n ≥ 2. Both the δ and the η representations can be converted
to each other.

In this paper we will mainly utilize the δ representations. It has
the strong advantage of being a discrete function of n, rather than
the η representations, which are continuous. Thus they are more

suitable to the actual numerical computation by allowing to inves-
tigate only a discrete set of relevant events.

Correct δ functions have some fundamental properties (such as
superadditivity [4]), but no rules are imposed on how they are actu-
ally numerically described. For a compact representation, the stan-
dard event models in [7] rely on the three parameters event stream
period P , event stream jitter J , and minimum distance between
any two events dmin. The δ-function of e.g. a bursty event stream
can then be expressed as follows:

n ≥ 2 : δ+(n) = (n− 1)P + J (1)

δ−(n) = max((n− 1)dmin, (n− 1)P − J) (2)

The standard event models are appropriate for many common
real-time setups (e.g. in automotive) but may inaccurately repre-
sent more complex event patterns. These may occur at the inputs to
the system but also within a system where the sequential processing
on different resources can significantly distort the event traffic [8].
Packetization and layered communication can aggravate this prob-
lem (as investigated in [9]). Finally, in the domain of systems-on-
chip the modeling of accesses to a shared memory is of increasing
importance [10][11]. Such accesses can be very irregular and their
accurate treatment is key to timing validation in MpSoCs. In these
cases, a more generic representation must be chosen. Our proposed
analysis therefore supports arbitrary event models.

2.2 Compositional Performance Analyis
In [1] the analysis of individual resources is interleaved with the

propagation of event models. The procedure is shown in Figure 3.

Figure 3: Compositional Analysis Loop.

First the environmental input event models representing the min-
imum and maximum amount of events that the system is exposed
to are specified (1). All other input event models within the system
are initialized with optimistic guesses, which are iteratively refined
during the analysis procedure. These event models are supplied to
the individual components (2), where they are used for local anal-
ysis (3). This local analysis provides timing information for each
task mapped to the resource.

In [1], the basic metric expressing the timing of a component
are the tasks’ worst (and best) case response times. This simple
metric has been the focus of numerous research in single proces-
sor scheduling theory such as [12][3]. A common procedure for its
derivation is symbolic simulation of a critical instant scenario. Var-
ious extensions have been proposed to improve the analysis results
(such as offsets [13] or variable task execution times [14]) and con-
sider realistic scheduling behavior (e.g. cache related preemption
delay in preemptive scheduling [15] or the FlexRay bus protocol
[16]).

Based on the component’s timing, the output event models are

calculated. These output event models can in turn be input event
models to other components, or outputs to the environment. The
output event models are compared to those used in the previous
analysis iteration (4). If all are the same the analysis has converged,
otherwise the corresponding local analyses are repeated with the
refined inputs.

All event models can only become more generic with each itera-
tion [7], meaning that each iteration contains the previous models.
Thus, the complete procedure is monotonic. The analysis is com-
plete if either all event streams converge toward a fix-point, or if an
abort condition, e.g. the violation of a timing constraint has been
reached.

3. DERIVING OUTPUT EVENT MODELS
The core element of the compositional analysis is the procedure

of deriving a task’s output event model from the task’s input event
model and local resource model. We call this procedure “propa-
gation" of event models. In [1], the propagation was achieved by
reproducing the standard event model at the input of the task at
its output, but with an increased jitter and possibly different mini-
mum distance. The jitter increase is determined by the difference
between the task’s worst case and the best case response time. In
our case, by relying on the multiple event busy time introduced be-
low, we have the opportunity to calculate more precise output event
models and to support arbitrary event models.

3.1 Multiple Event Busy Time Model
This section elaborates the concept of the busy period that is used

in most response time analyses that use the windowing technique to
determine a task’s worst case response time. In [3], the busy period
is the time interval from the occurrence of a “critical instant” until
the resource is idle for the first time. One of the task activations
within this busy period then experiences the worst case response
time.

As a generalization of this concept, we formally define the mul-
tiple event busy time function. The multiple event busy time func-
tion represents the amount of time necessary to process a certain
number of events that arrive within the same busy window. For
example, B+(1) is the maximum busy window inflicted by a sin-
gle event that arrives after the previous was finished. B+(2) is the
maximum busy window size that is spanned by two events, where
the second arrives before the first is finished. The minimum busy
time B− can be defined correspondingly.

Definition 1 (Multiple Event Busy Time). The n-event busy time
B+

i (n) (B−i (n)) of a task i is given by the maximum (minimum)
time it may take i to process n events, if all but the first of the n
events arrive before the preceding is finished.

For illustration consider the example schedule in Figure 4. The
first activation of task T3 experiences a critical instant scenario for
static priority preemptive scheduling: all higher priority tasks are
activated at the same time and as early as possible thereafter. This
leads to a worst case busy time of B+

T3(1) = 15, which is the sum
of the involved core execution times. The next activation (arriving
at time 11) is processed subsequently, and finished no later than
B+

T3(2) = 22. The series of such derived busy times can be plotted,
as depicted in Figure 1b.

By the above definition, the busy time contains all effects that
can delay the finishing of the task activations. In particular, this
includes the task’s execution times, the interference by other tasks
mapped to the same resource as well as the scheduler’s decisions of
the execution order. If present, inter-task communication, context
switch overhead and other delays must also be covered.

Figure 4: Multiple Event Busy Times.

This busy time has been implicitly used in many previous sche-
duling analyses that rely on the windowing technique such as [12,
3, 17, 18]. During the calculation of the worst case response time,
finishing times of different task activations are calculated — in a
worst case scenario this corresponds to busy times as defined above.
Thus, in this case the calculation of the busy times comes at no
additional computational costs. Despite its obvious similarity to
previous use of the busy period, the above definition is different in
mainly the following ways:
• The multiple event busy time does not depend on the actual

activation pattern of the investigated task (T3 in the exam-
ple). This fully decouples the resource model from the event
model, making it highly useful for the system level analysis.
• The multiple event busy time does not imply non-idleness (as

the busy period), although this will be the case for any work
conserving scheduler.

To demonstrate the feasibility of the concept, Lemma 1 provides
the multiple event busy time for static priority preemptive schedul-
ing of independent tasks (on the basis of [3]).

Lemma 1. The multiple event busy time B+
i (n) for a task i un-

der static priority preemptive scheduling with independent tasks is
given by

B+
i (n) = n · Ci +

∑
j∈hp(i)

(η+
j (B+

i (n)) · Cj (3)

where
Ci, Cj is the maximum core execution time of task i, j.
hp(i) is the set of tasks with higher priority than i.
η+

i (∆t) is the maximum number of events that lead to an activa-
tion of task i in a time window of size ∆t.

As B+
i (n) is used on both sides of Equation 3 no direct solution

is available. However, the right hand side is monotonic with respect
to B+

i (n), and thus the fixpoint can be found through iteration.
Similarly, more sophisticated windowing based analyses can be

straight-forwardly extended to produce the busy time function. This
allows to consider e.g. shared resources, task preemption costs,
task offsets [13], variable task execution times [14], or accesses to
shared memories [19].

3.2 Minimum Distances
As described above, a task’s output event model was derived in

previous work mainly on the basis of its worst case response time.
However an event’s arrival and its resulting response time are actu-
ally correlated.

For an example, let all events be numbered according to the se-
quence of their occurrence — events occurring later receive higher
numbers. Now, consider finding the minimum distance between the
production of an event 0 and some preceding event−1. In any case
event 0 will be processed no sooner than B−(1) after its arrival.
So the problem can be reduced to finding the maximum finishing
time of event −1. This again depends on the state of the resource

at the time of −1’s arrival. If it is not busy processing preceding
events, −1 will be finished no later than B+(1) after it has arrived
(see Scenario a in Figure 5). If a previous event −2 is still being
processed, event −1 automatically contributes to the ongoing busy
interval. This interval is then finished e.g. no later thanB+(2) after
the arrival of the preceding event−2 (Scenario 5b). Thus, the max-
imum finishing time is actually the maximum over the end times of
the busy intervals started by all previous events.

The following theorem states our derivation of the minimum dis-
tances at the output of a task for arbitrary event models and busy
time functions. We consider a task i with input event model δi and
output event model δi+1.

Theorem 1. Given a task iwith maximum busy time functionB+
i (n)

and minumum busy time B−i (1). When the minimum distance be-
tween n arriving events is bounded by δ−i (n) then the minimum
distance between n events at the output of this task is given by
δ−i+1(n) as follows:

δ−i+1(n) = max[0,

min
k∈K
{δ−i (n+ k − 1)−B+

i (k)}+B−i (1)]

K = {k ∈ N+ | δ−i (k + 1) ≤ B+
i (k)}

Proof. Let the arrival time of an event n at the resource to which
task i is mapped be ai(n) and the time at which the resulting task
activation produces an event be ei(n).

The distance between any n events at the output can never be
smaller than the minimum time between the production of an event
m and the production time of an event q that has been produced
n − 1 events earlier (q = m − n + 1). Let e−i (m) be the earliest
possible production time of event m and e+i (q) the latest produc-
tion time of q. This minimizes the distance of their production.
Furthermore, event m is always produced after event q, due to in
order processing.

δ−i+1(n) = max[0, e−i (m)− e+i (m− n+ 1)] (4)

For ease of presentation we perform some simplifications without
loss of generality: First, we rename events such that m = 0. Then,
let the input events that have led to the production of the events 0
and−n+1 have arrived at times ai(0) and ai(−n+1) respectively.
Furthermore, let the time at which event 0 arrives be time 0, i.e.
ai(0) = 0. Finally, we omit the index i identifying the task under
consideration.

Now, we can safely assume that event 0 could not be produced
earlier than a(0) +B−(1).

e(0) ≥ a(0) +B−(1) (5)

Thus, the problem is now reduced to find the maximum produc-
tion time of event −n + 1. The production time of this event,
e(−n + 1), is given by the time a(−n + 1) at which the corre-
sponding input event has arrived plus the amount of time B that
was required to process it.

e(−n+ 1) ≤ a(−n+ 1) +B (6)

Firstly, events that belong to the same event stream are con-
strained by the corresponding event model, particularly the mini-
mum distances δ−i . For example, the minimum and maximum ar-
rival times a(n) and a(m) of two events n and m (with n < m)
are by definition constrained as follows:

a(m) ≥ a(n)− δ−(m− n+ 1) ∧ (7)
a(m) ≤ a(n)− δ+(m− n+ 1) ∀n,m ∈ N, n < m

Thus, the event −n+ 1 can arrive no later than

a(−n+ 1) ≤ a(0)− δ−(n) = −δ−(n). (8)

Figure 5: a) Busy times of preceding events may not overlap b)
may overlap.

Secondly, the processing time B in Equation 6 depends on the
state of the component at the arrival time of the input event. If at
time a(−n + 1) no previous events from the same event stream
are being processed then the processing of event −n + 1 will be
finished after the worst case busy time of a single event (B+(1)).
(This is illustrated in Figure 5a for n = 2. Here, event −1 arrives
after event −2 is finished.) Thus:

e(−n+ 1) ≤ a(−n+ 1) +B+(1) (9)

If the arrival of input event −n + 1 does fall into the busy pe-
riod of a previous event, it is still guaranteed that its processing is
finished after the busy period that it now contributes to is over (see
Figure 5b where event −1 falls into the busy period of event −2,
and both activations are finished no later than a(−2) +B+(2)).

More generally, given event −n + 1 falls into the unfinished
busy period of the event that has arrived k events before, a(−n +
1) < e(−n + 1 − k), this busy period has started no later than
a(−n + 1 − k) and the corresponding event must be produced no
later than at time a(−n+1−k)+B+(k+1). From the definition of
the busy time follows that all events that have arrived before event
−n+ 1 (including −n+ 1) must at that time be finished.

Thus, we can state

∀k ∈ N+ : a(−n+ 1) < e(−n+ 1− k) (10)
⇒ e+(−n+ 1) ≤ a(−n+ 1− k) +B+(k + 1) (11)

Note that equation 9 turns out to be a special case of equation 11
with k = 0.

Thus we have a set of inequalities bounding the maximum exit
time of event −n + 1. But the inequalities 11 only hold for those
events for which the condition 10 is fulfilled. Except for k = 0,
it is not possible to say in advance which conditions are fulfilled
(i.e. how many events are still unprocessed at the time of−n+ 1’s
arrival). In any case, condition 10 can only be fulfilled when the
minimum distance between the arrival of event −n + 1 and event
−n + 1 − k is smaller than the maximum busy time that can be
started by event −n + 1 − k. This reduces condition 10 to the
following set:

K = {k ∈ N+ | a(−n+ 1) < e(−n+ 1− k)}
= {k | δ−(k + 1) < B+(k)} (12)

Summarizing, for all k, for which the condition in the set of
equation 12 is true, event −n + 1 may fall into the busy period
of k events before, and equation 11 bounds its finishing time. In
particular, if −n + 1 does not fall into the busy period of any pre-
ceding event, equation 9 bounds its busy time. No other cases are
possible.

Any one of these scenarios is possible during runtime. A conser-
vative assumption is now to take the maximum of all scenarios for
which condition 12 is true. Thus, e(−n+ 1) can be bounded by

e(−n+ 1) ≤ max
k∈K
{a(−n+ 1− k) +B+(k)} (13)

Together with equation 8 this can be expressed as follows:

e(−n+ 1) ≤ −min
k∈K
{δ−(n+ k − 1)−B+(k)} (14)

Finally, together with equation 4 the theorem follows.

Finally, to predict the minimum output event distances more ac-
curately, it is worthwhile to reconsider the case where the resource
can be transiently over-occupied. Theorem 1 will in this case often
return an overly conservative 0 as the minimum distance between
a small number of events. The minimum execution time C−i of the
processing task i can be used to ameliorate this prediction. If all
events from the same event stream are processed in order by the
same task, the events at the output will be produced at least with
a distance Ci. More generally, the busy time B−(n) delivers the
minimum time to finish n coinciding activations. This is exploited
in the following theorem.

Theorem 2. At the output of a task i the distance between any n
produced events is never smaller than

δ−i+1(n) = B−i (n− 1) (15)

Proof. In order for 2 events to be observable at the output of task
i, task i must have been activated by two events. Each of these
task activations will produce exactly one event during its execution.
Both executions can directly succeed each other. Assuming that the
events are produced at the end of the task execution, the minimum
distance between the 2 produced events is δ−i+1(2) = B−i (1).

Any further events to be observed at the output require another
task activation. Every task activation requires at least B−i (1) to
execute. A third activation can therefore begin its execution no
sooner than B−i (1) after the previous. Thus, the third event may
not be produced δ−i+1(3) = B−i (2) after the first. This reasoning
can be continued for further events.

3.3 Maximum Distances
The above calculated minimum distance between events is of

major importance to calculate the worst case load on a particular
resource. But for many setups, e.g. in control loops, the best case
is of equal importance. For its derivation it is necessary to provide
the minimum load, which is given by the maximum distance be-
tween events. This is provided in the following theorem. Similar to
the previous consideration about minimum distances, the key idea
is to minimize the finishing time of one event and maximize the
finishing time of a successive event.

Theorem 3. Given a task i with a maximum busy time function
B+

i (n) and a minimum busy time B−i (1). When the maximum
distance between n arriving events is bounded by δ+i (n) then the
maximum distance between n events at the output is bounded by
δ+i+1(n) as follows:

δ+i+1(n) = max
k∈K
{δ+i (n− k + 1) +B+

i (k)} −B−i (1) (16)

Proof. The proof of this Theorem follows along the lines of The-
orem 1: Event 0 can not be processed earlier than B−i (1). The
finishing time of a successive event n is maximized, if it arrives
as late as possible. Then let all intermediate events also arrive as

CPU1 CPU2
task event model cet priority task event model cet priority

ti, b, to ti, b, to
T1 1,3,20 [1,3] high → T3 derived [2,5] high
T2 random [0.25, 3.5] low → T4 derived [1,4] low

Table 1: Parameters of Example System

late as possible and span the largest possible busy windows, caus-
ing the maximum disturbance to event n. The difference between
the production of the first and the n-th event is the maximum event
distance. The full proof is ommited for brevity.

4. ANALYSIS CONVERGENCE
Above, we have extended the analysis procedure of 2.2 to allow

the treatment of more expressive event and resource models. An
important part of the analysis is the applicability to multiproces-
sor systems with cyclic functional task dependencies (i.e. data de-
pendencies) and non-functional dependencies (as introduced by re-
source sharing). A cyclic dependency in the system leads to cyclic
dependencies for the analysis. We therefore revisit the question of
analysis convergence in the following rationale.

The analysis convergence relies on the following key factors:
each analysis is monotonic (i.e. given analysis A and event models
M1, M2 M1 ≥ M2 implies A(M1) ≥ A(M2), where ≥ on event
models means literally ‘more generic’), furthermore a minimal in-
crement for each analysis can be found (i.e. if event models are
updated infinitely often, at least one must reach infinite load).

The event model of [7] has a single parameter critical in the anal-
ysis iteration: the maximum jitter. It is the only parameter changed
during system analysis. We replace this concept with a more ex-
pressive vector describing the event model at multiple points. The
notion of ‘more generic’ can be however easily extended to our
vector description. Furthermore the minimal increment is still jus-
tified, as the system is entirely discrete and the smallest measures
of the system is some minimum execution sequence or at least a
‘clock tick’. Finally, correct analyses are always monotonic as de-
fined above. Thus, the requirements to ensure convergence are still
conserved.

5. EXPERIMENTS
We have conducted a set of experiments to show the validity and

benefit of the presented approach. First, consider a simple exam-
ple system consisting only of two tasks mapped to a static priority
preemptive resource. Table 5 shows the setup, and Figure 6 shows
the calculated output event models of the low priority task T2. The
black square-tagged curves show the bounds on the event model
derived by the classical method of adding the response time jitter
(EMRT), while the inner triangle-tagged curves show the result of
the procedure proposed in this paper (EMBT). It can be seen that
the new method predicts tighter bounds on the resulting number of
events.

To quantify the improvement, we introduce three metrics: First,
the maximum deviation in the number of predicted events. In the
example, the original method calculates the number of events by
more than 30% larger than the new method. In a time window
slightly smaller than 10 time units, the original analysis predicts
8 events, while only 5 may occur. Second, the maximum devia-
tion of the predicted event distances. In the example the distance
between 8 events was predicted to be at least 9 time units, while
the lower bound provided by the new method was actually 17 time
units. Thus the original method has overestimated by almost 90%.
These two metrics focussed on the worst case deviation, in order to
capture the overall accuracy, we also compare the “tightness” of the

Figure 6: Example Output Event Models Propagated

two event models. For this, we calculate for each the area between
the upper and lower event curve. A smaller area means a better
prediction. In this example, the improvement in area was around
10%.

The increased precision of the proposed approach is due to the
correlation of individual event distances and their respective worst
case latencies. The loss of precision can be expected to increase if
more than one resource is involved. Reduced event model accuracy
leads to a degradation of successive response time estimates, even-
tually causing rejection of systems that are actually schedulable.

To further investigate the average benefit, we model a small two
processor system with two parallel processing chains (see Table 5,
task T1 sends data to T3, task T2 sends data to T4). We generated
1000 sets of random event models with periodic bursts at the input
of T2 (Parameter ranges: Inner period 1 ≤ ti ≤ 4, burst size
1 ≤ b ≤ 10, outer period to = ti ∗ (b + 1 + r) | 0 ≤ r ≤ 80).
About 10% of the generated event models caused a resource to be
overloaded and were discarded. In all other cases we compared the
resulting event models at the output of T4. Total analysis time in
our implementation was 2 minutes.

The distribution of the maximum deviation of predicted event
distances is shown in Figure 7a. In most of the experiments, the
original propagation method derived around 30% to 40% larger val-
ues, and in the extreme cases even 400%, which shows the benefit
of using the new method.

Figure 7: Comparing Quality of Obtained Event Models

Also the overall tightness of the resulting event models improves
significantly: In our experiments, the event model area could on
average be reduced by 35%. The amount of improvement is de-
pendant on the load imposed on the processors. In Figure 7b the
change in event model area is plotted against the average distance
between events, which linearly influences the processor load. In
systems with large event distances (i.e. low utilization), the simple
propagation mechanism already captures the behavior accurately.
As the load increases, the new event model propagation provides
significantly tighter bounds with less than one quater of the origi-
nal area.

6. CONCLUSION
In this paper we have proposed an efficient and accurate method-

ology to derive traffic estimates and path latencies in a multipro-
cessor system. The resource behavior is modeled using the discrete
multiple event busy time function, which can be derived on the ba-
sis of classical response time analysis. Through this abstraction our
method is suitable to consider arbitrary input event models in large
variety of different heterogeneous scheduling policies. The exper-
iments have demonstrated the applicability and improvement over
previous methods.

7. REFERENCES
[1] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and Rolf

Ernst. System level performance analysis - the symta/s approach. In IEE
Proceedings Computers and Digital Techniques, 2005.

[2] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. Proc. 6th
Design, Automation and Test in Europe (DATE), 2003.

[3] KW Tindell, A. Burns, and AJ Wellings. An extendible approach for analyzing
fixed priority hard real-time tasks. Real-Time Systems, 6(2):133–151, 1994.

[4] J.Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. Springer, 2001.

[5] S. Chakraborty and L. Thiele. A New Task Model for Streaming Applications
and Its Schedulability Analysis. In Proc. Design, Automation and Test in
Europe (DATE), 2005.

[6] Ernesto Wandeler. Modular Performance Analysis and Interface-based Design
of Embedded Systems. PhD thesis, Swiss Federal Institute of Technology, 2006.

[7] Kai Richter. Compositional Scheduling Analysis Using Standard Event Models.
PhD thesis, Technical University of Braunschweig, 2004.

[8] Simon Perathoner, Ernesto Wandeler, and Lothar Thiele et al. Influence of
different system abstractions on the performance analysis of distributed
real-time systems. Design Automation for Embedded Systems, 2008.

[9] Jonas Rox and Rolf Ernst. Construction and Deconstruction of Hierarchical
Event Streams with Multiple Hierarchical Layers. In Proc. 20th Euromicro
Conference On Real-Time Systems, 2008.

[10] S. Schliecker, M. Ivers, and R. Ernst. Memory Access Patterns for the Analysis
of MPSoCs. IEEE North-East Workshop on Systems, 2006.

[11] K. Albers, F. Bodmann, and F. Slomka. Hierarchical Event Streams and Event
Dependency Graphs: A New Computational Model for Embedded Real-Time
Systems. In Proc. 18th Euromicro Conference on Real-Time Systems, 2006.

[12] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The
Computer Journal, 29(5):390, 1986.

[13] J.C. Palencia and M.G. Harbour. Schedulability analysis for tasks with static
and dynamic offsets. In Proc. 19th IEEE Real-Time Systems Symposium, 1998.

[14] AK Mok and D. Chen. A multiframe model for real-time tasks. Software
Engineering, IEEE Transactions on, 23(10):635–645, 1997.

[15] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling Analysis of Real-Time
Systems with Precise Modeling of Cache Related Preemption Delay. In Proc.
17th Euromicro Conference on Real-Time Systems, 2005.

[16] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing Analysis of the FlexRay
Communication Protocol. In Proc. 18th EuroMicro Conference on Real-Time
Systems, Dresden, 2006.

[17] C. Li, R. Bettati, and W. Zhao. Response time analysis for distributed real-time
systems with bursty job arrivals. Proceedings of IEEE ICPP, 1998.

[18] Razvan Racu, Li Li, Rafik Henia, Arne Hamann, and Rolf Ernst. Improved
Response Time Analysis of Tasks Scheduled under Preemptive Round Robin.
Intl. Conf. on Hardware Software Codesign and System Synthesis, 2007.

[19] S. Schliecker, M. Ivers, and R. Ernst. Integrated analysis of communicating
tasks in MPSoCs. Intl. Conf. on Hardware Software Codesign and System
Synthesis (CODES), 2006.

