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Abstract. This paper introduces compositional performance analysis into evolv-
ing organic systems. It presents a layered distributed framework that can follow
the platform and system evolution, continuously monitoring the effect of changes
in the application on real-time constraints. For that purpose, an existing method-
ology based on iterative compositional performance analysis was adapted to a
distributed algorithm. A buffering strategy is introduced to improve the algorithm
convergence to the same order as the existing centralized offline algorithm. The
effects are demonstrated in experiments.

1 Introduction

Organic Computing [10] has recently emerged as a new challenge in computer science.
As ubiquitous and embedded computing systems become increasingly powerful, the
development paradigms shift from implementing the technically possible to building
robust and easily usable systems. Organic computing systems tackle this challenge by
introducing adaptation, learning and self-configuration into complex computer systems.
Initiatives as IBM’s Autonomic Computing Initiative [8] or Intel’s Proactive Computing
[14] show that this is not only an academic endeavour.

Real-time systems constitute a notable share of todays embedded computers that
needs special attention. The Design of robust and fault-tolerant real-time systems is
a highly active research area, that has produced numerous approaches for evaluating
and increasing system robustness against selected fault scenarios. Existing approaches
use offline sensitivity analysis to optimize for robustness, meaning low sensitivity [6].
These methodologies can be applied throughout the design process of an embedded
system and yield systems that are highly robust against a selected set of disturbances in
the field.

Future embedded systems however, will undergo an evolution in both hard- and
software configuration during their lifetime. In the automotive industry, it is already
common to update or add software components during the lifetime of a product, produc-
ing a variety of software configurations in the field. To ensure functional and temporal
correctness of all possible configurations, OEMs have to maintain a complex version-
ing database and perform exhaustive testing to cover the whole configuration landscape.
This already constitutes a problem today, which will grow into a major challenge in the
future. Designing embedded systems robust and fault-tolerant will not ultimately solve



this problem, as the evolution an embedded systems goes through during its lifetime
cannot be foreseen at design time.

Introducing self-*-properties into embedded system will enhance them by flexibil-
ity for future updates in hard- or software, thus enabling evolution during their lifetime.
Key properties of evolving (embedded) systems are the ability to assess its current sit-
uation (self-awareness) and to reconfigure themselves (self-configuration) in order to
adapt to new situations as may be implied by software updates. For hard real-time sys-
tems, the challenge of implementing self-configuration and adaptation is not only to
ensure functional, but also temporal correctness of a system.

This paper will introduce on a concise problem statement, highlighting the timing-
related problems and challenges caused by the evolution of embedded real-time sys-
tems. It will then present a control framework building on formal methods for perfor-
mance analysis capable of managing evolution while still ensuring temporal correctness
of a system utilizing established methodologies from literature. It will close with an ex-
perimental examination of a prototype implementation the formal analysis engine.

The remainder of this paper is organized as follows. In the next section, we will
introduce related work to then go into detail on the challenges to be addressed by our
approach. The fourth section discusses the architecture of a performance control frame-
work, where the fifth section goes into detail on the analysis methodology used by our
framework. Before we conclude the paper, experimental results are presented.

2 Related Work

Designing adaptive, self-organizing real-time systems touches two highly active fields
of current research. For once, we need to consider current development in the field of
adaptive and fault-tolerant system design, but we also need to have a closer look into
research concerning the analysis of timing properties of a given real-time system.

Currently, fault-tolerant and resilient systems are built by introducing explicit re-
dundancy on a per computer level, such as TMR in avionics.

Later research has introduced redundancy not on a per computer, but on a per task
level. The RecoNets project [7] has designed a prototype system consisting of multiple
microcontrollers running a driver assistance application. It can survive failure of one
or more board, since each task is shadowed on another microcontroller. Checkpointing
techniques allow to seamlessly migrate execution of tasks from one microcontroller
to another in case a failure is detected. This approach, however does not take global
system timing issues into account when spawning shadow tasks at different points in
the system.

Recently, also design of robust and fault tolerant systems taking into account timing
properties has been tackled. In the AiS project [5] for example, common fault scenar-
ios are identified and analysed for their possible impact on system performance. For
selected scenarios, compensation mechanisms are implemented in the system, making
it robust against these faults.

In the context of the “Organic Computing” priority program of the German DFG
[10], many projects aim at building adaptive and self-configuring systems. This is usu-
ally achieved by extending the system by a control loop that observes the current sys-



tem state, evaluates it and performs control operations based on a knowledge base that
may be constructed using reinforcement learning techniques such as Learning Classifier
Systems [1]. These architectures are referred to as Observer/Controller Architectures; a
general discussion of which can be found in [4].

In addition to current research in fault-tolerant and resilient systems, research in
formal performance analysis of real-time systems has to be considered. In the past
years, several approaches to system level timing analysis have been proposed by dif-
ferent research groups (i.e. [11, 2, 15, 12]). System level timing analysis requires task-
level worst-case execution times as input data. Recent research has produced formal
approaches to derive these from a given task description [16].

For the purpose of this paper, we can divide the approaches to system level perfor-
mance analysis in two classes. Holistic approaches that try to use as much information
as possible in order to perform a tight analysis of the real-time behaviour of a given
system and compositional approaches that are capable of making abstractions at inter-
mediate analysis steps.

The first class of techniques yields tightly bounded results on the timing properties
of a given system at the prize of high computational complexity. Current approaches
use different semantics to describe their systems ranging from dataflow graphs [11] to
timed automata [9].

The second class, like the approaches proposed in [15] or [12] trade analysis accu-
racy for computational complexity. Here, local analysis techniques are composed using
load descriptions of intermediate event streams.

Dynamic scheduling algorithms (i.e. [3]) adapt the scheduling parameters to a change
in load conditions. Global schedulers can cover several processors, but only following
a coherent homogeneous scheduling approach. In this sense, they are comparable to
holistic analysis approaches. Global scheduling algorithms also do not easily adapt to
changing hardware topologies and timing constraint types. Furthermore, they do not
take system properties such as end-to-end latencies into account.

3 Problem formulation

For the means of this paper, we focus on loosely coupled distributed real-time systems
as can be found i.e. in cars. A real-time system can generally be described as a set of
processing units (processor, PU) interconnected by busses, onto which a set of timing
constrained applications is mapped. On each processor, a scheduling policy is applied,
if multiple tasks are mapped onto it.

In order to give a precise problem formulation, we will first present a terminology.
We consider a set of processors interconnected by buses (or other communication

channels) the system architecture or (hardware) platform. Onto this platform, a set of
applications is to be executed, each consisting of a set of tasks, whose relationships are
defined by a task graph. Furthermore, applications may be temporally constrained. In
this case, we speak of real-time applications. We consider an architecture together with
a set of (real-time) applications a (real-time) system. In order to completely describe
running real-time systems, a set of design parameters, such as task mappings, schedul-
ing parameters (i.e. priorities), or clock rates also need to be defined. We consider a



real-time system together with a complete set of parameters a system configuration. A
given configuration has a set of properties, such as application end-to-end latencies.
Note that in each design stage, a different set of system parameters is available to the
designer. These will be referred to as available parameters. For the sake of simplicity,
we will use the term parameter equivalent to available parameter and account the pa-
rameters that are not available in the current design step to the set of properties. We
consider a given system configuration feasible, if all applications adhere to their timing
constraints.

The challenge addressed in this paper is to find a methodology for designing adap-
tive systems that not only ensure functional correctness, but also adhere to system-wide
temporal constraints such as end-to-end latencies. With respect to the terminology in-
troduced above, this means finding a methodology that enables a system to verify that
its current configuration is feasible, protect itself against transitions into infeasible con-
figurations and ultimately to reconfigure itself to reenter a feasible state. To achieve
the latter, the system must perform self-optimization using available parameters during
run-time. For our purposes, we assume scheduling parameters, such as priorization or
execution sequences to be available as is the case in most real-time kernels. Other pa-
rameters, such as task mapping can also be made available by implementing adequate
techniques from literature.

From the problem statement, one can deduce the necessary components of such a
framework. One needs a feasibility evaluator for a given system configuration, a sensor
component, that monitors the current system properties to be fed into the feasibility
evaluator, an optimization component in order to generate alternate configurations, as
well as an actuator component, that transitions the system from one configuration into
another. Furthermore, a framework for the interactions of these components must be
put into place.

The feasibility evaluator is the key component in the setup outlined above. It is
desirable to use an evaluator, that can not only decide on feasibility, but is also able to
compute fitness values for a given system configuration, so that it can also be used by
the optimization component.

Furthermore, since we are targeting hard real-time systems and want to give guar-
antees on real-time performance, the evaluator must use a formal approach to com-
puting the current system properties. As stated in the related work section, current ap-
proaches solve this problem in diverse ways. In distributed organic real-time systems,
non-centralized solutions to fitness evaluation of a current system configuration that
adapt to the system’s evolution are preferred over centralized ones, that introduce sin-
gle points of failure. Thus, only distributable approaches to performance verification
are considered for a suitable fitness evaluator.

The next sections will go into detail on the feasibility evaluator and give a closer
description of a framework capable of online performance control of an evolving real-
time system.



4 Performance Control Framework

We chose the methodology described in [12] as a driving technology for the evaluator
for several reasons. The compositional approach is strongly decoupled by efficiently pa-
rameterized event models and a distributed analysis algorithm following the approach
has already been presented in [13]. Furthermore, the computational load implied by
the analysis engine can easily be scaled by applying more or less sophisticated local
scheduling analysis techniques. For static priority scheduling this could mean taking
inter-event-correlations into account or simply performing a context-blind schedulabil-
ity analysis. Both approaches yield conservative results for local worst-case response
times, but with different accuracy. This opens the possibility to trade analysis accuracy
for computational load.

In order to build a system model compliant with the analysis approach, for each task,
a worst-case execution time, the activation scheme described by a standard event model
([12]), its communication partners, as well as the maximum communication volume
with each partner must be known. The same is true for scheduling policies on each
shared resource. We assume that these values are annotated to the task set, although
we do not go into detail on how these values are found. Possibilities range from formal
analysis [16], to extensive offline simulation and tracing. These methods are already
successfully applied for design-time system timing analysis by early adaptors of formal
methods e.g. in the automotive industry. In case of real-time constrained applications,
we assume that the applicable constraints are also annotated to the task set.

In order to enable adaptation in evolving real time systems, the feasibility evaluator
must be embedded in a framework for online real-time control. We divide the struc-
ture of the control framework into three major parts, an observer, a controller and an
analysis layer (see figure 1). The actual real-time systems is depicted as SuOC - the
“System under Observation and Control” [4]. An Observer continuously monitors the
systems behaviour to build and maintain an analysable model of the current config-
uration ("monitor component"). This model is analysed by the formal analysis layer.
The results of the analysis are in turn used by a Controller to monitor whether the sys-
tem complies with all temporal constraints. Thus, the analysis engine, together with
part of the Controller form the “feasibility evaluator". For continuous self-optimization,
the controller can use the analysis layer to perform optimizations based on the current
system model. If optimization results in a new (better) configuration, it is also the Con-
trollers task to inject the new configuration into the system ("actuator component").

Using this framework, one can implement self-awareness and self-protection with
respect to timing properties of the current system configuration in an embedded system.
Self-awareness is achieved by maintaining a formally analysed model of the system at
all times, which can also be used to perform what-if analysis before admitting new
applications into the system resulting in self-protecting properties of the embedded sys-
tem. The next paragraphs elaborate on these concepts.

From the annotated information of each application, partial models corresponding
to the task set running on the local processor are generated by local observer instances.
As the key metrics needed for building the model are annotated to the task set, the
main challenge in generating a complete, distributed model is establishing connectiv-
ity between the partial models as well as synthesizing models for the communication



Fig. 1. Framework Architecture

infrastructure from the distributed information about communication partners and vol-
umes.

Before an application is accepted to be mapped on the platform, the current system
model is extended by the application and tested for feasibility. If no constraints are vio-
lated in the model, the application may execute and is guaranteed to meet its constraints,
as long as no application in the system violates its timing properties as annotated. We
consider this construct a service contract between the system and the applications. This
construct ensures that the system will only transition from one provenly save config-
uration into the next provenly save configuration, thus introducing self-protection into
evolving real-time systems.

To ensure compliance with the service contracts, we propose to implement local
watchdogs monitoring execution times and communication volumes as well as activa-
tion frequencies. The observed values will continuously be compared with the infor-
mation forming the service contracts of the individual applications. In case a violation
of a service contract of an application is detected, a controller is notified, in order to
take immediate action. Possibilities range from shaping the load implied by the appli-
cation to the load defined in the service contract (thus achieving isolation from the other
applications), to stopping the application.

At the same time, the current system model is updated to reflect the newly observed
configuration. If the resulting system still complies with all given constraints, the appli-
cation may be readmitted into the system with an adapted service contract. Otherwise,
optimization algorithms may be used to find a feasible configuration.

As violations of service contracts may not only be caused by faulty application
annotations, but also by component failures or degradation, the above techniques also
constitute a self-healing technique efficiently using slack present in the system to cope
with component faults and failures. The efficiency of this technique directly scales with
the power of the system optimization algorithms put into place.

Figure 2 shows a more detailed view on the architecture of the performance con-
trol framework. Distributed observer instances generate partial models of their local
environment that are communicated to local analysis engines. These engines, in turn
cooperate to perform a distributed system-wide performance analysis of the currently



observed system configuration as described in [13]. Clearly, actuator components also
need to be distributed over the whole system, in order to efficiently perform system
configuration transitions, thus, the controller must also be implemented distributedly.
The cooperating observers, controllers and analysis engines form a global performance
control plane.

Fig. 2. Control Framework

5 Analysis Methodology

We use the analysis technique proposed by Richter et al [12] to form the global analysis
and evaluator plane. A general approach to distributed performance analysis using this
technique has been proposed in [13]. As this approach is discussed in the experimental
section, we give a short overview on the approach to distributed performance analysis
in the next paragraphs. First, the SymTA/S approach is introduced shortly, then the
extensions for distributed computation are outlined.

The compositional performance analysis methodology used for this project, solves
the global system-level performance verification problem by decomposing the system
into independently investigated components.

Each Processor or Bus is modeled as a component (computation, communication
resource) that may contain tasks. The possible I/O timing between the tasks (event
streams) is captured with event models that can efficiently be described by a small set
of parameters.

Input event models capture event patterns leading to task activations. These are used
to perform a local scheduling analysis of a resource to derive the local response times
as well as output event models.



Fig. 3. Analysis Loop

These output event models are propagated to subsequent resources where they are
used, in turn, as input event models. In setups with cyclic dependencies the assumed
event streams become increasingly more generic. This procedure either converges (and
provides a conservative estimation of system properties such as jitter and latencies
which can be checked against given constraints), or the system’s schedulability can
not be guaranteed. Figure 5 shows the structure of the analysis loop as implemented in
the tool.

The analysis of a SymTA/S model can easily be distributed over multiple analy-
sis engines, as local scheduling analysis runs are strongly decoupled by event streams.
A method to connect partial models managed by multiple analysis engines has been
proposed in [13]. Here, it is proposed to tunnel event stream information between mul-
tiple analysis engines using existing communication infrastructure. Distributed analysis
control performs a local scheduling analysis on a resource as soon as an input event
stream changes. As a major advantage, this scheme is naturally adapted to the underly-
ing platform topology and can follow its evolution, as communication with other analy-
sis engines is only necessary, if mapped applications communicate over an existing link.
Thus, if communication between analysis engines is necessary, suitable infrastructure
must be present.

6 Experimental Study

In this section, we take a closer look at the expected computational load an embedded
SymTA/S analysis engine will impose on an embedded system. To do this, we imple-
mented the distributed control algorithm as proposed in [13] by extending the offline



tool. Performing schedulability analysis is the compute intensive part of the iteration
loop. Thus, the load imposed by an analysis engine scales with the number of schedula-
bility analysis runs needed to analyse a given system and the load imposed by a single
schedulability analysis run. Here, we want to assess the quality of distributed algorithm
steering the iteration. As a quality measure for a given analysis control algorithm, we
propose the convergence speed of the system wide performance analysis, as measured
by the number of schedulability analysis runs needed to analyse the properties of this
system. We consider a control algorithm optimal for a given problem, if it solves the
global fix-point iteration with a minimal number of schedulability analysis runs. This
also implies that an optimal control algorithm imposes the minimal load for a given
system and schedulability analysis algorithm implementation.

For testing, we used an in-house system generator tool to generate analysable sys-
tem models. The generated systems contain a configurable amount of connected tasks
an resources. For testing purposes, we generated systems, scaling them in the number
of tasks, resources and length of task chains. To benchmark the distributed analysis
control mechanism, we analysed these systems using the distributed approach as well
as the centralized approach implemented in the tool. We assume that the centralized
approach performs close to optimal.

Fig. 4. Performance naive algorithm



The result of a first test can be seen in figure 4. It shows the number of schedulability
analysis runs needed for a complete system analysis over increasing system size. The
upper point cloud shows the performance of the naive algorithm as proposed in [13],
the lower one shows the performance of the offline algorithm as implemented in the
tool SymTA/S.

(a) naiv setup (b) insert buffers

Fig. 5. Chained System

The distributed approach shows weak performance w.r.t. schedulability analysis
runs needed to analyse big systems. A closer look at possible causes reveals a sys-
tem configuration that requires an exponentially growing number of schedulability runs
to be analysed if using the distributed performance analysis control algorithm, where
theoretically a linear relationship suffices: Suppose a system consisting of a series of
resources that host a number of independent task chains as depicted in figure 5(a). The
system can be scaled in two dimensions - the number of resources and the number
of parallel task chains. The minimum number of schedulability analysis runs that is
needed scales linearly with the number of resources in the system, as each resource
only needs to be analysed once (from left to right). Increasing the number of parallel
chains does not have any effect on the number of schedulability analysis runs needed.
The proposed distributed algorithm, however shows in part exponential behaviour with
increasing number of parallel task chains (see figure 6), since each scheduling analysis
on a resource recalculates the output event models of all n tasks on it, and thus poten-
tially triggers renewed analysis on the succeeding resource n times, where one analysis
run would be sufficient.

A solution to this problem is to introduce buffers between successing resources
as shown in figure 5(b) that collect the changes of incoming event streams resulting
from one schedulability analysis on a preceeding resource and release them in as on
event reducing the number of reanalysis events for the succeeding resource to one. This
approach reduces the number of analysis runs needed to the theoretical minimum for
this class of systems.

We implemented the buffering scheme in our offline prototype and redid the exper-
iments outlined above. The results as shown in figure 7 show that this improvement to
the distributed analysis control already yields convergence speeds comparable to those
of the offline tool for the class of systems produced by our system generator. Inter-
estingly, the distributed control algorithm sometimes even outperforms the centralized
algorithm. This is due to the fact that the centralized algorithm does not exploit all
knowledge about the system model to precompute an optimal sequence of schedula-



Fig. 6. Performance in number of analysis runs

bility analysis runs. This would imply computing a topological sort on the resource
graph. Thus the distributed algorithm can outperform the centralized one, if the acti-
vation scheme coincidentally follows a topological sort of the graph. The fact that the
experiments contained many of these cases may be due to the regular structure of the
generated system models.

Further improvements to both, the offline and the distributed control algorithms can
be made by first performing a topological sort of the resources in the system model, that
can be used to determine an order of local scheduling analysis runs, yielding an optimal
control algorithm.

7 Conclusion

In this paper, we introduced a framework that enables the implementation of organic
real-time systems. It is sensitive to changes in the hardware architecture as well as
software configuration of the system.

It is based on a layered architecture of observers and controllers and a distributed
analysis layer that evaluates the local analysis results and event model parameters. Ex-
periments with a prototype implementation of the analysis methodology to be used have
shown, that the computational load implied remains small.

The presented approach is suitable for implementing evolving hard real-time that
are capable of self-protection against transitions into non-feasible system states w.r.t.
timing properties.
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