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Abstract

Compositional Scheduling Analysis couples local
scheduling analysis via event streams. While local analysis
has successfully been extended to include hierarchical
scheduling strategies, event streams are still flat. In this
paper, we formally define hierarchical event streams, which
cannot only be constructed from flat event streams, but also
from hierarchical streams allowing event streams with mul-
tiple hierarchical layers. We define an hierarchical event
model and the operations to construct and deconstruct hi-
erarchical events streams. Finally, we demonstrate how the
model can be integrated in an existing analysis approach
for distributed systems, enabling superior analysis results.

1. Introduction

System and communication platform integration is a
major challenge and systematic analysis of the complex
dynamic timing effects (scheduling, arbitration, blocking,
buffering) becomes key to building safe and reliable sys-
tems. During system design, a system model is de-
veloped, that captures information about the applications
and the available hardware architecture of the system, de-
fines the mapping of tasks to computation or communica-
tion resources and specifies the scheduling and arbitration
schemes used on these resources. Additionally, an envi-
ronmental model that describes how a system is being used
(e.g. how often will events arrive, activating the system) is
needed also.

To give worst case guarantees for the timing behaviour
of a distributed system, different compositional approaches
for system level performance analysis have been developed

The research described was supported by the German Government
(BMBF) as part of the SuReal-Project

1068-3070/08 $25.00 © 2008 IEEE
DOI 10.1109/ECRTS.2008.13

201

[6][10]. Common to the different compositional approaches
is that they use local analysis techniques for analysing the
individual components, which are interconnected via event
streams, where the output event stream of one task turns
into the input event stream of connected tasks. Global sys-
tem analysis, then iterates between local component analy-
sis and output stream calculation. More precisely, in each
global iteration of the compositional system level analysis,
local analysis is performed for each component to derive re-
sponse times and the timing of output event streams. After-
wards, the calculated output event streams are propagated
to the connected components, where they are used as in-
put event streams for the subsequent global iteration. The
different approaches, not only use different analysis tech-
niques at the local component level, they also use different
models to describe the event streams.

While local analysis has successfully been extended
to include hierarchical scheduling strategies [7][9], event
streams are still flat. A recent proposal [1] introduces event
hierarchies in a stream, which enable to model streams with
complex event arrival patterns. But the proposed model still
describes only a flat event stream. But when event streams
are combined, e.g. when a task is activated by multiple
event streams or when a communication channel is shared
by different tasks, the existing models cannot capture the re-
lations between the different layers of the combined stream.

Observe the small example configuration shown in Fig-
ure 1 which may be part of a greater system. The tasks
T1 and T2 are both activated by multiple input streams. If
we assume that different activating events also produce dif-
ferent output events, not only their input streams contain
events from different sources, but also the events of their
output streams can be related to the different input streams.
Since in the illustrated example, both tasks share a com-
munication channel to communicate their results to another
resource, their output streams are again combined. Hence,
the events of the input stream of the communication task
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Figure 1. A motivational example system

CO0 modeling the bus communication, contains events out-
putted by T1 and T2, which in turn can be related to the
different input events of the tasks T1 and T2. Consider that
T3 is only activated by those output events of CO gener-
ated due to an activating event coming from T1 while T4
is only activated by those output events of CO that are gen-
erated due to activating event from T2(as indicated by the
small labels). Since existing event models cannot capture
such inner relations of combined event streams, if used in
the above example, it can only be conservatively assumed
that the tasks T3 and T4 are activated on each completion
of the communication task CO and that on each completion
of these tasks, an event is generated on each output.

This paper presents the following contributions:

e We define hierarchical event streams and an appropri-
ate model to capture such streams consisting of multi-
ple layers of embedded event streams.

e We present how hierarchical event models can be
applied to model AND- and OR-combined event
streams, conserving the inner relations of the com-
bined streams. We then use these relations to deter-
mine how the inner streams are affected when the tim-
ing of a stream at a higher layer is changed.

e We integrate the proposed model into an existing sys-
tem analysis tool and show the improvements that can
be obtained when exploiting the captured inner stream
relations.

The remainder of this paper is structured as follows.
First, we will review related work (Section 2). We then
give formal definitions of the existing general system mod-
els used for distributed system analysis and its elements, in-
troduce stream hierarchies, and define a hierarchical event
model to capture these stream hierarchies (Section 3). In
Section 4 we introduce the used analysis frame work and
in Section 5 we present how the hierarchical event models
for the existing activation semantics can be constructed and
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how these hierarchical event models can be deconstructed.
Finally, we use the new event model for analysing the in-
troduced example systems to proof its applicability and to
demonstrate its benefits (Section 6) before we draw conclu-
sions (Section 7).

2. Related Work

The analysis framework presented by Richter [6] de-
fines four characteristic functions 17 (Ar),n~(At), 8 (n)
and 87 (n) to describe event streams. The first two func-
tions bound the number of events that can occur in a given
time interval of size At and the last two functions bound the
distance between n events. At the component level, formal
analysis techniques based on the busy window technique
proposed by Lehoczky [5] are used. Standard event models,
consisting of the three parameters period (P), jitter (J) and
minimum distance (d,,;,,), are used as parameterized repre-
sentation of the four characteristic functions. They enable
a very efficient computation of the four characteristic func-
tions and also of the output event models, but can lack in
precision when it comes to approximating arbitrary event
streams .

The compositional approach presented by Thiele et. al.
[10] uses numerical upper and lower event arrival curves
for describing load generated by event streams, and simi-
lar service curves for execution modeling. Based on [2],
not only new scheduling analysis algorithms for the local
components, but also the corresponding output stream cal-
culations, were developed. As parameterized representa-
tion, Thiele et. al. propose a Piecewise Linear Approxima-
tion [9] consisting of a combination of two line segments to
approximate all arrival and service curves.

There exist some other event models used for describ-
ing the timing of event streams. In [3] Gresser introduced
so called event vectors and defined how a demand bound
function (DBF) that models the load a task produces on a
resource can be calculated with the event model. The event
model was extended in [1] to a hierarchical event model,
that can accurately describe the timing of complex hierar-
chical structured event patterns of a single stream. A finite
inner event sequence described by one or several event vec-
tors can be embedded into another outer event sequence.
An event of the outer sequence doesn’t stand for a single
event, but for the entire inner event sequence. This allows a
more accurate description of the DBF, provided that enough
information is available to actually determine the specific
parameters.

To handle tasks with multiple input streams, the afore-
mentioned analysis frameworks map the input event streams
on one event stream, according to the activation semantic
of the task. The resulting event stream is than used as in-
put stream of the task [4][11]. Since the resulting event
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stream doesn’t contain any information about the individ-
ual event streams that were combined, it is not possible to
reverse the combination later. But this is exactly what is
needed to enable the analysis of system setups like depicted
in Figure 1 where different tasks share the same communi-
cation channel. For analysis of the communication timing,
only the event stream describing the channel activation tim-
ing is of interest, which can be calculated by an appropri-
ate combination of the output streams of the sending tasks.
But for the receiving tasks, the previously combined event
streams must be extracted, incorporating scheduling effects
the communication channel experiences, which cannot be
done with the existing event models.

3. General System Model

For performance analysis, a distributed system is mod-
eled as event streams, interconnected by operations. All
possible event sequences that could be observed at the in-
put of a task, are modeled by an event stream. An event
stream is modeled by a tuple of functions F = (fi,.., fy),
which bound the timing behaviour of the modeled event se-
quences.

Definition 1. Event Model
An event model defines the event stream functions Fgyy.

Stream operations model the processing of event
streams, defining a function that maps all input streams to
an output stream. This function is evaluated in each global
iteration step of the system analysis, after the local compo-
nent analysis is completed.

Definition 2. Stream Operation
A stream operation ®,, defines a function

T,p: F" — F"

that delivers the corresponding function tuples of the m out-
put event streams depending on the function tuples of the n
input streams.

Tasks activated by multiple event streams are decom-
posed in two operations [4][11]: the first is an event stream
constructor (SC), which combines the input stream accord-
ing to the activation semantic and calculates one output
stream that becomes the input stream of the second op-
eration, which models the actual processing of the event
streams due to the task.

Figure 2 shows a small part of a system and the corre-
sponding model used for performance analysis, consisting
of operations and event streams.

Since the output event stream ES7; of the tasks T1 is
modeled by a single function tuple Frj, it contains no in-
formation about the timing of the combined event streams,
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Figure 2. A simple example system (a) and
the corresponding abstract system model (b)

which is needed to be able to decombine the event streams
later.

Therefore we extend the system model by hierarchi-
cal event streams (HES), hierarchical stream constructors
(HSC) and hierarchical event stream deconstructors. The
idea is, that a hierarchical event stream has one outer rep-
resentation in form of an event stream ES,,, and for each
combined event stream ES;, ; it defines an event stream ES;
bounding the event occurrences of events that are related to
ESipi.

Definition 3. Hierarchical Event Stream

A hierarchical event stream ES), is the result of the com-
bination of n input event streams ES, 1,..,ESiy, and has
one outer event stream ES,,, defined by a function tuple
Four = (f1,-.,fn) and n inner event streams, each defined by
its own function tuple F; = (f1,.., fi).

To model a hierarchical event stream, we define a hierar-
chical event model:

Definition 4. Hierarchical Event Model
A hierarchical event model defines a parameter tuple H:

H= {(FoutvLaCQ) |Foul = (f]"'afn)7
L= (Fla"aFn)a

Ca = (BY,...BY)}

Four = (f1,.., fu) models the outer event stream.

L= (F,..,F,) is a List of function tuples modeling the inner
streams.

The functions (BY,..,Bf) € Cq define how the inner event
streams are affected when the outer event stream changes.

Definition 5. Hierarchical Stream Constructor

A hierarchical stream constructor  combines two or more
event streams ES1,..,ES, resulting in an hierarchical event
stream ESy,. Formally:

HSCqo:F"—H
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Figure 3. Relations between event streams of
the hierarchical input stream of the commu-
nication task C0O from the introductional ex-
ample

Figure 3 shows the hierarchical input event stream of
the channel CO of the motivational example and illustrates
the relations between the different streams of the HES. The
event stream EScp, that serves as input for the channel CO,
depends on the event streams ES, and ES} as defined by
the function HSCq. ES, and ES}, not only depend on their
inner streams ESp - ES4, but also on EScp. Every time an
operation ®,,, is applied on EScy, the function Bizp defines
how ES, respectively ES; are affected. This in turn will
affect the inner streams of ES, and ES; accordingly. As
depicted in Figure 3, the outer event stream representation
of an hierarchical event stream is used to combine the hi-
erarchical stream with other event streams, forming deeper
event stream hierarchies.

For extracting the inner event streams of a hierarchical
event stream, we define a deconstructor.

Definition 6. Hierarchical Event Stream Deconstructor

A hierarchical event stream deconstructor ¥, takes a hier-
archical event model EM), as input and returns the updated
inner event models EM;, modeling the individual streams,
as output:

Dy :H—F"

4. Event Streams and Event Stream Propaga-
tion

Before we define the concrete HSCs for AND-
combining and OR-combining event streams, we will
shortly review the basic concepts of the used system analy-
sis and introduce our notation.

Similar to the framework presented by Richter [6] we use
traditional analysis techniques at the local component level.
This requires the event streams to be defined by the four
characteristic functions N+ (Ar),n~(At),8 (n) and & (n).
Note that 7 (Ar) and 1~ (Ar) can be directly derived from
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6~ (n) and 67 (n):
W (61) = max [{n] 8 (n) < A U1

0~ (&) = min{n | 6" (n+2) > At}
neNy

(1
2

Hence, in the following we will use F = (6~ (n), 8T (n))
We assume FIFO-buffers at the input of a task, and in-
order processing of events by the tasks. Based on the
worst case response time R™*" and best case response time
R™" obtained from the local scheduling analysis, the out-
put stream calculation used to determine the output stream
of analysed tasks can be modeled by an operation that de-
fines a function T;, which calculates the function tuple F;
modeling the output stream in the following way:

Fe= (55 (n).5 () |
8; (n) = max{3g,, (n) — (R™ — R™™),
o; (n—1)+R™},  (3)
87 (n) = {8 (n) + (R™™ — R™") ) @

In Equations 3 and 4 two different changes are applied to
the timing of the event stream: First, the interval in which
each event can occur is increased by (R — R™"), decreas-
ing the minimum distance and increasing the maximum dis-
tance by the same amount. Second, a minimum inter arrival
time of R™" between subsequent events is set, possibly in-
creasing the distance between events. These changes obvi-
ously go in opposite directions. To separate these two steps
we define a function for each one. The function ¥(ES, j)
decreases (increases) the minimum (maximum) distance be-
tween events of the event streams ES by j:

Definition 7. ¥ (ES, j)

Consider an event stream ES;, defined by F,, =
(6;,(n), 8, (n)). The function O(ESiy, j) calculates the out-
put model ESy defined by Fy in the following way:

Fy = ((85 (n),85 (n)) |
04 (n) = max{dg,, (n) — j,0},
8y (n) =8, (n)+j)

The function 6(ES,d) increases the minimum inter ar-
rival time of two subsequent events of the event stream ES
tod.

Definition 8. ¢(ES,d)

Consider an event stream ES;, defined by Fy, =
(6;,(n), 8,5 (n)). The function o(ESi,d) calculates the out-
put model ESs defined by Fy in the following way:

Fo = ((85 (n),85 (n)) |
0y (n) = max{9g,, (n),d, (n—1)+d},
85 (1) = 8, (n) )
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Figure 4 illustrates the effects these two operations have,
when applied to an event stream.
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Figure 4. The §-function modeling an event
stream ES; (a), the oJ-function modeling
the event stream ESy; = 9(ES;,,J) (b) the 5-
function modeling the event stream ES; =
o (ESin,d) (C)

As can be seen in Figure 4b, applying the function
O(ES;y,J) shifts down the entire function 6~ (n) by J for
all values of n. The function 6(ES;,,d) shifts up the func-
tion 6~ (n) by d only for specific values of n, as depicted
in Figure 4c. Essentially, 6(ES,d) returns the same output
stream as a sporadic shaper like defined in [6].

We can now also calculate the output stream ES,,; of an
analysed task 7 by using these two functions.

Definition 9. Stream Operation ©;

The stream operation O that calculates the output stream

of an analysed task defines the function T; as follows:
T:(ESin) = 6(O(ESin, j),d) ®)

Where j = R™* — R™" d = R™" and ES;, the input stream

of task .

To be able to apply Equations 3 and 4 to output stream
calculation, tasks may only have one input stream. In [4]
two different activation semantics for tasks with multiple
inputs were defined: AND-activation and OR-activation. In
the following section we define corresponding HSCs and
how the resulting HES can be deconstructed again.
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5. Construction and Deconstruction of Hierar-
chical Event Streams

5.1. OR-Construction

First we define how the output stream of an OR-SC can
be calculated.

Theorem 1. An OR-SC combining m event streams to cal-
culate the activating input stream of an OR-activated task,
defines the function tuple F,, modeling its output stream:

For =((8,,(n),8,,(n)) |

_ _ 0: n<m
Oor(n) = {min{maxzki_nwf (ki)]}:
67 (i +2)]})

n>m
Sh(n) = max{Zkr[nzil?_2
!

with 8; (1)=0

Proof. We start with n < m: When we OR-combine m in-
dependent event streams, at least m events can occur simul-
taneously, one from each of the combined event streams.
Hence the distance between the first m events is 0.

If n > m: To determine J,,(n) we search for the small-
est time interval Ar~ in which a total number of n =
Y N7 (Ar7) events can occur. We call K = (ki,..k,) with
k; € N the contribution vector, that determines the number
of events each event stream contributes to the total number
n. Only contribution vectors with )./ | k; = n are of interest.
Hence, for a given contribution vector K,

max [8, (k)], with 8 (1) =0 ©6)

Zk,-:n

gives the size of the time interval in which at least n events
can occur. By evaluating Equation 6 for each possible con-
tribution vectors and by taking the minimum of all, the
searched minimum distance is obtained.

To determine §.(n), we search for the largest open time
interval Ar™ in which at least n — 2 events must occur.
Hence, we use a contribution vector K = (ki,..ky,) with
ki € Ng and Y/ | k; = n—2. Since each open interval of
size 8,7 (k;) contains at least k; — 2 events of event stream
ES;,

. + .
g min (8" (ki +2)]

(N
gives the size of the time interval Ar* in which at most n
events can occur according to the chosen contribution vec-
tor. Taking the maximum of all possible intervals of all pos-
sible contribution vectors leads to the searched maximum
distance. O
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Next, we must determine, how the inner streams can be
defined. Observe the event sequences depicted in Figure
5. We denote esl‘Y the event sequence [e], ez, e3,...] =es; €
ES;, where the distance between the event e; and ey, is given
by 8 (k). Figure 5 shows the two event sequences esd €
ES, and es‘Zi € ESj, in the upper part. In the lower part, the

event sequence esf; € ESyr = Qor(ESy, ESp) is depicted.
As can be seen, the distance between events belonging to
one of the event sequences in the resulting event sequence
esg; remains the same as in the individual streams. E.g. the
distance between 2 events that belong to the event sequence
es? equals 8, (2) in both streams.

Since in general, the or-combination of several event
streams doesn’t change the timing of the event streams that
are combined, we can define the inner streams in the fol-

lowing way:

F=((8 (n),6; (n)) |
6 (n) = 8;;,(n)
6i+(”) = 512;(”) )

Now we must define how the inner event streams change,

esff )2 } )
st | L |
es. 1 |l I Iy

Figure 5. OR-combination of two event se-
quences

when an operation is applied to the outer event stream.
For output model calculation of a task, we must consider
the two operations: ¥ and o. Accordingly, we define
a function BY (ES;, j) that is applied on each inner event
stream when an operation ¥ (ES,y,j) is applied on the
outer stream and a function BY (ES;,d) which is applied
on each inner event stream when an operation 6(ES,,;,d)
is applied on the outer stream. Figure 6 illustrates the event
sequence esf{ € ESy resulting from applying the operation
O (ES,,J) on the or-combined event stream from Figure 5.
As can be seen, the distance between the event ¢; € esf{ to
all other events decreased by J. Obviously, the minimum
distance between events that are either related to the event
sequence es57 or es?  also decreased by J. Similar con-

siderations lead to an increase in the maximum distance of
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Figure 6. the event sequence es®  and the
event sequence es), after applying ¥

events that are either related to the event streams ES, or
ES), by J, if the operation ¥ (ES,,J) is applied on the outer
stream. Hence, we define BY (ES;, j) in the following way:

Definition 10. Inner Update Function BY (ES;, j)

When an operation ¥(ESou,J) = ES,,, is applied on the
outer event stream, the inner update function By (ES;,J) =
ES} is applied on each inner event stream.

ES. =By (ES;,J) = O(ES;,J)

Let us now consider, that we apply the operation
6(ESy,d) on the event stream ESy. Figure 7 shows the

event sequence es?; € ESyp and the resulting output se-
quence es‘éf € ESs , according to ;.
;
esy H I b
5 ??7 ba ba a b t
est WL 1
d d
event # 12 3 4 56 7 8

Figure 7. the event sequence es) and the

event sequence es5 after applying ¢

As can be seen, the distance between the event e; to the
following events decreased by d. An Exception is event e,
which in the illustrated example also suffers a delay caused
by the new minimum inter arrival time. Remember that the
depicted event sequence esf{ € ESy is only one possible
event sequence among many others that are contained in
ESy. There might be an event sequence es € ESy, where
the event es € es?{ arrives later than the event eg € esgf.
Then, the event labeled eg in Figure 7 wouldn’t be delayed
and the minimum distance between events that are related

to the event stream E S, just decreases by d.
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So, to obtain the new minimum distance 51-/ ~ between
n events that are related to a specific event stream ES; in
general, we assume the maximum possible delay D™* for
the first event and no delay for the nth event. This leads to:

!/

6 (n)=

; max{J; (n) —D"*,0} ()
. . . /

To obtain the new maximum distance 51.+ between n events

that are related to a specific event stream ES;, we assume

the maximum possible delay D™ for the nth event of the

sequence defined by 8, () and no delay for the first event:

/

5i+(”)

The maximum delay D™*** an event can suffer, when an op-
eration o (ES;,d) = ESyy is applied on the event stream
ES;, is given by:

_ 6i+ (l’l) +Dmax (9)

Theorem 2.

D"t = max{ out( ) 61;(1)70} (10)
Proof. See delay calculation for a sporadic shaper as de-

fined in [6]. O

After using Equations 8 and 9 to modify the inner
streams, we have to account for the new minimum distance.
We can do this by applying an operator ¢ on the resulting
stream. This leads to the following definition of the function
BY(ES;,d):

Definition 11. Inner Update Function BY (ES;,d)

When an operation 6(ESyy,d) = ES,,,, is applied on the
outer event stream, the inner update function BY (ES;,d) =
ES] is applied on each inner event stream.

ES.=BY (ES;,d) = 6(S(ES;,D"™),d) (11)
We now define the HSC Q,, as follows:

Definition 12. Q,,
The HSC Q,, defines the function HSC,,:

HSCor( in,1y- ,Enn) = ((FOMZ7L C) |

s = (B0 1) 85y () | 83y (r) = min (5 (1)}
6 (1) = max{_min (5 (ki +2)]}),
L= ((FioF) | F = (3 (n).5 (n))|
8 (1) =8, (n)
5+ (m) =5;,()
Cor = (B B) | BY (ES,7) =D(ES; )
By (ESi,d) =0(3(ES, D"),d) )
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5.2. AND-Construction of Event Streams

An event stream constructor combining m event streams
ESy,..,ES,, to calculate the activating input stream of an
AND-activated task, defines the function tuple F,,; model-
ing its output stream:

Fana =((8q (1), 85 4(n)) |
8,pq(n) = min[§;” (n)] (12)
Sona(n) = max[8; (n)]) (13)
Proof. See [4]. O

Note: To ensure bounded AND-buffer sizes the com-
bined event streams must fulfill the following requirements

[4]:

1. For limp;_..., the difference between the minimum and
maximum number of input events at input i must be
finite.

2. For limy;_..., the difference between the number of in-
put events at different inputs must be finite.

Since each event of ES,,; is related with one event of
each combined event stream, it directly follows that, the
minimum distance 8, between n events that are related to
the event stream ES;,; is given by the minimum distance
O Of the outer stream:

(14)
5)

It also follows, that regardless of changes applied to the
outer stream, Equations 14 and 15 still reflect the timing
of the inner streams. Hence, we can define the inner up-
date functions B4 (ES;,J) and B2 (ES;,d) in the follow-
ing way:

Definition 13. Inner Update Function B4 (ES;,J)
When an operation O(ES,y;,J) = ES.,, is applied on the
outer event stream of an and-combined HES, the inner up-
date function B4(ES;,J) = ES is applied on each inner
event stream resulting in ES'.

ES. = BY(ES;,J) = O(ES;,J) (16)
Definition 14. Inner Update Function B (ES;,d)
When an operation 6(ESyy,d) = ES,,,, is applied on the
outer event stream of an and-combined HES, the inner up-
date function B¥(ES;,d) = ES! is applied on each inner
event stream resulting in ES..
a7

ES, = B"(ES; d) = 6(ES;,d)
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We can now define the HSC Q,,,; as follows:

Definition 15. Qs
The HSC Q4 defines the function HSC,pq:

HSCand(Fla~-aFn) = ((FouhLacand) |

Four = (8 (1), 851 () | 85 (n) = min[8;,;(m)]},
6;;[ (n) = max[@‘;i(”)])a
L=((F,..Fa) | F;= (6 (n),5 (n))|
&; (n) = 85 (n),
8" (n) = 85 (n) ),
)
)

5.3. HES with multiple layers

The defined HSCs can also be used with HES as input
streams as illustrated in Figure 3, whereas the outer streams
are taken as input streams for the HSC. Since we defined
the inner update functions using the operations ¥ and o,
it is assured, that changes to the top most event stream for
which a corresponding inner update function is defined, can
be propagated through all hierarchical layers to the event
streams of the lowest layer.

As the alert reader may already have noticed, the defi-
nition of Q,,; brings some limitations. In contrast to the
HSC Q,,, the HSC Q,,,4, changes the timing of the com-
bined event streams as soon as it is applied (see Equations
14 and 15). The problem is, that we haven’t defined an ap-
propriate inner update function that defines how the inner
streams are effected if one of the and-combined streams is
an HES. Hence, as soon as we use an HSC Q,,,; with a HES
as input stream, we loose the specific information about the
inner streams of this HES.

From there it follows that for this contribution, an AND-
constructed hierarchical event stream can only be on the
lowest hierarchical layer of an HES with multiple hierar-
chical layers.

5.4. Deconstruction of Hierarchical Event
Streams

The way we defined hierarchical event models and the
HSCs, the deconstruction of hierarchical event models turns
out very simple. Remember that we update the inner
streams of an HES every time an operation is applied on
the outer stream of the HES. Hence, as long as we don’t
want to consider additional timing effects imposed on the
inner streams by the extraction process, the extracted event
streams are directly given by the updated inner streams.

To deconstruct a hierarchical event stream, we define the
hierarchical deconstructor W:
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Definition 16. ¥

The hierarchical deconstructor ¥ applied on an hierarchi-
cal event stream EM; modeled by H defines the function
D\y.‘

Dy(H) = ()(F, ., Fa) | Fi = L(i))

where L(i) returns the i-th element of the list L that is con-
tained in H.

The deconstructor essentially returns one element of the
List of inner streams of the hierarchical model.

6. System Example

Now we will use hierarchical event models to analyse
the example system shown in Figure 8, which is similar to
the motivational example system. We just added some addi-
tional bus communication in form of C1, which will impose
some scheduling effects on CO and we also added another
CPU (CPU3) running the two tasks T5 and T6. We want to
consider the following activation rules for the tasks T3, T4,
T5 and T6: The task T3 is only activated by events that were
generated by the task T1 and T4 is only activated by events
generated by the task T2. The task TS5 is only activated by
events generated by SO and the task T6 is only activated by
events generated by S1.

®

AL

\
Y

u

D:

BUS
Figure 8. A hypothetical example System

Since for each event stream we can determine the func-
tion tuple F = (6~ (n),87 (n),n" (At),n~(At)) we are not
only able reuse traditional scheduling techniques, we can
also easily integrate our new Model in the tool SymTA/S
[8] and reuse the therein implemented analysis techniques
to obtain the parameters of the stream operations ®. Rel-
evant system parameters like core execution time (CET),
core communication time (CCT), priorities and timing of
the sources are summarized in Tables 1 - 5.
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Figure 10. n*-functions from the HES at the output of C0(a) and the n*-functions of the HES at the
output of T3(b)

o Table 1. Sources
/“@ Source | Period | Jitter
o e AEAE
\~®< S2 75 0
‘ S3 35 40
75, @ S4 35 15
: S5 90 70
Figure 9. The system graph of the example Table 2. CPU1 (SPP - Scheduled)
system consisting of hierarchical construc- Task T CET | Prionit
tors, stream operations and hierarchical de- T Y
[2, 3] Low
constructors ) (3. 4] High
Table 3. Bus (CAN)
For the CAN bus, we consider that for every event arrival Channel CCT Priority
at the input of CO or C1, a whole CAN Frame is send. COo [9.2,11.2] High
Figure 9 shows the abstract system model for the hypo- Cl [6.8,9.2] Low
thetical example system from Figure 8 consisting of the pre-
viously defined HSCs, stream operations and deconstruc- Table 4. CPU2 (SPP - Scheduled)
tors. The Figures 10 (a) and (b) visualize the obtained n*- Task | CET | Priority
functions of the outer and inner streams of the hierarchical T3 | [2,3] Low
output streams of CO and T3. T4 | [4,5] High
The 1" -function of the outer event stream of the hier-
archical output stream of CO is depicted in Figure 10 (a) Table 5. CPU3 (SPP - Scheduled)
(marked by black cycles), together with the 1" -functions Task | CET | Priority | R" SEM | RT HEM | Red.
of the two inner streams of the hierarchical output stream T5 | [2,3] Low 31 6 80.6%
of CO. These two inner streams bound the number of events T6 | [2, 3] High 3 3 0%

that are related to the tasks T1 (marked by red squares) and
T2 (marked by red diamonds). Since we want to consider
that the task T3 is only activated by events that originated input stream for T3. Using flat event streams, at the output
form T1, we use the corresponding inner event stream as of CO we wouldn’t have any information about the individ-
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ual timings of events that came from T1 and T2. Therefore,
we could only bound the activations of the receiving tasks
by the total number of events produced at the output of CO,
which is given by the outer stream.

Using the inner stream modeling the events that were
send by T1 as input for T3, at the output of T3 we ob-
tain a hierarchical event stream with the " -functions de-
picted in Figure 10(b) bounding its outer and inner streams.
The function marked by blue squares represents the max-
imum number of events of the outer stream of the hierar-
chical stream at the output of the task T3, which models all
events that can be output by T3 in a given time interval. The
lower functions (green triangles, brown diamonds and pur-
ple crosses) represent the maximum number of events of the
inner streams, which model the events, that originated from
one of the sources SO-S2. The curve marked by black cy-
cles represents the maximum number of events that would
be obtained at the output of T3, if we used the total number
of output events of CO as activating events (which would be
the case using flat event streams). Without the ability to ex-
tract the inner stream properties, we could again only use
Nt -out (flat) (the black curve) to bound the activations of
connected tasks, here for the tasks TS and T6.

In both cases we would obviously obtain much more pes-
simistic analysis results. E.g., as visualized in Figure 11, the
utilization of CPU2 is 60.95% and the utilization of CPU3
is 45.71%, when using flat event streams. Using HEMs, the
utilization drops down to 28.57% for CPU2 and 10% for
CPU3. So, with flat event streams the utilization is overes-
timated by more than a factor of 2 for CPU2 and by more
than a factor of 4.5 for CPU3, compared to the utilization
obtained using the concept of HES.

1

CPu2

I hierarchical event
streams

W flat event streams
CPU3

Figure 11. The utilization of CPU2 and CPU3
using flat event streams vs. HES

With the existing standard event models (SEM), the tool
SymTA/S normally uses, the system analysis is much faster,
but in addition to an overestimated utilization, the obtained
worst case response times (WCRT) become even more con-
servative in comparison to the WCRT obtained with HEMs
(as can be seen in Table 5). When using SEMs we are not
only incapable of unpacking the different streams on the re-
ceiving side, but also the approach presented in [4] to calcu-
late the activating event stream of a task with several input
streams introduces further pessimism.
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7. Conclusion

In this paper we have introduced hierarchical event
streams constructed from several independent streams and
defined hierarchical event models to capture the properties
of such streams.

When hierarchical streams are used in an compositional
analysis approach, response time analysis is only applied to
the combined stream while inner update functions derive the
corresponding changes to the embedded individual streams.

We also showed that hierarchical event streams can also
contain other hierarchical event streams, forming several hi-
erarchical layers. We defined the functions needed enable to
construct and deconstruct hierarchical event streams.

We integrated the presented model into an existing anal-
ysis frame work and proofed its applicability by analysing
an example system using existing implementations of
scheduling analysis techniques.
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