Modeling Event Stream Hierarchies with Hierarchical Event Models

Jonas Rox, Rolf Ernst
Institute of Computer and Communication Network Engineering
Technical University of Braunschweig
D-38106 Braunschweig / Germany
{rox|ernst} @ida.ing.tu-bs.de

Abstract

Compositional Scheduling Analysis couples local
scheduling analysis via event streams. While local analysis
has successfully been extended to include hierarchical
scheduling strategies, event streams are still flat. In this
paper, we generalize the concept of a stream hierarchy to
embed different types of streams in a higher level structure.
We explain why this extension is a natural match to model
streams generated by communication stacks that are ubiq-
uitous in networked embedded systems. We formally define
the hierarchical event model and give operations to encode,
combine, and extract stream properties that can be used in
flat or hierarchical local scheduling analysis. Finally, we
give an example and demonstrate that the proposed model
enables superior analysis results.

1. Introduction

System and communication platform integration is a
major challenge and systematic analysis of the complex
dynamic timing effects (scheduling, arbitration, blocking,
buffering) becomes key to building safe and reliable sys-
tems.

Currently, the use of simulation based methods for per-
formance estimation is the state of the art in industry and
several commercial simulation suites are available, as well
as open simulation frameworks. The main advantage of
simulation is the large modelling scope, as various dynamic
and complex interactions can be taken into account. How-
ever, most simulation based performance estimation meth-
ods suffer from insufficient corner case coverage. Hence,
several different abstractions for formal performance analy-
sis have emerged, which allow to derive worst case guaran-
tees for the timing behaviour of distributed systems.
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Based on event streams, two different compositional ap-
proaches for system level performance analysis have been
developed [7][11], the former meanwhile used in indus-
trial practice [9]. Common to these different compositional
approaches is that they use local analysis techniques for
analysing the individual components, which are intercon-
nected via event streams, where the output event stream
of one task turns into the input event stream of connected
tasks. For global system analysis, it is then iterated be-
tween local component analysis and output stream calcu-
lation. More precisely, in each global iteration of the com-
positional system level analysis, local analysis is performed
for each component to derive response times and the timing
of output event streams. Afterwards, the calculated output
event streams are propagated to the connected components,
where they are used as input event streams for the subse-
quent global iteration.

While local analysis has successfully been extended
to include hierarchical scheduling strategies[8][10], event
streams are still flat. A recent proposal [1] introduces event
hierarchies in a stream, still describing a single flat event
stream. Such flat event streams prove to be improper to
accurately capture timing effects occurring in modern com-
munication stacks.

Contributions of this work:

e We define hierarchical event streams that allow to em-
bed different types of streams in a higher level struc-
ture and propose a hierarchical event model (HEM) to
model such hierarchical streams.

e We present how hierarchical event models can be ap-
plied to model the timing of event streams generated
by a modern communication stack.

e We integrate the proposed model into an existing sys-
tem analysis tool and show the improvements that can
be obtained when accounting for the presence of a
communication stack.

The remainder of this paper is structured as follows.
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First, we will review related work (section 2). We then give
formal definitions of the existing system models and its el-
ements and introduce stream hierarchies and define a hier-
archical event model to capture these stream hierarchies in
the analysis model (section 3). In section 4 we introduce the
basic properties of the AUTOSAR COM-Layer as a practi-
cal application scenario were such stream hierarchies can be
observed. Afterwards, we formally derive the needed oper-
ations to analyse such a COM-Layer (section 5). Finally, we
use the new event model for analysing a distributed embed-
ded example systems to evaluate its applicability (section 6)
and draw conclusions (section 7).

2. Related Work

The analysis framework presented by Richter [7] defines
four characteristic functions 5 (At),n~(At),d~(n) and
5% (n) to describe event streams. The first two functions
bound the number of events that can occur in a given time
interval of size At and the last two functions bound the dis-
tance between n events. At the component level, formal
analysis techniques based on the busy window technique
proposed by Lehocky [6] are used. Standard event mod-
els (SEM), consisting of the three parameters period (P),
jitter (J) and minimum distance (d,;y, ), are used as param-
eterized representation of the four characteristic functions.
They enable a very efficient computation of the four char-
acteristic functions and also of the output event models, but
can lack in precision when it comes to approximating arbi-
trary event streams .

The compositional approach presented by Thiele et. al.
[11] uses numerical upper and lower event arrival curves
for describing load generated by event streams, and simi-
lar service curves for execution modeling. Based on [3],
not only new scheduling analysis algorithms for the local
components, but also the corresponding output stream cal-
culations, were developed. As parameterized representa-
tion, Thiele et. al. propose a Piecewise Linear Approxima-
tion [10] consisting of a combination of two line segments
to approximate all arrival and service curves.

There exist some other event models used for describ-
ing the timing of event streams. In [4] Gresser introduced
so called event vectors and defined how a demand bound
function (DBF) that models the load a task produces on a
resource can be calculated with the event model. The event
model was extended in [1] to a hierarchical event model,
that can accurately describe the timing of complex hierar-
chical structured event patterns of a single stream. A finite
inner event sequence described by one or several event vec-
tors can be embedded into another outer event sequence.
An event of the outer sequence doesn’t stand for a single
event, but for the entire inner event sequence. This allows a
more accurate description of the DBF, provided that enough

information is available to actually determine the specific
parameters.

Neither of the different event models presented so far al-
low to appropriately capture properties of hierarchical event
streams needed to account for the presence of communica-
tion stacks in system performance analysis.

3. System Model

For performance analysis, a distributed system is mod-
eled as event streams, interconnected by operations. All
possible event sequences that could be observed at the in-
put of a task, are modeled by an event stream. An event
stream is modeled by a tuple of functions F' = (f1, .., fn),
which bound the timing behaviour of the modeled event se-
quences.

Definition 1. Event Model
An event model defines the event stream functions Fgyy.

Stream operations model the processing of event
streams, defining a function that maps input streams to out-
put streams. This function is evaluated in each global iter-
ation step of the system analysis, after the local component
analysis is completed.

Definition 2. Stream Operation
A stream operation ©,,, defines a function

Top : F" — F™

that delivers the corresponding function tuples of the m out-
put event streams depending on the function tuples of the n
input streams.

Since the operation used in [7] and [12] to model the
processing of an event stream by a task requires the task to
have only one input event stream, tasks activated by multi-
ple event streams are decomposed in two operations [5][12]:
the first is an event stream constructor (SC), which com-
bines the input streams, calculating one output stream that
becomes the input stream of the second operation, which
models the actual processing of the event streams due to
the task. Figure 1 illustrates a simple system and the corre-

(@) (b)

Figure 1. A simple example system (a) and
the corresponding abstract system model (b)
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sponding model used for performance analysis, consisting
of operations and event streams.

Similar to the framework presented by Richter [7] we
use traditional analysis techniques at the local component
level. This requires the event streams to be defined by the
four characteristic functions n*(At),n~ (At),d~(n) and
6% (n). Note that n*(At) and ~ (At) can be directly de-
rived from §~(n) and 6+ (n).

nt (A = max [{n |67 (n) < AtFU{LH ()
n~(At) = Trlrégt{n | 6T (n +2) > At} )

Hence, in the following we will use F' = (6~ (n), % (n)).
The output stream calculation used to determine the out-
put stream of analysed tasks can be modeled by an operation
©. that defines a function 7', which calculates the function
tuple F; modeling the output stream in the following way:

F, = (57 (n), 57 (n) |

Where 7~ is the minimum response time and r* the maxi-
mum response time of the task. Similar, functions defining
the output streams of other operations like e.g. shapers [7]
can be defined.

In [5] two different activation semantics for tasks with
multiple inputs were defined: AND-activation and OR-
activation. In the following we will take a closer look at
the OR-activation, since we will reuse some parts of it later.

An operation combining m event streams to calculate the
activating input stream of an OR-activated task, defines the
function tuple F,, modeling its output stream:

For =(05,(n), 05.(n) |

» Yor

0. (n) = min{zrrllg?iin[(;; (k)Y (3)

[0 (k: +2)]}) @)

5t (n) = max{__ min
ki:n72

Proof. To determine ¢,.(n) we search for the smallest
closed time interval A¢ in which a total number of n =
>, ni(At) events can occur. We call K = (ki,..kn)
the contribution vector, that determines the number of
events each event stream contributes to the total number
n. Only contribution vectors with Y .~ k; = n are
of interest. Hence, for a given contribution vector K,
maxy~ i, —n[0; (k;)] gives the size of time the interval in
which n events must occur. Taking the minimum of all pos-
sible intervals leads to the searched minimum distance.

To determine §.(n), we search for the largest open
time interval A¢ in which at most n — 2 events can oc-
cur. Hence, we use a contribution vector K = (k1,..k,)

with " | k; = n — 2. Since each open interval of size
§; (k;) contains at most k; — 2 events of event stream ES;,
mins k,—,—2[0;" (ki +2)] gives the size of the time interval
At in which at most n — 2 events can occur according to
the chosen contribution vector. Taking the maximum of all
possible intervals of all possible contribution vectors leads

to the searched maximum distance. O

Since the output event stream of the existing AND-
combination and OR-combination is modeled by a single
function tuple F', it contains no information about the tim-
ing of the combined event streams.

Therefore we extend the system model by hierarchical
event streams (HES) and hierarchical stream constructors
(HSC). The idea is, that a hierarchical event stream has one
outer representation in form of an event stream and for each
combined event stream it has one inner representation, also
in form of an event stream. The relation between the outer
event stream and the inner event streams depend on the HSC
that combined the event streams.

Definition 3. Hierarchical Event Stream
A hierarchical event stream ES}, is the result of the com-
bination of n input event streams ESy,..,ES, and has
one outer event stream ES,,;, defined by a function tuple
Four = (f1, .., fn) and k inner event streams, each defined
by its own function tuple F; = (fi, .., f2).

Definition 4. Hierarchical Stream Constructor

A hierarchical stream constructor Q) combines two or more
event streams ESy,..,ES, resulting in an hierarchical
event stream ESy. Formally:

HSCqo:F*" — H

Definition 5. Hierarchical Event Model
A hierarchical event model defines a parameter tuple H :

H = {(Fout7L7CQ) | Fout = (f17 -~>fn)7
L= (F,.,F,),
C = Co)

Four = (f1, -, fn) models the outer event stream.

L = (Fy,.., F,) is a List of function tuples modeling the
inner streams.

C = Cq is the construction rule that combines the inner
event models to the hierarchical model.

Note: for each event stream constructor generating the
output stream F. a corresponding hierarchical event stream
constructor can be defined that generates a hierarchical
event stream with an outer event stream modeled by F,; =
F..

For extracting the inner event streams of a hierarchical
event stream, we define a deconstructor.
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Definition 6. Hierarchical Event Stream Deconstructor

A hierarchical event stream deconstructor V, takes a hier-
archical event model E My, as input and returns the updated
inner event models FE M;, modeling the individual streams,
as output:

Dy :H— F"

Existing stream operations, like e.g. ©., assume flat
event streams as input and they also generated flat event
streams as output. Since we want to reuse them, we
must define how they can be applied to hierarchical event
streams. If an operation © is applied on a hierarchical event
stream, the outer event stream is used as input stream and
the output stream generated by the operation © becomes the
outer event stream of the resulting hierarchical event stream.
To determine the effects the operation has on the inner event
streams, we define the inner update function:

Definition 7. Inner Update Function

For each hierarchical event model H with constructor Cq,
the inner update function B adapts the F; ’s if the outer
event model is modified by an operator ©. Formally:

BG)’CQZFXHHF

4. Application Scenario

The properties we introduce in the following are part
of specification of the communication layer defined by the
AUTOSAR consortium [2]. This is a complicated combi-
nation of event and register communication used to han-
dle different signal latency requirements. Observe the sys-

Figure 2. The system example

tem shown in figure 2. If we consider the presence of a
communication stack, the events generated by the sources
S51,52,53 and S4 don’t trigger the communication di-
rectly. Instead they write their output data into a register
provided by the communication layer, overwriting previous
output data. Each register is assigned a fixed position in a so
called frame. The communication layer triggers the sending
of a frame, which then transmits all register values assigned
to that frame. A frame can be of different types: periodic,
direct or mixed. An input event stream of a frame can be ei-
ther defined triggering or pending. The sending of frames is

triggered according to the following rules: When the frame
type is periodic, frames are just send periodically, not influ-
enced by the arrival of the output events of the tasks. If the
frame type is direct, for each arrival of a triggering signal, a
frame is send. And finally a mixed frame is a combination
of the two first ones, so it is transmitted periodically and
also whenever a triggering event arrives.

When a frame is received by the communication layer,
it transmits the data in it into registers, again overwriting
the values stored there previously. Either does the receiving
task fetch the register value from time to time or each time
new data is written into the register, the process is activated,
e.g. by an interrupt.

To be able to analyse the bus, we first need the frame
timing. Since the frame is activated whenever a frigger-
ing signal arrives, its equivalent to an OR-activation by all
triggering signals, where a timer is treated as an additional
triggering signal. Hence, we can reuse equations (3) and
(4) to calculate the activation timing of the frames.

Figure 3. Frame timing vs signal timing

The second thing we will need later is the distance be-
tween frames, 6;_(71) and 6;+(n), that transport signals
from a specific event stream ES;. For triggering signals
this is quite simple, since for each signal the frame is im-
mediately activated. From there it follows that:

5, (n)
5.+ (n)

5; (n) (5)
55 (n) (6)

To determine the minimum distance between frames that
transport n signals of a pending event stream, consider the
scenario depicted in figure 3, where the red colored events
represent frame activations that will also transmit a new
pending signal. If we assume, that the first of the n events
of the pending event stream just misses a frame activation,
then the longest time that can pass before a new frame ac-
tivation occurs is given by the maximum distance between
2 frames: 6;{(2). By assuming that the n-th event of the
pending stream is transmitted immediately (although that
may not be possible as in the example in figure 3), we ob-
tain a conservative lower bound. Since each frame carries
at most one signal of each assigned stream, another obvious
bound is the minimum distance between n frames. Hence,
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for the pending streams we obtain:

8, (n) = max{0; (n) — 6£(2)),6; (m)} (D

K2

5,7 (n) = o0 (3)
5. Hierarchical Event Model

In this section we will define a HSC and an inner update
function, corresponding to the properties of the communi-
cation layer as introduced in the previous section.

5.1 Packing the Frames

To build the hierarchical model of the hierarchical stream
like it is generated by the previously introduced commu-
nication layer, we define a “pack”-HSC (,,,, reusing the
equations from €2,,. and equations (5) - (8).

Definition 8.
A “pack”-HSC Q,, defines the hierarchical event model H
as follows:

H = {(Fou, L,C) | Fouy = (
Goue(n) = i { max (57 (k)]}

ES;€T 'Y ki=n
550(n) = max {_min 57 (k; +2)]})

ES,€T " ki=n—2
L={F{,  F)}| F =(8,(n),5,%(n) |

5= (n) = {5;@) ES; €T

max{0; (n) = 05,4(2)), 65t (1)} : ES; ¢ T
(5/-+(n) _ {5:‘(71) ES, €T
! o0 : ESz ¢ T

C =}

Where T is the set of all event streams that model triggering
signals.

5.2 Analysing the Bus

To determine the output model of the frame, we use ©.;
to determine the outer event stream. To adopt the inner
event streams of an hierarchical stream constructed by a
HSC Q,,, we have to consider two things: First, the min-
imum distance between the events decreases by (r™ —r7).
Second, each event is separated by at least r~ from sub-
sequent events. Hence, each event that previously ar-
rived simultaneous with other events could be delayed by
(k — 1) x r—, where k is the number of simultaneous event
arrivals. With the result that the minimum distance of the
delayed event to subsequent events is further reduced by
(k — 1) * r—. Similar, the maximum distance to previous
events increases by r~. This leads to the following defini-
tion of the inner update function:

Definition 9. Bo_ c,,

Fl = (8, (n),0;"(n) |
8, (n) =max{6; (n) — (r* —r7) = (k—1) %1,
(n—=1)*r"},
5 () =67 () + (" =)+ (k—1)xr7)

Where v+ and r~ are given by ©, and k is the maximum
number of events of ESy: (before the operation was ap-
plied) that can be effected by the new minimum distance.

5.3 Unpacking the Signals

The way we defined hierarchical event models and the
HSCs, makes the deconstruction of hierarchical event mod-
els turn out very simple. For extraction, we define the hier-
archical deconstructor W, that is applied on the hierarchi-
cal output event stream ES}, of the frame:

Definition 10. V,,,

The hierarchical deconstructor V,,, applied on an hierar-
chical event stream ESy, modeled by H defines the event
stream ES; by the following function:

F; = L(i)

where L(i) returns the i-th element of the list L that is con-
tained in H.

6. System Example

In this section, we apply hierarchical event models to an-
alyze the performance of the system illustrated in figure 2.
We extended the tool SymTA/S [9], which normally uses
standard event models, with the presented hierarchical mod-
els. Since HEMs can be characterized by the four character-
istic functions, similar to SEMs, the different local schedul-
ing analysis techniques implemented in SymTA/S can di-
rectly be reused.

Relevant system parameters like core execution time
(CET) and priorities are summarized in tables 1-3. For the
bus we assume, that it is a CAN bus and the tasks on the
CPU are scheduled according to a static priority preemptive
(SPP) scheduling policy.

Table 1. Sources

Source | Period Type
S1 250 | triggering
S2 450 | triggering
S3 1200 pending
S4 400 | triggering
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Table 2. Bus (CAN - Scheduled)

Frame | Payload size | priority
F1 [4:4] High
F2 [2:2] Low

Table 3. CPU (SPP - Scheduled)

Task | CET Prio | RT flat | R HEM | Red.
T1 | [24:24] | High | 24 24 0%
T2 [32:32] | Med 104 56 46,2%
T3 [40:40] | Low 266 96 63,9%

Figure 4 shows the nT-functions of the output event
stream of the frame F'1 and of the input event streams of
T'1 - T'3 when using hierarchical event models. The graph
marked with black points pictures the maximum number of
total frame arrivals for a given time interval. The other three
depicted functions were obtained after unpacking the corre-
sponding signals. The function marked with red squares
bounds the maximum number of event arrivals for 7'1, the
function marked by the blue squares does the same for 72
and the function marked with the green triangles bounds the
maximum number of events activating 7'3.

Figure 4. The n*-functions of 71-73 and F'1

Obviously, using the functions obtained by unpacking
the corresponding signals to bound the input event streams
of T'1, T2 and T'3 leads to much less overestimation than
using the function for total frame arrivals. This in turn leads
to much more accurate analysis results for CPU1. Table 3
shows the obtained worst case response time (WCRT) R+
when using flat event streams (standard event models) and
when using HEMs. The last column denotes the reduction
of the obtained WCRT in percent.

7. Conclusion

In this paper we have introduced hierarchical event
streams constructed from several independent streams and

defined hierarchical event models to capture the properties
of such streams. These hierarchical event models allow to
accurately model and analyze the processing and commu-
nication on the combined as well as on the embedded indi-
vidual streams. We define construction and deconstruction
functions that enable the transition between hierarchical and
flat streams. Response time analysis is only applied to the
combined stream while an inner update function derives the
corresponding changes to the embedded individual streams.

We applied the model to an automotive communication
stack and explained the modeling of packing, unpacking,
and transport of frames that transport signals from different
sources. We also demonstrated, with a simple example, the
significant improvements that can be obtained, exploiting
the stream hierarchies.
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