
Scenario Aware Analysis for Complex Event Models and
Distributed Systems

Rafik Henia, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig / Germany

{henia|ernst}@ida.ing.tu-bs.de

ABSTRACT

The set of executing tasks in modern hard real time systems
may change during system execution. This change, called
scenario change, may lead to a transient overload situation
due to the interference of different task set executions, thus
necessitating timing requirement verification. Previously de-
veloped approaches analyzing response times across scenario
changes are limited to strict periodic task event models and
restricted to uniprocessor systems, while existing methods
adapted for the analysis of distributed systems are not suitable
for the analysis across scenario changes. In this paper, we
eliminate the restrictions concerning task event models and
present a scheduling analysis methodology allowing response
time calculation across a scenario change for multi-scenario
distributed systems.

I. INTRODUCTION

Modern hard real-time systems often run in different oper-
ating modes, also called scenarios. Each scenario is character-
ized by a different behavior and is associated with a specific
set of tasks. During a change from an old scenario to a new
scenario, some tasks may be removed while others may be
released for the first time. This may lead to a transitional
phase during which the set of executed tasks may include
tasks belonging to both scenarios. For instance, to preserve
data-consistency, some old scenario tasks may be allowed to
terminate their execution after the scenario change, thus inter-
fering with the execution of new scenario tasks and leading
to a transient overload situation. Therefore, it is necessary to
verify the timing requirements across a scenario change to
ensure that no deadlines are missed.

Numerous formal scheduling analysis approaches for
uniprocessor [7] [14] and distributed systems [3] [13] [9] have
been developed by the real-time system research community
for decades. However, these techniques are only applicable to
systems with a static task set or multi-scenario systems with
mutual exclusive scenario executions, i.e. execution interfer-
ence of old and new scenario task sets is excluded.

Methods analyzing the timing behavior across a scenario
change under priority preemptive scheduling already ex-
ist [11] [16] [8]. However, they are limited to purely periodic
task activation patterns. In addition, they exclude interference
of successive task executions with each other, by restricting the

task deadline to be smaller than the task period. Furthermore,
these approaches are limited to uniprocessor systems.

In this work, we present an approach for the response
time analysis across a scenario change under static priority
preemptive scheduling. We eliminate the restriction concerning
task deadlines and also allow complex task activation patterns
including periodic with jitter, periodic with burst and sporadic
event models. This step is essential for the second part of the
paper, where we present an approach for the response time
analysis across a scenario change for distributed systems.

The rest of the paper is structured as follows. In the next
section, we review the existing scheduling analysis approaches
from the literature. In Section III-A, we introduce our ap-
plication model. Task activating event models are presented
in detail in Section III-B. In Section IV, we describe the
scenario change protocol we use in this work. In Section V, we
present a scheduling analysis approach allowing response time
calculation across a scenario change for tasks with complex
activation patterns in uniprocessor systems. Based on this, we
present an analysis method allowing response time calculation
across a scenario change in multi-scenario distributed systems
in Section VI.

II. RELATED WORK

The goal of the scheduling analysis is to verify that a
system implementation meets all response time and throughput
constraints, e.g. end-to-end deadlines. Numerous scheduling
analysis techniques have been developed by the real-time sys-
tem research community for decades. The first schedulability
analysis algorithm was presented by Liu and Layland for
Rate Monotonic Scheduling [7]. Since then, various scheduling
analysis algorithms have been developed. Examples include
Static Priority Preemptive [15] and time-slicing mechanisms
like TDMA or Round-Robin [5]. Scheduling analysis algo-
rithms are not directly applicable to distributed systems. From
the literature, two formal approaches addressing this problem
can be identified: the holistic and the compositional approach.
The holistic approach extends the classical scheduling theory
to distributed systems [14] [3], while the compositional ap-
proach couples local scheduling analysis techniques on indi-
vidual components via event streams [2] [13] [9]: the output
event stream of one component turns into the input event
stream of the connected component. System performance

analysis can then be performed by iteratively alternating local
scheduling analysis and event stream propagation between
components. However, common to these methods is that they
are not applicable to multi-scenario distributed systems, i.e.
the executed task set in the system is assumed to be static
over time.

Response time calculation across scenario changes have
been addressed in [11] [16] [8] (note that we are using
the term “scenario” instead of “mode” in order to make a
distinction with the input dependent task behavior also called
“mode” [17]). In [11], Sha et al present a schedulability test
across a scenario change according to the rate monotonic
scheduling policy, where tasks can either be added or removed
depending on the system utilization. Tindell et al. showed in
[16] that the analysis in [11] is not sufficient, since the test may
pass a task set that is unschedulable. Tindell et al. propose a
worst-case response time analysis algorithm across a scenario
change under deadline monotonic scheduling. The scenario
change protocol they use defines three task types: old scenario
tasks that are allowed to complete their executions after a
scenario change, unchanged tasks that execute independently
from the scenario change and new scenario tasks that are
either introduced for the first time after the scenario change or
that represent a modified versions of old scenario tasks. The
analysis algorithm they propose is however limited to strict
periodic activating event model. In addition, task deadlines
are restricted to be smaller than the task period. Furthermore,
the algorithm is limited to uniprocessor systems.

In this paper, we present a new analysis technique for the
response time calculation across a scenario change under static
priority preemptive scheduling that eliminates the restrictions
in [16] regarding task activation patterns and deadlines. Then,
we extend our approach to calculate response times across a
scenario change for multi-scenario distributed systems.

III. SYSTEM MODEL

In this section, first we present our application model. Then,
we give an overview about event models.

A. Application Model

An application is modeled by a set of computation and com-
munication tasks (application entities). The tasks are mapped
and executed on a set of processing (CPUs) and communi-
cation (Buses) elements, representing the system architecture.
Each task Ti is characterized by its core execution time interval
[cmin

i ,cmax
i], defined as the minimum and maximum times

Ti requires for a complete execution on the corresponding
resource, assuming that no blocking or preemption occur
during execution.

A task graph describes the functional and timing depen-
dencies between tasks. Tasks are allowed to have more than
one immediate successor and predecessor. The task graph may
contain cycles, describing applications with cyclic dependen-
cies between tasks, like control loops [4].

One execution of a task is called job. Ti,k denotes the k-th
job of task Ti, assuming that the time instance at which Ti,1

occurred is known. The activation of a task is triggered by
an activating event. Activating events can be generated in a
multitude of ways, including expiration of a timer, external or
internal interrupt, and task chaining. Each task is assumed
to have one input FIFO. A task reads its activating event
from its input FIFO and writes data into the input FIFO of
a dependent task. A task may read its input data at any time
during one execution. We therefore assume that the data needs
to be available at the input during the whole execution of the
task. We also assume that input data is removed from the input
FIFO at the end of the task execution. These assumptions are
standard in scheduling analysis. After finishing its execution,
a task produces one event at each of its outputs.

All activating events of a task are captured by an event
stream. The behavior of an event stream is described using
parameterized event models, presented in detail in Section III-
B.

As already stated, a task needs to be mapped on a compu-
tation or communication resource to execute. When multiple
tasks share the same resource, then two or more tasks may
request the resource at the same time. In order to arbitrate
request conflicts, a resource is associated with a scheduler
which selects a task to be executed out of the set of active
tasks according to some scheduling policy. For each task
Ti, scheduling analysis calculates worst-case (rmax

i) and also
best-case (rmin

i) task response times, i.e. the maximum and
minimum times between task activation and task completion.
Scheduling analysis guarantees that all observable response
times of Ti will fall into the calculated [rmin

i ,rmax
i] interval. We

therefore say that scheduling analysis is conservative. In this
paper we use ri,k to refer to the response time of the k-th job
of task Ti.

B. Event Models

The timing of the events within an event stream is described
using event models. For our model we use a six-class param-
eterized event model set that slightly extends the known event
models from literature to capture the consequences of jitters,
and subsequently bursts [9]. Each event model is described
using a set of three parameters: period (p), jitter (j) and
minimum distance (dmin). Depending on the event model, only
a part of the three parameters must be defined: a periodic
stream requires only the period to be specified, a periodic
stream with jitter requires two parameters, the period and the
jitter, while a periodic stream with burst is specified using all
parameters, period, jitter and minimum distance.

The period shows the rate at which a task is activated and
is used to compute the average load determined by the task
on the assigned resource. A lot of applications use periodic
event models to specify the activation pattern of the tasks.
Examples can be find in signal processing domain or control
engineering.

The jitter parameter is used to show the perturbations
that may influence the pure periodic activation of a task. A
periodic with jitter event model describes the activation of a
task that still has a general periodic behavior, but the single

activations may occur within a time interval, rather than at
exact time instances. The maximum value of this time interval
is expressed using the jitter parameter. In general, if a jitter
is present at task input then it is propagated to the output.
Moreover, a variable task execution time and the effects of
scheduling induce additional jitter at the output. In this paper
we use ji to denote the jitter parameter of the activating event
models of task Ti.

When the jitter interval exceeds the period, two or more
events may arrive at the same time, leading to bursty task
activations. The minimum distance parameter dmin is used to
additionally specify the timing of the activating events in case
of bursts, and to reduce the transient load peaks.

Mathematically, the event models are represented using four
functions: η+(∆t), η−(∆t), δ−(n) and δ+(n) [9].

Definition 1 (Upper-Bound Arrival Function) The upper
bound arrival function η+(∆t) specifies the maximum number
of events that can occur during any time interval of length
∆t.

Definition 2 (Lower-Bound Arrival Function) The lower
bound arrival function η−(∆t) specifies the minimum number
of events that have to occur during any time interval of length
∆t.

Definition 3 (Minimum Distance Function) The minimum
distance function δ−(n) specifies the minimum distance be-
tween any event x and the (n-1)-th (n≥ 2) event after x in the
corresponding event stream. δ−(1) is set to 0.

Definition 4 (Maximum Distance Function) The maximum
distance function δ+(n) specifies the maximum distance be-
tween any event x and the (n-1)-th (n≥ 2) event after x in the
corresponding event stream. δ+(1) is set to 0.

The mathematical representation of the arrival and the
distance functions is given in the appendix. In the next sections
we use the four functions to capture the task workload in the
response time equations.

IV. SCENARIO CHANGE PROTOCOL

In this section, we describe the system behavior across a
scenario change (SC). A scenario change is triggered by a
scenario change request (SCR). A SCR is produced either due
to a change in the system environment or due to a system
transition to a specific internal state requiring a scenario
change. The instant at which a SCR occurs is denoted by tSCR.
To avoid the interference of several scenario changes, a SCR
is assumed to occur at any instant during a scenario execution,
but never during another SC.

Consider a SC from an old to a new scenario. Depending on
the task behavior across the scenario change, we define three
task types:

• unchanged task: an unchanged task belongs to both
scenarios task sets. It remains unchanged and continues
executing normally after the SCR.

• completed task: a completed task only belongs to the
old scenario task set. However, to avoid the lose of data
consistency, completed task jobs activated before tSCR are
allowed to complete their execution after the SCR. After
that, the task terminates.

• added task: an added task only belongs to the new
scenario task set. It is activated for the first time after
the SCR. Each added task is assigned an offset value φ

that denotes its earliest activation time after tSCR.

Fig. 1 - SCHEDULING EXAMPLE DURING A SCENARIO CHANGE

The different task behaviors across a SC are shown in
Figure 1. The figure shows a scheduling example of a set of
three tasks mapped on a static priority preemptive scheduled
resource. The tasks are activated periodically with jitter. The
jitter intervals are represented with dashed lines. The up-
pointing arrows correspond to the task activations within the
jitter intervals. Dark-colored boxes represent task executions,
while light-colored boxes represent the time a task is sus-
pended waiting for execution. Task T1, which is a completed
task, is allowed to finish executing the job T1,2, which has been
activated earlier than the SCR. Task T2, which is an added task,
is activated for the first time in the new scenario after the SCR
occurs. Task T3, which is an unchanged task, executes in both
scenarios regardless of the SC. Note that the task classification
depends on the scenarios involved in the scenario change, e.g.
T3, which is an unchanged task in the SC illustrated in Figure 1,
could be a completed task in a SC involving other scenarios.

During a SC there could be a transition phase during which
tasks from both scenarios are executing. This could lead to a
transient overload on the resource. In the scheduling example
in Figure 1, the transition phase starts at the SCR and ends
when T3,2 finishes executing. During this phase completed
tasks may delay the execution of added tasks, e.g. T2,1 has to
wait until T1,2 finishes executing. The execution of unchanged
tasks may also be delayed and preempted by executions of
both completed and added tasks, e.g. the execution T3,2 is
delayed by the executions of T1,2 and T2,1. The same is valid
for completed tasks. Since the timing requirements in the

system have to be met at any time during the system execution,
it is necessary to verify if task deadlines could be missed
during the transition phase. Thus, we need to perform a worst-
case response time analysis during the transition phase of a
SC.

To show the analysis idea in isolation, first we perform
the calculation in Section V for multi-scenario uniprocessor
systems. Then, we extend the analysis for multi-scenario
distributed systems in Section VI.

V. ANALYSIS FOR MULTI-SCENARIO UNIPROCESSOR
SYSTEMS

In this section, we perform the worst-case response time
analysis during a SC for each task type separately, in a static
priority preemptive scheduled uniprocessor system. Tasks are
assigned unique priorities. Before we start presenting the
analysis, we introduce some definitions and annotations that
we use later in the response time calculation.

Consider a task Ti. The set of tasks with higher priorities
than Ti is denoted hp(Ti). Additionally, hpu(Ti), hpc(Ti) and
hpa(Ti) denote respectively the sets of unchanged, completed
and added tasks belonging to hp(Ti).

We also introduce the definition of a busy window. A busy
window is defined as a time interval in which the resource is
busy processing tasks mapped on it. The scheduling example
in Figure 1 contains three busy windows: the first busy window
corresponds to the execution of the job T3,1, the second
busy window contains the executions of the jobs T1,1, T1,2,
T2,1 and T3,2, while the third busy window consists of the
execution of the jobs T2,2 and T3,3. The busy window during
which a SCR occurs is called transition busy window, e.g. the
second busy window in Figure 1. The task Ti transition busy
window refers to the transition busy window during which the
resource is busy processing Ti or tasks from hp(Ti), e.g. the
task T2 transition busy window in the scheduling example in
Figure 1 starts at the activation of T1,1 and ends when T2,1
finishes executing. In the following, the length of the task Ti
transition busy window is denoted by wi. The length of the
transition busy window parts before and after tSCR are denoted
respectively by xi and yi.

For the worst-case response time analysis of Ti we need
to calculate the maximum workload of each task from hp(Ti)
within wi. Note that the workload calculation depends on the
task type, since completed tasks can only be activated before
the SCR, added tasks only after the SCR, while unchanged
tasks can be activated within the whole transition busy win-
dow.

We use the iterative approach presented by Lehoczky [6] for
the calculation, i.e. we start with wi equal to zero, calculate the
workload produced by the maximum activation number of all
tasks during wi and then repeat the process using the calculated
workload as new value for wi. This process is repeated until
wi converges, i.e. until two consecutive calculated values of
wi are equal or the analyzed Ti misses its deadline.

In the following, for a given transition busy window length
wi, and supposing that we know the instant tSCR at which the

SCR request occurs, we calculate the maximum workload of
each task type. Later in Section V-B we show how to determine
tSCR.

A. Maximum Task Workload

Let Tu be a task from hpu(Ti). Since Tu is an unchanged
task, it can be activated at any instant during the transition
busy window regardless of the SCR. Using the upper-bound
arrival function defined in Section III-B, we can compute the
maximum activation number of Tu within wi. The maximum
workload of Tu within wi can therefore be expressed by:

η
+
u (wi) · cmax

u (1)

Let Tc be a task from hpc(Ti). Since Tc is a completed
task, it can only be activated before or at the SCR. Therefore,
the maximum workload of Tc during wi corresponds to its
maximum workload during xi and can be expressed by:

η
+
c (xi) · cmax

c (2)

Fig. 2 - MAXIMUM WORKLOAD OF THE ADDED TASK T2 WITHIN w3

Let Ta be a task from hpa(Ti). Since Ta is an added task,
it cannot be activated before the instant tSCR + φa, i.e. its
maximum workload during wi corresponds to its maximum
workload during yi −φa. To ensure a maximum workload of
Ta during wi, its jobs has to be activated as early as possible
within their respective jitter intervals. If a job activation occurs
namely after the end of the transition busy window, by moving
the job activation earlier within its jitter interval, we increase
the possibility to activate the job inside the transition busy
window. This can be observed by comparing the task T3
transition busy window lengths in the Figures 1 and 2: in
Figure 2, we moved the activations of T2,1 and T2,2 earlier in
the time to occur at the start of their respective jitter intervals,

thus making T2,2 and also T3,3 activated within the transition
busy window. Based on this, the maximum workload of Ta
during wi can be expressed by:⌈

yi −φa

pa

⌉
0
· cmax

a

which is also equal to:⌈
wi − xi −φa

pa

⌉
0
· cmax

a (3)

Note that the modified ceiling function used in equation 3
returns zero if wi − xi −φa < 0.

B. Scenario Change Request

As can be noted in the equations 2 and 3, the maximum
workload calculation for completed and added tasks depends
on xi, i.e. it depends on the occurrence of the instant tSCR
within the task Ti transition busy window. Let hp∗c(Ti) be
the set of completed tasks with an equal or a higher priority
than Ti (i.e. if Ti is a completed task, hp∗c(Ti) = hpc(Ti)∪{Ti}
otherwise hp∗c(Ti) = hpc(Ti)). We use the following theorem
to determine tSCR.

Fig. 3 - tSCR COINCIDES WITH THE ACTIVATION OF THE COMPLETED TASK

JOB T1,2

Theorem 1 The worst-case scenario for a task Ti under
analysis is obtained, when tSCR coincides with the activation
instant of a task from hp∗c(Ti) within the task Ti transition busy
window.

Proof: Remember that completed tasks can only be
activated before or at tSCR, but are allowed to finish their
execution after the scenario change. Now suppose that tSCR
does not coincide with the activation instant of any completed
job within the transition busy window. Let us now move back

(i.e. earlier in the time) the instant tSCR until it coincides with
the activation of a completed job. By doing this, on the one
side we did not exclude the execution of any completed task
job from the transition busy window. On the other side, since
the whole activation pattern of added tasks was moved earlier
in the time together with tSCR, some added task jobs that was
activated after the end of the transition busy window, may now
be activated inside it. This can be observed by comparing the
task T3 transition busy windows in the Figures 1 and 3: in
Figure 3, we moved back tSCR earlier in the time to coincide
with the activation of T1,2, thus increasing the the tasks T2 and
T3 workloads since the jobs T2,2 and T3,3 are now executing
within the task T3 transition busy window.

Note that if tSCR coincides with the activation of a given
completed job, no statement can be made, if we move ahead
tSCR in the time to coincide with the activation of the next
completed job within the transition busy window. This is
because we added the execution of this completed job to
the transition busy window. However, since we moved tSCR
and thus the whole activation pattern of added tasks later
in the time, we may have excluded the execution of some
added task jobs from the transition busy window. Therefore,
for worst-case response time analysis of Ti, we need to apply
the calculation to all possible values of xi corresponding to all
possible instants tSCR obtained according to the Theorem 1 and
choose the value that leads to the worst-case response time of
Ti.

Let Xi be the set of all possible values of xi determined
according to Theorem 1. Algorithm 1 allows to calculate the
set Xi:

Algorithmus 1 Calculate Xi

1: calculate Li
2: for all Tc ∈ hp∗c(Ti) do
3: calculate η+

c (Li)
4: if η+

c (Li)≥ 1 then
5: for n = 1 to η+

c (Li) do
6: add δ−c (n) to Xi
7: remove duplicates from Xi

In the first line, Algorithm 1 calculates Li, which is the
length of the Ti busy window with a maximum workload of
unchanged and completed tasks, i.e. the longest busy window
within the old scenario execution. The calculation of Li is
performed by solving the following equation:

Ln+1
i = ∑

∀Tu∈hpu(Ti)
η

+
u (Ln

i) · cmax
u +

∑
∀Tc∈hp∗(Ti)

η
+
c (Ln

i) · cmax
c (4)

This can be done by using the iterative approach presented
earlier in this section. The first clause in equation 4 calculates

the maximum workload of unchanged tasks from hpu(Ti)
during Ln

i , while the second clause calculates the maximum
workload of completed tasks from hp∗c(Ti) during Ln

i . The
calculation starts with an initial value L0

i = 0. For a better
understanding of this algorithm step, we apply it to the analysis
of task T2 in the example in Figure 1. The set hp∗c(T2) contains
the task T1, while hpu(T2) is empty. When starting with
L0

2 = 0, equation 4 calculates L1
2 = cmax

1 . This is because at
most only one job of T1 can be activated within a busy window
of length 0. In the second iteration, equation 4 calculates
L2

2 = 2 · cmax
1 . This is because at most 2 jobs of T1 can be

activated during a busy window of length cmax
1 . In the third

iteration, equation 4 calculates L3
2 = 2 · cmax

1 = L2
2 , i.e the

calculation converged and L2 = 2 · cmax
1 .

In the lines 2 to 6, for each completed task Tc from hp∗c(Ti),
the algorithm 1 calculates all possible values of xi that could
be obtained according to Theorem 1. This is done first by
calculating η+

c (Li), the maximum activation number of Tc
within Li (line 3). For each of these activations, the algorithm
calculates its corresponding value of xi, i.e. the minimum
distance between the busy window start and the activation
occurrence (line 6). This distance can be calculated using the
minimum distance function defined in Section III-B. Then, the
calculated value is added to Xi. When applying this algorithm
part to the analysis of task T2 in the example in Figure 1,
the algorithm calculates η

+
1 (Li) = 2, i.e at most 2 jobs of T1

can be activated during Li. In the lines 4 to 6, the algorithm
calculates for each activation of T1 its corresponding value of
x2. These values are δ

−
1 (1) = 0 and δ

−
1 (2) which corresponds

to the distance between the activations of T1,1 and T1,2 in
Figure 1.

Since some completed task jobs may be activated simulta-
neously leading to equal calculated values of xi, the algorithm
removes in line 7 the duplicates from Xi.

Now having calculated all possible values of xi, the equa-
tions 1, 2 and 3 can be applied for the worst-case response
time calculation across a SC. In Section V-C, V-D and V-
E, the term rmax

i refers to the worst-case response time of Ti
across a SC.

C. Worst-Case Response Time of Unchanged Tasks

Let us assume that Ti is an unchanged task. Algorithm 2
calculates the worst-case response time of Ti across a SC.

Algorithmus 2 worst-case response time of an unchanged task
1: rmax

i = 0
2: for all xi ∈ Xi do
3: k = 0
4: repeat
5: k ++
6: calculate wi,k according to equation 5
7: ri,k = wi,k −δ

−
i (k)

8: rmax
i = max(rmax

i ,ri,k)
9: until η

+
i (wi,k) = k

10: return rmax
i

The calculation is performed for each value of xi from Xi
(line 2). For a given value of xi, the algorithm computes in
each iteration wi,k (line 6), which is the length of the job Ti,k
transition busy window, i.e. the length of the transition busy
window with k executions of Ti and a maximum workload
of tasks from hp(Ti). The calculation of wi,k is performed by
solving the following equation:

wn+1
i,k = k · cmax

i +

∑
∀Tu∈hpu(Ti)

η
+
u (wn

i,k) · cmax
u +

∑
∀Tc∈hpc(Ti)

η
+
c (xi) · cmax

c +

∑
∀Ta∈hpa(Ti)

⌈wn
i,k − xi −φa

pa

⌉
0
· cmax

a (5)

The first clause in equation 5 calculates the workload due
to k executions of Ti. The second, third and fourth clauses
calculate according to the equations 1, 2 and 3 respectively
the maximum workload due to executions of unchanged,
completed and added tasks with higher priority than Ti during
wi,k. The equation starts with a value of w0

i,k equal to k · cmax
i

and is solved iteratively.
Line 7 of the algorithm computes the response time of the

job Ti,k within wi,k. This is done by subtracting from wi,k the
distance between the transition busy window start and the
activation instant of Ti,k. If additional jobs of Ti could be
activated within wi,k (line 9), the calculation is repeated for
k = k+1 (line 5), otherwise it terminates. The maximum over
all ri,k calculated for all values of xi represents the worst-case
response time of Ti across the scenario change (line 8).

D. Worst-Case Response Time of Completed Tasks
Let us assume that Ti is a completed task. Algorithm 3

calculates the worst-case response time of Ti across a scenario
change.

Algorithmus 3 worst-case response time of a completed task
1: rmax

i = 0
2: for all xi ∈ Xi do
3: k = 0
4: repeat
5: k ++
6: calculate wi,k according to equation 5
7: ri,k = wi,k −δ

−
i (k)

8: rmax
i = max(rmax

i ,ri,k)
9: until η

+
i (xi) = k

10: return rmax
i

The algorithm 3 and 2 are nearly identical. The only
difference regards the loop termination in line 9: the loop in
algorithm 3 iterates over all jobs of Ti activated within xi.
This is because Ti cannot be activated after the SCR, since it
is completed task.

E. Worst-Case Response Time of Added Tasks

Let us assume that Ti is an added task. Algorithm 4
calculates the worst-case response time of Ti across a scenario
change.

Algorithmus 4 worst-case response time of an added task
1: rmax

i = 0
2: for all xi ∈ Xi do
3: k = 0
4: repeat
5: k ++
6: calculate wi,k according to equation 6
7: ri,k = max(0,wi,k − xi −φa − (k−1) · pa)
8: rmax

i = max(rmax
i ,ri,k)

9: until
⌈

wi,k−xi−φa
pa

⌉
0
≤ k

10: return rmax
i

Similar to the algorithms 3 and 2, algorithm 4 performs a
response time calculation for each value of xi from Xi (line
2). The computed value of wi,k in each iteration (line 6) is
performed by solving equation 6. This equation takes into
account that the analyzed task Ti is an added task, thus it
can not be activated before a time φi + xi after the start of
the transition busy window. The equation starts with a value
of w0

i,k equal to xi and is solved iteratively. Note that for a
large value of φi, jobs of Ti may fall outside the transition
busy window. In this case, as can be seen in the first clause
in equation 6, the analyzed task Ti does not contribute to the
calculation of wi,k.

wn+1
i,k = min(k,

⌈wn
i,k − xi −φi

pi

⌉
0
) · cmax

i +

∑
∀Tu∈hpu(Ti)

η
+
u (wn

i,k) · cmax
u +

∑
∀Tc∈hpc(Ti)

η
+
c (xi) · cmax

c +

∑
∀Ta∈hpa(Ti)

⌈wn
i,k − xi −φa

pa

⌉
0
· cmax

a (6)

Line 7 of the algorithm computes the response time of the
job Ti,k within wi,k. In case no jobs of Ti are activated within the
transition busy window, the computed response time is equal
to 0. Otherwise, the response time of the considered job Ti,k
is computed by subtracting from wi,k the distance between the
transition busy window start and the activation instant of Ti,k.
If additional jobs of Ti could be activated within wi,k (line 9),
the calculation is repeated for k = k +1 (line 5), otherwise it
terminates. The maximum over all ri,k calculated for all values
of xi represents the worst-case response time of Ti across the
scenario change (line 8).

VI. ANALYSIS FOR MULTI-SCENARIO DISTRIBUTED
SYSTEMS

So far, we performed the worst-case response time analysis
across a SC for multi-scenario uniprocessor systems (Sec-
tion V). In the following, we extend our approach to analyze
response times across a SC for multi-scenario distributed
systems.

Methods performing response time analysis for distributed
systems already exist [2] [13] [9]. However, these methods
are only suitable for single scenario systems or systems
with mutual exclusive scenario executions. Applying these
techniques in their current form to the analysis across a SC
would require merging both scenarios in a single one, during
which both task sets are allowed to execute. This may result
in very pessimistic calculated response times.

The method we propose for the response time analysis
across a SC on distributed systems is an adaptation of the
compositional analysis methodology presented in [9]. In the
next section, we give an overview about the compositional
analysis. In Section VI-B, we show how to adapt the compo-
sitional analysis to calculate response times across a SC for
distributed systems.

A. Compositional Analysis

The compositional analysis methodology alternates local
scheduling analysis and event model propagation. First, all
external event models at the system inputs are propagated
along all system paths until an initial activating event model
is available for each task. This approach is safe since, on the
one hand scheduling cannot change an event model period,
and on the other hand, scheduling can only increase an event
model jitter [15].

After propagating the external event models, global system
analysis is performed. A global analysis step consists of two
phases [10]. In the first phase local scheduling analysis (best-
case and worst-case scheduling analyses) is performed for each
resource and event models at task outputs are calculated. The
following equation shows the output event model calculation
for a given task Ti:

pout
i = pin

i

jout
i = jin

i +(rmax
i − rmin

i) (7)

Ti output event model period obviously equals its activation
period. The difference between its worst-case and best-case
response times (the response time jitter) is added to its
activating event model jitter, yielding the output event model
jitter.

In the second phase of the global analysis step, all output
event models are propagated to the inputs of the next compo-
nents. It is then checked if the first phase has to be repeated
because some activating event models are no longer up-to-
date, meaning that a newly propagated output event model is

different from the output event models that was propagated in
the previous global analysis step. Analysis completes if either
all event models are up-to-date after the propagation phase, or
if an abort condition, e. g. the violation of a timing constraint
has been reached.

B. Compositional Analysis For Multi-Scenario Systems

The main problem when analyzing response times across a
SC in a multi-scenario distributed system, is that the worst-
case response time of a given task under analysis is not
necessarily obtained when the task is activated within the
transition busy window. This situation is explained using the
following example.

Fig. 4 - DISTRIBUTED SYSTEM EXAMPLE

Figure 4 shows a system example consisting of 7 tasks (T1
to T7) mapped on three resources (R1 to R3). We assume static
priority preemptive scheduling on the resources R1 and R3 with
priorities assigned as follows: T1 > T2 > T3 > T4 and T6 > T7.
S1, S2, S4 and S7 represent the event sources at the system
inputs. Task T1 is assumed to be a completed task, T2, T3 and
T5 are added tasks, while T4, T6 and T7 are unchanged tasks.
The focus will be on the worst-case response time calculation
of T4 across a SC. When a SC occurs in the system, executions
of the completed task T1 may delay the executions of several
jobs of T2 activated after the SCR. This may lead to a burst
of events at the output of T2. This burst of events is then
propagated through the task T5 on R2 to the task T3. However,
until this burst of events - which is a consequence of the SC -
arrives at T3 input, the transition busy window may already be
finished on R1. Therefore, the effect of the transient overload
on the resource R1 due to the SC may not be limited to the
transition busy window, but may be recurrent. Therefore, for
the worst-case response time calculation of T4 across the SC, it
may not be sufficient to consider only its jobs activated within

the transition busy window, but we may also have to consider
its jobs activated within the next busy windows.

The previous example illustrates how difficult it is to predict
the effect of the transient overload after a SCR on a given
resource. As a consequence of this unpredictability it turns
to be very difficult to describe the exact timing behavior of
events at tasks outputs. Depending on the recurrent transient
overload after a SCR, the jitter interval size at outputs of
unchanged and added tasks may namely vary over time. For
instance, jobs of T4 may be delayed by executions of the higher
priority tasks T1 and T2 during the transition busy window.
This may lead to a burst of events at T4 output, i.e. to a
large calculated jitter interval at T4 output. After the end of
the transition busy window, and before the transient overload
effect is propagated to the input of T3, jobs of T4 may only be
delayed by executions of T2, resulting in a smaller calculated
jitter interval at T4 output. When the transient overload effect
arrives at T3 input, T4 jobs may experience longer response
times, resulting again in a large calculated jitter interval at T4
output.

Since output jitter turns into input jitter of connected com-
ponents, a variable jitter interval size at T4 output results in
a variable jitter interval size at T6 input. This may strongly
increase the response time analysis complexity on the resource
R3 across the SC.

To overcome this problem, we need to calculate a jitter
interval for each task, that covers all possible jitter interval
sizes at the task output resulting from the the recurrent tran-
sient overload after a SC from an old to a new scenario. This
approach is safe since a smaller jitter interval is contained in a
larger jitter interval. The calculation is performed by extending
the compositional methodology presented in Section VI-A in
the following way.

As usual, all external event models in the system inputs are
propagated along all system paths until an initial activating
event model is available for each task. Then, global system
analysis is performed. In the first phase, two local scheduling
analysis types are performed for each resource: first, we
perform the classical scheduling analysis that assumes mutual
exclusive scenario executions for the old and the new scenario.
Then, we perform the scheduling analysis that calculates the
task response times across the SC during the transition busy
window as shown in Section V (note that for the best-case
scheduling analysis, the task minimum core executions times
could be used as best-case response times). From the obtained
response times, we calculate for each task a response time
interval in which all its observable response times may fall into
(i.e. as well its response times during the transition busy win-
dows as its response times assuming mutual exclusive scenario
executions). Using this calculated response time interval, we
can now calculate for each task, an output period and an output
jitter interval, that covers all possible jitter interval sizes at its
output. The calculation is performed according to equation 7.

The second step of the global analysis is identical to the one
in Section VI-A, i.e. the output event models are propagated
to the inputs of the next components and the global analysis

is repeated until event models convergence, or if an abort
condition has been reached.

VII. CONCLUSION

The set of executed tasks in modern hard real time systems
may change over time. During this change - called scenario
change - executions from different task sets may interfere
with each other leading to a transient overload situation in
the system. Thus, it is necessary to verify that no timing
requirements are missed during a scenario change.

In the first part of the paper, we presented a scheduling anal-
ysis technique allowing to calculate task worst-case response
times across a scenario change in single resource systems
under fixed priority preemptive scheduling. While, previous
scheduling analysis techniques are limited to purely periodic
task activation patterns, we allow more complex activating
event models for the tasks. This extension is an essential step
towards a scenario aware analysis for distributed systems.

In the second part of the paper, we identified the effects
that a scenario change could have in distributed systems on
task activation patterns and response times. Then, we proposed
a new approach methodology adapted for the response time
analysis across a scenario change for multi-scenario distributed
systems.

REFERENCES

[1] R. L. Cruz. A calculus for network delay. IEEE Transactions on
Information Theory, 37(1):114–141, January 1991.

[2] K. Gresser. An event model for deadline verification of hard real-time
systems. In Proceedings 5th Euromicro Workshop on Real-Time Systems,
pages 118–123, Oulu, Finland, 1993.

[3] J. J. Gutierrez, J. C. Palencia, and M. G. Harbour. On the schedulability
analysis for distributed hard real-time systems. In Proceedings 9th
Euromicro Workshop on Real-Time Systems, pages 136–143, Toledo,
Spain, June 1997.

[4] Marek Jersak. Compositional Performance Analysis for Complex Em-
bedded Applications. PhD thesis, Technical University of Braunschweig,
2004.

[5] H. Kopetz and G. Gruensteidl. TTP - a time-triggered protocol for fault-
tolerant computing. In Proceedings of the 23rd International Symposium
on Fault-Tolerant Computing, pages 524–532, 1993.

[6] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Ar-
bitrary Deadlines. In Proceedings of the Real-Time Systems Symposium,
pages 201–209, 1990.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[8] Jorge Real and Alfons Crespo. Mode change protocols for real-time
systems: A survey and a new proposal. Real-Time Syst., 26(2):161–197,
2004.

[9] K. Richter. Compositional Scheduling Analysis Using Standard Event
Models. PhD thesis, Technical University of Braunschweig, 2004.

[10] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for
heterogeneous multiprocessor SoC. In Proceedings 24th International
Real-Time Systems Symposium (RTSS’03), Cancun, Mexico, December
2003.

[11] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priority-driven preemptive scheduling. Technical Report
UM-CS-1989-060, 31, 1989.

[12] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design Space
Exploration of Network Processor Architectures. In Mark Franklin,
Patrick Crowley, Haldun Hadimioglu, and Peter Onufryk, editors, Net-
work Processor Design Issues and Practices, Volume 1, chapter 4, pages
55–90. Morgan Kaufmann, October 2002.

[13] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proceedings International Sym-
posium on Circuits and Systems (ISCAS), Geneva, Switzerland, 2000.

[14] K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed
Real-Time Systems. Microprocessing and Microprogramming - Euromi-
cro Journal (Special Issue on Parallel Embedded Real-Time Systems),
40:117–134, 1994.

[15] K. W. Tindell. An extendible approach for analysing fixed priority hard
real-time systems. Journal of Real-Time Systems, 6(2):133–152, Mar
1994.

[16] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in
priority pre-emptively scheduled systems. In IEEE Real-Time Systems
Symposium, pages 100–109, 1992.

[17] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI – A
system model for heterogeneously specified embedded systems. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 10(4),
August 2002.

VIII. APPENDIX

A. Arrival Function

Table I shows the mathematical representation of the arrival
functions defined in Section III-B, using the event model
parameters. Notice that, the sporadic class generalizes the class
of periodic models, in the sense that only the η− functions are
set to zero. That means, every sporadic event model is in the
worst-case a periodic event model.

TABLE I - THE ARRIVAL FUNCTIONS η+ AND η−

η+(∆t) η−(∆t)
model periodic & sporadic periodic sporadic

simple
⌈

∆t
p

⌉ ⌊
∆t
p

⌋
0

w/ jitter
⌈

∆t+ j
p

⌉
max

(
0,

⌊
∆t− j

p

⌋)
0

w/ burst min
(⌈

∆t+ j
p

⌉
,
⌈

∆t
dmin

⌉)
max

(
0,

⌊
∆t− j

p

⌋)
0

Fig. 5 - EXAMPLE OF A PERIODIC WITH JITTER EVENT MODEL

(p = 4, j = 1)

For a better understanding of arrival functions, consider an
example of a periodic with jitter event model where (p, j)
= (4,1). This event model is visualized in figure 5. Each
dashed box indicates a jitter interval of length j = 1. The jitter
intervals repeat with the event model period p = 4. The figure
additionally shows a sequence of events which satisfies the
event model, since exactly one event falls within each jitter
interval box, and no events occur outside the boxes.

Figure 6 shows the graphical representation of the arrival
functions corresponding to the periodic with jitter event model

Fig. 6 - UPPER AND LOWER ARRIVAL FUNCTIONS FOR THE EVENT MODEL

(p = 4, j = 1)

in figure 5. The event arrival functions are piecewise constant
step functions with unit-height steps, each step corresponding
to the occurrence of one event. Note that at the points where
the functions step, the smaller value is valid for the upper
event arrival function, while the larger value is valid for the
lower event arrival function (indicated by dark dots). For
any time interval of length ∆t, the actual number of events
is bound by the upper and lower event arrival functions.
Event arrival functions resemble arrival curves [1] which have
been successfully used by Thiele et al. for compositional
performance analysis of network processors [12].

To get a better feeling for event arrival functions, imagine a
sliding window of length ∆t that is moved over the (infinite)
length of an event stream. Consider ∆t = 4 (gray vertical bar
in figure 6). The upper event arrival function indicates that
at most 2 events can be observed during any time interval
of length ∆t = 4. This corresponds e.g. to a window position
between t0 + 8.5 and t0 + 12.5 in figure 5. The lower event
arrival function indicates that no events have to be observed
during ∆t = 4. This corresponds e. g. to a window position
between t0 +12.5 and t0 +16.5 in figure 5.

B. Distance Function

TABLE II - THE DISTANCE FUNCTIONS δ− AND δ+

δ−(n) δ+(n)
model periodic & sporadic periodic sporadic

simple (n−1)p (n−1)p ∞

w/ jitter max(0,(n−1)p− j) (n−1)p+ j ∞

w/ burst max((n−1)dmin,(n−1)p− j) (n−1)p+ j ∞

Table II shows the mathematical representation of the dis-
tance functions defined in Section III-B, using the event model
parameters. Note that the distance function is the inverse of
the arrival function.

In the the periodic with jitter event model in figure 5, the
minimum distance between 2 events is 3 time units (e.g. the
distance between the event activated at t0 + 9 and the event
activated at t0 + 12), and the maximum distance between 2
events is 5 time units (e.g. the distance between the event
activated at t0 +12 and the event activated at t0 +17).

