
Combined Approach to System Level Performance
Analysis of Embedded Systems

Simon Künzli
Siemens Building

Technologies Group
Switzerland

kuenzli@ieee.org

Arne Hamann Rolf Ernst
TU Braunschweig

Germany
{arne|ernst}@ida.ing.tu-bs.de

Lothar Thiele
ETH Zürich
Switzerland

thiele@tik.ee.ethz.ch

ABSTRACT
Compositional approaches to system-level performance anal-
ysis have shown great flexibility and scalability in the design
of heterogeneous systems. These approaches often assume
certain system architectures and application domains, and
are thus tailored to give tight analysis results for specific
systems. We consider two different compositional analysis
methods. Both methods have their particular strengths for
different architectures and applications. In this paper, we
aim to enhance the analysis capabilities for these techniques.
A method for event model conversion allows us a seamless
integration of the two methods. Finally, we present a de-
tailed case study to show the applicability and benefits of
the enhanced performance analysis technique.

Categories and Subject Descriptors
C.0 [Computer Systems Organizations]: General—
Modeling of Computing Architectures

General Terms
Performance, Experimentation

1. INTRODUCTION
The increasing number of transistors that may be inte-

grated into a single chip leads to more and more complex
embedded systems. To properly design such a system, the
developers need feedback on system properties of their de-
sign already in an early design phase. This is accomplished
by performance analysis techniques that can be based al-
ready on very abstract system models.

Over the last decade, several analytical methods for per-
formance analysis of embedded systems were proposed, ex-
amples can be found in [10, 19, 9, 16, 11, 4, 15, 6]. Most of
them are specialized and dedicated to a specific application
domain, whereas others try to be general enough to serve
for many different application scenarios. These methods all
have their particular strengths, e.g. in terms of supported
scheduling techniques, or models of computation, but also
expose weaknesses when dealing with systems they were not
designed to cope with.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

The heterogeneity of nowadays embedded systems chal-
lenges state-of-the-art performance analysis methods with
respect to analysis capabilities and accuracy. Modular de-
sign approaches have been proposed that allow to compose
analysis of different resource sharing strategies. They share
a similar overall analysis strategy but use different computa-
tional models. They have demonstrated high modeling accu-
racy and simplicity for certain areas but are less appropriate
for others.

For example, the tool, SymTA/S [6] (Symbolic Timing
Analysis for Systems), can easily be extended with new anal-
ysis libraries like ERCOSek and CAN from the automotive
domain due to the easy modeling of activation and execu-
tion dependencies while the Modular Performance Analysis
toolbox (MPA) [18] based on Real-Time Calculus [1] offers
a very intuitive and efficient way to capture scheduling hi-
erarchies and distributed systems.

Rather than searching for a unified, more complex model,
we exploit the common compositional system level analy-
sis strategy to couple these two methods. In this paper, we
explain the models of SymTA/S and MPA, the necessary in-
terfaces, and the analysis integration. We give a complicated
example with dependencies and feedback to demonstrate the
seamless analysis interaction and the accuracy benefits over
using the individual tools alone.

2. COMPOSITIONAL SYSTEM LEVEL
ANALYSIS

In this section we explain the basic concepts of the so-
called compositional system level analysis methodology, that
we use in this paper to integrate the performance analysis
approaches SymTA/S and MPA. We first introduce the task
model (Section 2.1) which is utilized by local component
analysis for performance analysis (Section 2.2). Finally, we
explain the compositional system level analysis loop solv-
ing the system level performance analysis problem for dis-
tributed systems consisting of multiple dependent compo-
nents (Section 2.3).

2.1 Task model
The task model utilized by state-of-the-art performance

analyses assumes that tasks are associated with best-case
and a worst-case core execution times (BCET/WCET), i.e.
minimum and maximum execution times assuming exclusive
access to an executing resource.

Tasks are activated and executed due to activating events.
Activating events can be generated in a multitude of ways,
including expiration of a timer, external or internal inter-
rupt, and task chaining. Each task is assumed to have one
input FIFO. A task reads its activating data from its input
FIFO and writes data into the input FIFO of a dependent
task. A task may read its input data at any time during one



execution. The data is therefore assumed to be available at
the input during the whole execution of the task. We also
assume that input data is removed from the input FIFO at
the end of one execution.

Note that the possible timing of activating events are cap-
tured by so-called event models. Two well known event mod-
els, the standard event models used by SymTA/S [6] and the
arrival curves of the MPA [14, 15] will be presented in Sec-
tions 2.4.1 and 2.4.2, respectively.

2.2 Local component analysis
Tasks are mapped on computation or communication re-

sources to execute. Usually, multiple tasks share the same
resource, therefore two or more tasks may request the re-
source at the same time. In order to arbitrate request con-
flicts, a resource is associated with a scheduler which selects
a task to which it grants the resource out of the set of ac-
tive tasks according to some scheduling policy. Other active
tasks have to wait.

Instead of considering each task activation individually, as
simulation does, local component analysis [8, 5, 1] abstracts
from individual activating events to event streams. Based
on these event streams, analysis can systematically derive
worst-case scenarios, which in-turn allow to calculate worst-
case (sometimes also best-case) task response times, i.e. the
time between task activation and task completion, for all
tasks sharing a resource under the control of a scheduler.

Note that the above mentioned analyses guarantee that
all observable response times fall into the calculated [best-
case, worst-case] interval. These analyses are therefore called
conservative.

Additionally, local component analyses determine the
communication behavior at the output of the analyzed tasks
by considering the effect of scheduling. Therefore, it is usu-
ally assumed that tasks produce events at their output at
the end of each execution. Just like the timing of the activat-
ing events, the output timing behavior is also captured by
event models. The way in which these output event models
are calculated depends on the underlying analysis technique.

2.3 Compositional System Level Analysis Loop
The basic idea of the compositional system level analysis

is visualized in Fig. 1, see e.g. [6, 13, 1, 15].

Figure 1: Compositional system level analysis loop.

Compositional system level analysis alternates local schedul-
ing analysis as explained in Section 2.2 and output event
model propagation. More precisely, in each global iteration
of the compositional system level analysis, local analysis
is performed for each component to derive response times
and output event models. Afterwards, the calculated output
event models are propagated to the connected components,
where they are used as activating event models for the sub-
sequent global iteration.

Obviously, this iterative analysis represents a fix-point

problem. For the case that after an iteration all calculated
output event models stay unmodified, convergence is reached
and the last calculated task response times are valid. This
holds for analysis techniques that do not contain a state
in the analytical model, otherwise not only unchanged out-
put event models, but also steady internal state has to be
considered as convergence criterion (e.g. for the models pre-
sented by [2]). In the case where no convergence is reached,
no statement can be made about the analyzed system.

Note that for the compositional system level analysis to be
applicable, the input event models of all components need
to be known or must be computable by local component
analysis. For systems containing feed-back between two or
more components this is not the case, and thus system level
analysis cannot be performed without additional measures.
Thereby, the concrete strategy to overcome this problem
depends on the specific component types and their input
event models. One possibility is the so-called starting point
generation of SymTA/S which is explained in Section 2.4.1.

2.4 Formal Analysis Techniques
The compositional system level analysis methodology pre-

sented in Section 2 defines very clear component interfaces.
The only requirements which are imposed to components in-
cluded into the system level analysis loop is that they accept
event models at their inputs and deliver output event mod-
els as local analysis results. The compositional system level
analysis therefore represents an adequate framework to in-
tegrate different performance analysis approaches which we
exploit in this paper.

In this section we shortly introduce two performance anal-
ysis techniques that we integrate in this paper: SymTA/S [6]
and MPA [14, 1, 15]. Note that the technical details of the
integration and the benefits of the resulting integrated per-
formance analysis are discussed in Sections 3 and 4, respec-
tively.

2.4.1 SymTA/S
The system level performance analysis approach SymTA/S

(Symbolic Timing Analysis for Systems) is based on the
principles of compositional system level analysis explained
in Section 2. At the component level SymTA/S uses for-
mal analysis techniques based on the busy window tech-
nique proposed by Lehoczky [8]. Currently, SymTA/S of-
fers local analysis techniques for fixed priority scheduling
(preemptive and non-preemptive), TDMA, Round Robin,
EDF, CAN, and ERCOSek. SymTA/S uses so-called stan-
dard event models as interface to couple local component
analyses according to the compositional system level analy-
sis methodology (Section 2).

Standard event models are described by three parameters:
P , J , and D. A periodic event model has one parameter P
and states that each event exactly arrives periodically every
P time units. This simple model can be extended with the
notion of jitter, leading to a periodic with jitter event model.
Such an event model is described by two parameters P, J .
It generally occurs periodically, but it can jitter around its
exact position within a jitter interval J . If the jitter is larger
than the period, then two or more events can occur at the
same time, leading to bursts. To describe a bursty event
model, the periodic with jitter event model can be extended
with a D parameter that captures the minimum distance
between events within a burst.

Standard event models only capture key timing aspects
such as periods, send/receive message jitters, etc., and ignore
details of the concrete components. They therefore represent
a suitable and easy interface for the coupling of heteroge-
neous performance analysis approaches.



In order to enable a system level performance analy-
sis of distributed systems with feed-back between two or
more components, SymTA/S uses the so-called starting
point generation to determine initial input event models for
all components. The standard starting point generation in
SymTA/S consists of propagating the external event models
along all task chains in the system until an initial activating
event model is available for each task [13]. This approach is
safe since on one hand scheduling cannot change an event
model period. On the other hand, scheduling can only in-
crease an event model jitter [16]. Since a smaller jitter in-
terval is contained in a larger jitter interval, the minimum
initial jitter assumption is safe. Details about the output
event model calculation and the starting point generation
in SymTA/S can be found in [6, 13].

In this paper the abstraction of standard event models
to model component interactions will be used to integrate
the Real-Time Calculus presented in Section 2.4.2 into the
compositional analysis engine of SymTA/S.

2.4.2 Modular Performance Analysis MPA
In [14], Thiele et al. present Real-Time Calculus (RTC), a

mathematical model for system-level performance analysis
of embedded systems. The corresponding modular analysis
method for distributed embedded systems [1, 15] is based on
arrival curves and service curves which characterize work-
load and processing capabilities, respectively. A toolbox for
the modular performance analysis (MPA) is available, see
[18], which has been used for the experiments in this paper.

For a given event stream, let R(s, t) denote the number
of events that arrive in the time interval [s, t). The upper
arrival curve, denoted by αu(∆) gives an upper bound on
the number of events in any interval ∆. Similarly, a lower
bound on the number of events arriving is given by a lower
arrival curve αl(∆). R, αu and αl are related as follows:

∀s : αl(∆) ≤ R(s, s + ∆) ≤ αu(∆) (1)

Arrival curves describe timing properties of a whole class
of event streams, for example the average rate, burstiness,
long-term and short-term behavior. In a similar way, prop-
erties of resources are described by service curves, see [14].
Upper and lower arrival curves can also be given for the
standard event models that are used in SymTA/S, see for
example Fig. 2.

Figure 2: Arrival curves for Standard Event Models.

For efficiency of computation, arrival and service curves
can be represented by a finite aperiodic and a periodic part,
see [17, 18]. The first is used to describe the bursty behavior,
the latter describes the long term behavior and is repeated
periodically with a period k. Figure 3 shows an upper arrival
curve with an aperiodic part up to time interval ∆0 and a
periodic part with a period k that is repeated infinitely of-
ten. This specific representation of arrival and service curves
significantly decreases the computational effort of its imple-
mentation in the MPA toolbox.

Using MPA, it is possible to determine worst-case bounds
on on-chip memory requirements, overall throughput and

Figure 3: Arrival curve with aperiodic and periodic
part.

delay, based on the arrival curves capturing the workload,
a task graph describing the structure of the application, a
mapping of the tasks to processing and communication units
and resource sharing policies on these resources. MPA sup-
ports the analysis of computation and communication tasks,
several activation schemes such as OR and AND, and sev-
eral scheduling policies such as Fixed-Priority, EDF, GPS
or TDMA. As resource capabilities are first class citizens of
the analysis method, hierarchical scheduling methods can
be analyzed by an arbitrary combination of the above ba-
sic schemes. In addition, various forms of timing and event
correlations between streams and within streams can be con-
sidered. Furthermore, it is possible to give bounds on the uti-
lization of the processing elements in the system and to get a
description of the output event stream after being processed
in the form of an arrival curve. For seamless integration into
the compositional analysis loop provided by the SymTA/S
tool, we need now to convert these output arrival curves into
standard output event models, which is described in the next
section.

3. COMBINATION OF APPROACHES
As described above, the compositional system analysis is

based on either standard event models for SymTA/S, or on
arrival curves in the case of MPA. In order to integrate MPA
into the analysis loop used in the SymTA/S tool, we have
to find a method to convert arrival curves into standard
event models and vice versa. In addition to this conversion,
a new approach to determine a feasible starting point for
the iterative analysis needs to be developed. These topics
are discussed in the following sections.

3.1 Event Model Conversion
In this section, we describe how the event model used in

MPA, i.e. the arrival curves, can be obtained from SymTA/S
event models and vice versa. The translation from SymTA/S
event models to MPA arrival curves is lossless and straight-
forward, as PJD models can directly be mapped to arrival
curves. For example, a periodic event model with jitter can
be represented by staircase functions with a step width equal
to the period T , and a gap between the upper and lower ar-
rival curve that is equal to the jitter 2J . For a graphical
representation and other examples see Fig. 2.

The opposite direction is more involved. The following
algorithm describes the necessary steps to obtain SymTA/S
PJD models from general arrival curves. Please note, that
the translation algorithm is not lossless but provides a safe
approximation.

Algorithm 1. Approximation algorithm for PJD model
from arrival curve

Input: αu,αl Upper and lower arrival curve



Figure 4: Approximated Standard Event Model
(PJD Curve) for generic Event Arrival Curves.

Output: P ,J ,D(Period, Jitter, and minimum Distance)

Step 1: Determine D: If αu(0+) > 1 then D = 0. Other-
wise, D = min{D0 : αu(D0) = 2}.

Step 2: Determine P : With the period k of the periodic part
of αu, the starting point ∆0 and the offset o with
o = αu(∆0 + k)− αu(∆0), we set P = k

o
.

Step 3: Determine initial J : Define an upper curve γu cor-
responding to an event stream with period P , i.e.
1 event every P time units. Then, Ju = min{J0 :
γu(∆ + J0) ≥ αu(∆), ∀0 ≤ ∆ ≤ ∆0 + k}.

Step 4: Adjust J : Define a lower curve γl corresponding
to an event stream with period P , i.e. 1 event ev-
ery P time units. J l = min{J0 : γl(∆ − J0) ≤
αl(∆), ∀0 ≤ ∆ ≤ ∆0 + k}. Set J = max{Ju, J l}.

Algorithm 1 describes a general method to derive a PJD
model from any given arrival curve with o > 0, i.e. a non-
zero average rate. Otherwise, the approximation with a PJD
model does not make sense and a purely bursty approxi-
mation would fit the curves better. If we know the period
already for some reasons, we can actually skip Step 2. For
example, a local component with a single input stream does
not change its period.

In Fig. 4 an example of an arrival curve and its PJD ap-
proximation is shown. Algorithm 1 delivers PJD models that
represent conservative approximations of the given arrival
curves. This can be observed graphically in Fig. 4 as the
arrival curves representing the PJD model coincide or are
larger than the upper curve, and coincide or are smaller
than the lower curve, respectively.

3.2 Starting Point Generation
As mentioned in Section 2.3 a so-called starting point

needs to be generated under certain circumstances to suc-
cessfully apply compositional system level performance anal-
ysis to a distributed embedded system.

The way in which such a starting point is generated de-
pends on the considered component. The starting point gen-
eration in the case of standard SymTA/S components was
explained in Section 2.4.1. A similar approach can be pur-
sued to generate a starting point for Real-Time Calculus
analyzed components within the SymTA/S engine. One pos-
sibility is to propagate the largest period, i.e. generating the
least average load, occurring at the component inputs to its
outputs and to assume a jitter of zero.

This black-box approach leads to a conservative start-
ing point since the application model utilized by Real-Time

Path MPA SymTA/S Combination Constraint
S1→S4: 170 170 170 200
S2→S5: 430 376 376 400
S3→S6: 412 422 389 400

Table 1: End-to-End path latencies obtained with
the different approaches.

Calculus cannot lead to a period increase. The only period
changing application property utilized in the Real-Time Cal-
culus model is the OR task activation. This OR activation,
however, leads to an decrease of the period [7], and thus to
a higher average load.

Note that in the case of components analyzed by a perfor-
mance analysis approach supporting for instance rate tran-
sitions, such a black-box approach is not possible and the
responsibility for the starting point generation must be del-
egated to the components themselves.

4. EXPERIMENTAL RESULTS
In this section we consider the distributed example system

in Fig. 5 to demonstrate the efficiency and benefits of the
proposed combined performance analysis approach.

The system consists of two computational resources in-
terconnected via a round robin arbitrated bus. CPU 1 exe-
cutes four tasks which are scheduled according to a hierar-
chical scheduling policy with TDMA resource sharing at the
top level. T1 and T2 are dispatched by a priority scheduled
server and share 60% of the CPUs service capacity. T3 and
T4 are each assigned 20% of the available CPU time. As the
scheduling scheme in CPU 1 is hierarchical, MPA is used for
the combined performance analysis approach.

CPU 2 executes four tasks, which are scheduled by the
priority based ERCOSek operating system. The speciality
of CPU 2, which needs to be considered for performance
analysis, is the cooperative behavior of the tasks T7 and
T8. Generally, T7 has a higher priority than T8. However,
due to the cooperative policy T7 can interrupt T8 only at
specific points in time once T8 is executing. In the given
example system T8 can be interrupted by T7 only after 2,
3, 4, 6, or 11 time units during its execution. More details
about ERCOSek can be found in [3]. For the combined per-
formance analysis approach CPU2 as well as the BUS are
analyzed by SymTA/S.

For correct operation the system has to satisfy three end-
to-end constraints: the maximum latency along the paths
S2 → S5 and S3 → S6 must be less than 400 time units,
and the maximum latency along the path S1 → S4 must
not exceed 200 time units.

4.1 Path Latency Estimation
In order to see the influence of the combined approach,

we analyzed the example system with (1) MPA only, (2)
SymTA/S only, and (3) the combination of the two ap-
proaches. The results of the three approaches are given in
Tab. 1. From the analysis results obtained for cases (1) and
(2) we find that the path latency constraints are violated.
Therefore, we would redesign the system, although the com-
bined analysis shows that the system perfectly meets the
constraints.

We observe that the worst-case latencies predicted by the
combined approach are more than 10% tighter than the re-
sults achieved by the single methods for some end-to-end
paths. Considering the small size and the simplicity of the
considered example system this represents a remarkable im-
provement of the analysis accuracy.



Figure 5: Distributed example system.

4.1.1 Analysis using MPA alone
To approximate the ERCOSek scheduler running on CPU

2 in the example with MPA where no built-in analysis tech-
nique for ERCOSek exists, we used a fixed-priority schedul-
ing for tasks T5 (highest priority) and T6 (second highest
priority). In order to determine the best-case and worst-case
response times of T7, it was assigned a higher and a lower
priority than T8, resp. T8 was analyzed the same way, i.e.
assuming to have a higher/smaller priority than T7.

Note that the analysis using these approximation for MPA
was only possible, because of the simple ERCOSek task con-
figuration chosen for the illustrative example. In fact only
the timing consequences of two cooperative tasks (T7 and
T8) needed to be considered. However, in the general case
the ERCOSek task behavior can be far more complicated
disabling an easy approximation by MPA. Examples are so-
called “Time Tables” specifying phase offsets between pe-
riodic tasks. Furthermore, “Alarms” use dynamic time-out
mechanisms and can be issued and disabled at any point
in time. Finally, scheduling-related OS routines can request
a significant amount of execution time at various priority
levels.

4.1.2 Analysis using SymTA/S alone
Since SymTA/S does not directly support hierarchical

scheduling policies, the timing behavior of the tasks running
on CPU 1 needs to be approximated in order to analyze
the example system using only SymTA/S. Figure 6 shows
one possible approximation using standard SymTA/S com-
ponents.

Figure 6: Approx. hierarchical scheduling on CPU1.

The FP server is modeled by the fixed-priority scheduled
CPU 1.1. In order to account for the reduced service capac-
ity of the FP server, which is due to the TDMA scheduling
policy used at the top hierarchy level, we introduce the ad-
ditional task X. X is activated every 10 time units and has
an execution demand of 4 time units. It therefore reduces
the service capacity of CPU 1.1 by the amount of resources
claimed by T3 and T4. The timing behavior of the TDMA-
scheduled tasks T3 and T4 is approximated by CPU 1.2. The
TDMA slot, which is allocated to the FP server is modeled
by the additional task Y .

Note that for the considered case the approximation of the
hierarchical scheduling on CPU 1 by SymTA/S was quite
straight-forward. However, in the general case, i.e. consider-
ing more complicated hierarchical scheduling policies with
several levels of hierarchy, similar approximations are far
more complicated and result in large overestimations of the
timing behavior.

4.2 Robustness to execution demand varia-
tions

In addition to the path latency estimations presented in
the last section, the SymTA/S tool also supports automatic
sensitivity analysis. The seamless integration of MPA into
the SymTA/S tool allows us to perform the sensitivity anal-
ysis across domain borders, e.g. enabling exploration of suit-
able regions of the task execution demand in our example
system. In Fig. 7, the feasible regions for task execution
demands for three tasks are given. If the task execution de-
mand lies in the feasible region, the path latency constraints
for the three paths in the system are met. For example, the
task execution demand for task T5 must lie below 16 time
units for the system to meet all timing constraints.

From Fig. 7 we can observe that especially for task T1
our example system exposes an interesting behavior to exe-
cution demand changes. Therefore, we further investigated
the influence of T1’s execution demand to the system path
latencies. In Fig. 8, we can see the inter-dependencies of a
variation in the task execution of T1 and the various path
latencies. For instance, if we slightly increase the task exe-
cution time of T1 from 23 to 24 time units, the path latency
of the feedback path from S3 to S6 drops significantly.

Note that a detailed study of such sensitivity analysis
plots allows the designer to judge the robustness of the
overall system to changes of individual parameters. In our



Figure 7: Feasible regions for task execution de-
mands of T1, C3, and T5. Feasible regions are light,
unfeasible regions are marked dark.

case study, we only varied one parameter at the time.
However, SymTA/S also supports multi-parameter varia-
tion [12]. With the results presented in this paper these
techniques can now also be applied across different analysis
domains.

Figure 8: Path latencies vs. task execution demand
for task T1.

5. ACKNOWLEDGMENTS
This work was partly funded through the European Net-

work ARTIST2.

6. CONCLUSIONS
In this paper, we presented a combined approach to sys-

tem level performance analysis of embedded systems. Using
this combined approach, we found better analysis results
compared to stand-alone analysis techniques. Furthermore,
we were able to perform robustness analysis across analy-
sis domain borders. We strongly believe that such combi-
nations of heterogeneous methods could be explored much
more, leading to further improved analysis capabilities and
accuracy for complex distributed embedded systems.

7. REFERENCES
[1] S. Chakraborty, S. Künzli, and L. Thiele. A general

framework for analysing system properties in
platform-based embedded system designs. In Proc. 6th
Design, Automation and Test in Europe (DATE),
pages 190–195, Munich, Germany, March 2003.

[2] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan.
Event count automata: A state-based model for
stream processing systems. In Proc. 26th IEEE
International Real-Time Systems Symposium (RTSS),
pages 87–98, Washington, DC, USA, 2005.

[3] ETAS: ERCOSEK V4.1 User’s guide.
[4] M. G. Harbour, J. J. G. Garćıa, J. C. P. Gutiérrez,

and J. M. D. Moyano. MAST: Modeling and analysis
suite for real time applications. In Proc. 13th
Euromicro Conference on Real-Time Systems ECRTS,
page 125, Washington, DC, USA, 2001.

[5] M. G. Harbour and J. C. P. Gutiérrez. Response time
analysis for tasks scheduled under EDF within fixed
priorities. In Proc. Real-Time Systems Symposium
(RTSS), pages 200–209, 2003.

[6] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter,
and R. Ernst. System level performance analysis - the
SymTA/S approach. IEE Proc. Computers and Digital
Techniques, 152(2):148–166, March 2005.

[7] M. Jersak, K. Richter, and R. Ernst. Performance
analysis for complex embedded applications.
International Journal of Embedded Systems, Special
Issue on Codesign for SoC, 2004.

[8] J. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In Proc. Real-Time
Systems Symposium, pages 201–209, 1990.

[9] A. Nandi and R. Marculescu. System-level
power/performance analysis for embedded systems
design. In Proc. 38th conference on Design automation
(DAC), pages 599–604, New York, NY, USA, 2001.

[10] C. Norström, A. Wall, and W. Yi. Timed automata as
task models for event-driven systems. In Proc. 6th
International Conference on Real-Time Computing
Systems and Applications (RTCSA), page 182,
Washington, DC, USA, 1999.

[11] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and
analysis of mixed time/event-triggered distributed
embedded systems. In Proc. 10th international
symposium on Hardware/software codesign (CODES),
pages 187–192, New York, NY, USA, 2002.

[12] R. Racu, A. Hamann, and R. Ernst. A formal
approach to multi-dimensional sensitivity analysis of
embedded real-time systems. In Proc. Euromicro
Conference on Real-Time Systems (ECRTS), Dresden,
Germany, July 2006.

[13] K. Richter. Compositional Performance Analysis. PhD
thesis, Technical University of Braunschweig, 2004.

[14] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In
Proc. International Symposium on Circuits and
Systems, pages 101–104, Geneva, Switzerland, March
2000.

[15] L. Thiele, E. Wandeler, and S. Chakraborty. A
stream-oriented component model for performance
analysis of multiprocessor dsps. IEEE Signal
Processing Magazine, 22(3):38—-46, May 2005.

[16] K. Tindell and J. Clark. Holistic schedulability
analysis for distributed hard real-time systems.
Microprocess. Microprogram., 40(2-3):117–134, 1994.

[17] E. Wandeler. Modular Performance Analysis and
Interface-Based Design for Embedded Real-Time
Systems. PhD thesis, Swiss Federal Institute of
Technology, September 2006.

[18] E. Wandeler and L. Thiele. Real-Time Calculus
(RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[19] T.-Y. Yen and W. Wolf. Performance estimation for
real-time distributed embedded systems. In Proc.
International Conference on Computer Design
(ICCD), pages 64–71, Washington, DC, USA, 1995.


