
Methods for Multi-Dimensional Robustness Optimization
in Complex Embedded Systems

Arne Hamann, Razvan Racu, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig, Germany

{hamann|racu|ernst}@ida.ing.tu-bs.de

ABSTRACT
Design space exploration of embedded systems typically focuses
on classical design goals such as cost, timing, buffer sizes, and
power consumption. Robustness criteria, i.e. sensitivity of the sys-
tem to variations of properties like execution and transmission de-
lays, input data rates, CPU clock rates, etc., has found less attention
despite its practical relevance.

In this paper we introduce multi-dimensional robustness metrics,
expressing the static and dynamic design robustness of a given sys-
tem, the former assuming a fixed parameter configuration, and the
latter including parameter adaptations as response to property vari-
ations. Additionally, we propose a metric measuring the robustness
gain that can be achieved through system reconfigurability.

Since determining multi-dimensional robustness is computation-
ally expensive we introduce efficient exploration methods based on
a stochastic sensitivity analysis technique capable of deriving upper
and lower robustness bounds for a given system with low computa-
tional effort. We demonstrate the robustness optimization methods
by means of a small but realistic case study.

Categories and Subject Descriptors
C.3 [Special-Purpose and application-based systems]: Real-
time and embedded systems; C.4 [Performance of systems]: Mod-
eling techniques; Performance attributes; Reliability, availability,
and serviceability

General Terms
Algorithms, Design, Performance, Reliability, Verification

1. INTRODUCTION
In the embedded systems design flow, design robustness to prop-

erty variations, such as execution and transmission delays, input
data rates, CPU clock rates, etc., is playing an increasingly impor-
tant role.

Generally, system robustness is desirable to account for estima-
tion errors in early design phases, minor changes of specifications,
bug fixes or later extensions and updates of the design to name just
a few of the many situations where tolerance of hardware and run
time system to modifications is expected. For instance, it is known
that small task core execution time modifications in systems with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

complex performance dependencies can have drastic non-intuitive
effects on the overall system behavior, and might lead to severe
performance degradation effects [10].

In the current state of practice, designers reserve some slack for
critical system parameters to ensure system robustness. A promi-
nent example is the bus load model, where designers limit the av-
erage bus utilization to ensure system functionality and extensibil-
ity [11].

While such design guidelines used to work reasonably well in
practice to ensure design robustness, they are gradually running
out of steam. The main reason for this is the growing size and com-
plex networked nature of modern embedded systems, making it ex-
tremely difficult to predict the effects of modifications on load and
timing. The complexity of the problem is additionally increased
by the large number of independently developed applications that
are integrated on the same system leading to unknown coupling ef-
fects or limitations. Examples are cars or aircrafts. Results are an
increasing design risk and non-extendable systems.

In this paper we address the application of formal models to ro-
bustness optimization. We first formulate the problem we address
in this paper (Section 2) and give a brief survey of related work
(Section 3). Afterwards, we introduce two formal robustness met-
rics for different design scenarios (Section 5), which are based on
sensitivity analysis (Section 4), and propose efficient exploration
methods considering them during design space exploration (Sec-
tion 6). The static design robustness expresses the robustness of
a given system with respect to property variation of a set of criti-
cal system properties for a fixed parameter configuration. The dy-
namic design robustness additionally includes counter actions (i.e.
system parameter adaptations) as response to property variations.
Based on the static and dynamic design robustness metrics we in-
troduce a metric measuring the robustness gain that can be achieved
through system reconfigurability. Finally, we demonstrate the pro-
posed metrics and techniques by means of a small but realistic case
study (Section 7).

2. PROBLEM STATEMENT
There are many notions of robustness in the context of embed-

ded system design. Frequently, robustness is associated with fault
tolerance, i.e. techniques that ensure that the system functions cor-
rectly in the presence of faults. Examples are task re-execution or
replication mechanisms [8].

However, in this paper we define robustness differently. We call
systems robust, if they can sustain property changes (e.g. WCETs,
periods, CPU clock rates, etc.) without severe degradation of sys-
tem functioning and performance. Consequently, the techniques
presented in this paper are meant to support the designer in con-
ceiving systems that are robust with respect to property variations.

Basically, we distinguish two different kinds of system property
variations: variations influencing the system load, and variations
influencing the system service capacity.

Reasons for system load variations are mainly changes of soft-
ware execution path lengths, communication volumes, and input
data rates. Scenarios under which such load variations can occur
during design time or even in the field include late feature requests,
product variants, software updates, and bug-fixes.

System service capacity variations are caused by modifications
of the execution platform, e.g. processor or communication link
performance changes. Such variations rarely occur in the field.
However, they they are of particular interest during early design
space exploration, where load requirements are still subject to
changes, and where different alternative system components and
architectures need to be evaluated.

Small but practical industrial case studies [14] have proven that
the influences of unpredicted property variations on the system per-
formance is an important issue during the design of complex em-
bedded systems. In the automotive industry, for instance, the global
system is decomposed into several components, which are inde-
pendently developed by multiple suppliers based on requirement
definitions. Once design is finished, the OEM integrates all compo-
nents, which is mainly a network integration problem, i.e. the OEM
must decide about bus topology, throughput, number of nodes, as
well as assignment of priorities and time slots.

This massively parallel design style leads to a variety of severe
problems. For instance, many system parameters, such as CAN
message IDs (priorities), are fixed quite early in the design flow,
where execution delays, periods, and transmitted data sizes are only
rough estimations and still subject to changes.

In order to account for such uncertainties, it is essential that ro-
bustness criteria are taken into account as early as possible in the
design flow, when system parameters can still be changed to op-
timize the design. By this means critical bottlenecks can be pre-
vented, which reduces the overall design risk.

Therefore, we present in this paper methods helping the designer
finding system parameter configurations, including the assignment
of free system parameters like scheduling (priorities, time slots,
etc.), leading to systems with high robustness (low sensitivity) to
property variations. In other words, the system shall meet its tim-
ing constraints even under considerable changes of system prop-
erties, including worst-case execution and communication times,
CPU clock rates, input data rates, etc. Note that we focus in this
paper on hard real-time constraints.

3. RELATED WORK
One approach to achieve design robustness is parameter adap-

tation at run-time, such as in adaptive scheduling strategies [9].
Adaptation is very efficient but comes with run-time overhead and
makes it more difficult to determine the resulting design robustness.
Consequently, adaptation potentially improves the system but does
not circumvent the need to determine system robustness.

If we want to determine robustness in a systematic way we need
sensitivity analysis. Sensitivity analysis determines the boundaries
between working and non-working systems for arbitrary proper-
ties. The one-dimensional sensitivity analyses approaches pre-
sented in [13, 15], for instance, can capture the effects of single
system property variations taking into account complex global tim-
ing effects. They are capable of calculating the maximum (or min-
imum) permissible values for large variety of system properties,
including worst-case execution times, communication volumes, in-
put data rates, processor, communication link performance, etc.

Once we have a sensitivity analysis available, we can take the
next step to include robustness as a regular design goal. For that
purpose we need formal robustness metrics that allow to quantify
robustness that are then used in design space exploration. The
approach presented in [5] defines robustness metrics using one-
dimensional sensitivity analysis techniques. However, since the
underlying sensitivity analysis is one-dimensional these robustness

metrics ignore dependencies between the considered system prop-
erties. For instance a small variation of one system property might
have drastic effects on the robustness potential of another system
property.

There are approaches that consider multi-dimensional robustness
optimization problems [4, 1]. However, these approaches are based
on very simple application models, which on the one hand facili-
tates the determination of the needed multi-dimensional robustness
data, but on the other hand also relativizes the expressiveness of the
obtained results.

In order to be significant, robustness optimization results must
be based on state-of-the-art performance models [7, 2] that are able
to tightly determine system performance properties such as timing,
buffer sizes, and power consumption. Unfortunately, exact multi-
dimensional sensitivity analysis approaches [12], which are appli-
cable to such performance models, cannot be adapted in a straight-
forward manner to robustness optimization. The main reason for
this is the high computational complexity of these methods, par-
ticularly for sensitivity analyses with dimensions greater than two,
prohibiting the evaluation of a large number of system configura-
tions for optimization.

In this paper we formally define expressive multi-dimensional
robustness metrics for different design scenarios. We show how
stochastic sensitivity analysis methods based on state-of-the-art
performance models can be utilized to efficiently bound the multi-
dimensional sensitivity properties of a given system with relatively
little computational effort compared to exact approaches.

4. SENSITIVITY ANALYSIS
The robustness optimization methods presented in this paper are

based on sensitivity analysis techniques.
Sensitivity analyses [13, 15] can capture the global effects of sys-

tem property variations. They are capable of calculating the bound-
aries representing the transition between working and non-working
systems with respect to a large variety of system properties, in-
cluding worst-case execution times, communication volumes, input
data rates, processor and communication link performance, etc.

Note that the techniques described in the remainder of this paper
are applicable to system properties subject to maximization (e.g.
worst-case execution times, processor and communication link per-
formance, etc.). However, all definitions and algorithms can be eas-
ily adapted to also cover system properties subject to minimization
(e.g. input data rates, etc.).

Modern sensitivity analysis approaches [13, 12] are independent
of the underlying application and architectural model. They can
thus be applied to arbitrary formal analysis engines. For the re-
mainder of this paper we assume that we dispose of a system eval-
uation function (Definition 1) capable of checking whether or not a
given system with specific system property values is working, i.e.
the system fulfills all constraints (maximum end-to-end latencies,
maximum jitters, maximum buffer sizes, etc.) and that no resource
is overloaded.

Definition 1 (System Evaluation Function)
Let Sc denote the system S with parameter configuration c and

P = {p1, . . . , pn} a set of system properties. The system evaluation
function fSc checks whether or not Sc is working if the property
values~v = (v1, . . . ,vn) are applied to the properties P .

fSc(P ,~v) =

true, if Sc is working with values~v for the

properties P
false, otherwise.

Given this system evaluation function we can, for instance, use
the approach in [13] to calculate the extreme values for arbitrary

system properties, which still lead to a working system. Calculat-
ing the extreme value for a single system property is called one-
dimensional sensitivity analysis, and can be formalized as follows:

Definition 2 (Original and extreme property values)
Let Sc denote the system S with parameter configuration c. For

a given system property p the original property value is denoted as
v(p). The extreme property value for p is denoted as v+

Sc
(p) and

defined as follows:

v+
Sc

(p) = max{x ∈ R+ | fSc(p,x)}

If we want to extend sensitivity analysis to the multi-dimensional
case, i.e. taking into account dependencies between multiple sys-
tem properties, we can use the results of one-dimensional sensi-
tivity analysis to bound the space containing the sought-after front
between working and non-working system property value combi-
nations. We call this multi-dimensional bound the bounding hyper-
cube.

Definition 3 (Bounding Hypercube)
Let Sc denote the system S with parameter configuration c. For a

given set of system properties P = {p1, . . . , pn} the n-dimensional
bounding hypercube HSc(P)⊂ Rn

+ is defined as follows:

HSc(P) =
[
min

(
v(p1),v+

Sc
(p1)

)
,max

(
v(p1),v+

Sc
(p1)

)]
× . . .×[

min
(

v(pn),v+
Sc

(pn)
)

,max
(

v(pn),v+
Sc

(pn)
)]

The exact boundary between working and non-working system
property combination is called sensitivity front. It can be formally
characterized using the notion of Pareto-optimality (Definition 4).

Definition 4 (Pareto-optimality)
Given a set V of n-dimensional vectors in Rn, the vector ~v =

(v1, . . . ,vn) ∈ V dominates the vector ~w = (w1, . . . ,wn) ∈ V iff for
all elements 1≤ i≤ n we have

1. minimization problem: vi ≤ wi and for at least one element l
we have vl < wl .

2. maximization problem: vi ≥ wi and for at least one element
l we have vl > wl .

A vector is called Pareto-optimal iff it is not dominated by any other
vector in V .

Notations:

• ~v.+ ~w (~v.− ~w) denotes~v Pareto-dominates ~w in the sense of
a maximization (minimization) problem.

• Ω+(V) (Ω−(V)) denotes the set of vectors in V which are
Pareto-optimal in the sense of a maximization (minimiza-
tion) problem.

The formal characterization of the sensitivity front is given in
Definition 5, which generalizes Definition 2.

Definition 5 (Sensitivity Front)
Let Sc denote the system S with parameter configuration c.

For a given set of system properties subject to maximization P =
{p1, . . . , pn} the sensitivity front is defined as the set of all work-
ing property value combinations which are not Pareto-dominated
by any other working property value combination:

F sens
Sc

(P) ={~x ∈HSc(P) | fSc(P ,~x)∧
6 ∃~y ∈HSc(P) : (fSc(P ,~y)∧~y.+~x)}

The sensitivity front separates the space of working and non-
working system property combinations. The robustness metrics
presented in Section 5 are based on the sensitivity information it
represents.

5. MULTI-DIMENSIONAL ROBUSTNESS
METRICS

In this section we introduce multi-dimensional robustness met-
rics. We therefore first discuss the notion of hypervolume (Sec-
tion 5.1), on which the proposed metrics are based. Afterwards,
we define static and dynamic design robustness metrics, the former
assuming a static system parameter configuration, and the latter
including dynamic parameter adaptations as response to property
variations (Sections 5.2 and 5.3). We explain several application
scenarios ranging from platform optimization to critical component
identification.

5.1 Hypervolume calculation
In this section we shortly discuss hypervolume calculation for

an arbitrary number of dimensions. We first introduce the notion of
absolute hypervolume (Section 5.1.1), which is for instance used
as a metric in evolutionary optimization. Based on the absolute
hypervolume we then define the weighted percentage hypervolume
(Section 5.1.2), which we use in this paper to define expressive
multi-dimensional robustness metrics.

5.1.1 Absolute hypervolume
According to Definition 6 we distinguish two different types of

hypervolumes: the inner and the outer hypervolume.

Definition 6 (Absolute Inner and Outer Hypervolumes)
We consider a n-dimensional hypercube H =

[
b1,b1

]
× . . .×[

bn,bn
]
⊂Rn

+ and a set of n-dimensional vectors V = {~v1, . . . ,~vm}
with ∀i~vi ∈H .

1. The inner hypervolume of V in H is denoted as λ
−
H (V) and

is defined as the volume of the space in H containing all
vectors ~w which are Pareto-dominated by at least one vector
~v ∈ V :

λ
−
H (V) = vol

{
~w ∈H | ∃~v ∈ V :~v.+ ~w

}
2. The outer hypervolume of V in H is denoted as λ

+
H (V) and

is defined as the difference between the volume of the hy-
percube H and the volume of the space in H containing all
vectors w Pareto-dominating at least one vector v ∈ V :

λ
+
H (V) = vol(H)−vol

{
~w ∈H | ∃~v ∈ V : ~w.+~v

}
Figures 1a and 1b visualize the difference between the inner and

the outer hypervolumes in the two dimensional case: the inner hy-
pervolume corresponds to the space covered by the lower step func-
tion, whereas the upper hypervolume corresponds to the space cov-
ered by the upper step function.

The inner hypervolume is usually used as a measure to compare
efficiency and to ensure diversity in evolutionary multi-objective
algorithms [18]. Especially for the second point it is required that
the hypervolume can be calculated efficiently. Therefore, several
efficient algorithms for hypervolume calculation were proposed in
the last years [3, 16, 17].

Given the algorithm for calculating the inner hypervolume
λ−(V), the outer hypervolume λ+(V) can be calculated accord-
ing to Algorithm 1.

First, the hypercube bounding V is calculated (lines 1−6). Af-
terwards, the origin of the vectors in V is translated to the extreme
point of the bounding hypercube (lines 7− 9). Note that the inner

(a) Absolute inner hypervolume (b) Absolute outer hypervolume

1: Absolute inner and outer hypervolumes

Algorithm 1 λ+(V)

Require: Set of n dimensional Pareto-optimal vectors V
Ensure: Outer hypervolume λ+ of V
1: for all i such that 1≤ i≤ n do
2: min[i] = ∞

3: max[i] =−∞

4: for all v ∈ V do
5: min[i] = min(min[i],v[i])
6: max[i] = max(max[i],v[i])
7: for all v ∈ V do
8: for all i such that 1≤ i≤ n do
9: v[i] = max[i]− v[i]

10: λ
+
tmp = 1

11: for all i such that 1≤ i≤ n do
12: λ

+
tmp = λ

+
tmp× (max[i]−min[i])

13: λ+(V) = λ
+
tmp−λ−(V)

hypervolume of the translated vector set corresponds to the space
containing all vectors dominating at least one vector of the initial
set V . Finally, λ+(V) is calculated by subtracting the inner hy-
pervolume of the translated vector set from the hypervolume of the
bounding hypercube (lines 10−13).

5.1.2 Weighted percentage hypervolume
Based on the absolute hypervolume we define the so-called

weighted percentage hypervolume.
For the percentage hypervolume the coordinates of the consid-

ered vectors are translated to the percentage increase with respect
to the corresponding minimum values of the bounding hypercube.
This is necessary for obtaining expressive and comparable results
in case that the coordinate values in some dimensions exhibit sig-
nificant differences in terms of absolute values (i.e. different orders
of magnitude).

Additionally, the weighted percentage hypervolume allows to at-
tach importance levels to each dimension, i.e. the space covered in
one dimension might be considered more important than that cov-
ered in other dimensions.

Definition 7 (Weighted Percentage Hypervolumes)
We consider a n-dimensional hypercube H =

[
b1,b1

]
× . . .×[

bn,bn
]
⊂Rn

+ and a set of n-dimensional vectors V = {~v1, . . . ,~vm}
with ∀i~vi = (vi1, . . . ,vin) ∈ H . Given a set of weights W =
{w1, . . . ,wn} with ∀iwi ≥ 1 the inner and outer weighted percent-
age hypervolumes of V are defined as follows:

λ̃
−
H (V ,W) = λ

−
H̃W

(ṼW) and λ̃
+
H (V ,W) = λ

+
H̃W

(ṼW)

Thereby:

• H̃W =
[
0, f1(b1)

]
× . . .×

[
0, fn(bn)

]
, and

• ṼW =
{
~v∗1, . . . ,~v

∗
m
}

, with~v∗i = (f1(vi1), . . . , fn(vin)),

• where fi(x) = x−bi
bi

×
(

x−bi
bi

× wi−1
10 +1

)
Figure 2a visualizes the absolute inner hypervolumes for two ex-

ample vectors sets. The corresponding inner percentage hypervol-
ume without weighting is shown in Figure 2b. As we can observe,
both vector sets cover exactly the same amount of space.

However, the vector set represented by the squares covers more
space in x-dimension, whereas the vector set represented by the di-
amonds covers more space in y-dimension. This is reflected by the
metric if we apply weighting. Figure 2c visualizes the percentage
hypervolumes with weight 3 for the x-dimension. As expected we
observe that the vector set represented by the squares has a higher
weighted percentage hypervolume compared to the vector set rep-
resented by the diamonds. The other way around, if we assign the
weight 3 to the y-dimension we observe, as shown in Figure 2d,
that the vector set represented by the diamonds results in a higher
weighted percentage hypervolume.

5.2 Multi-dimensional static design
robustness

The static design robustness (SDR) metric expresses the robust-
ness of a fixed parameter configuration for a given constrained sys-
tem with respect to a set of critical system properties. The SDR
metric is relevant for the design scenario where parameters are de-
fined and fixed early at design time and cannot be modified later to
reach compatibility for variants, bug-fixes, and updates.

Definition 8 (Multi-dim. static design robustness)
Let Sc denote the system S with parameter configuration c and

P = {p1, . . . , pn} a set of system properties. Given a set of weights
W = {w1, . . . ,wn} with ∀iwi ≥ 1, the multi-dimensional static de-
sign robustness of Sc with respect to P is defined as follows:

SDRSc(P ,W) = λ̃
−
HSc (P)(F

sens
Sc

(P),W)

Since it cannot be known beforehand to what extent the included
system properties are subject to change, it is desirable that a large
number of different possibilities can be sustained by the system.
Exactly this is expressed by the SDR metric. The more the system
can sustain property value variations, the higher the hypervolume
covered by the sensitivity front, and thus the higher the value of the
SDR metric.

Note that the SDR metric allows to weight the influence of the
included system properties by attaching weights to each dimension.
This enables the designer to account for different levels of relevance
linked to each of the considered system properties. Criteria for her
to assign these weights include the estimated probability of future
changes and the impact on the overall system performance.

(a) Absolute inner hypervolumes for two vector
sets

(b) Percentage inner hypervolumes without
weighting

(c) Percentage inner hypervolumes with weight
3 for x-dimension and no weighting for y-
dimension

(d) Percentage inner hypervolumes with no
weighting for x-dimension and weight 3 for y-
dimension

2: Examples for weighted percentage hypervolume

5.3 Multi-dimensional dynamic design
robustness

While static design robustness assumes a static system with
fixed parameter configuration, dynamic design robustness (DDR)
includes potential designer or system counteractions in reaction to
system property variations. In other words, DDR describes the ro-
bustness potential of a system with respect to the variation of given
properties, which can be achieved by system reconfiguration, i.e.
for instance scheduling parameter adaptation. Consequently, the
DDR metric is relevant for a design scenario where parameters can
be modified during product life time or in the field.

Definition 9 (Multi-dim. dynamic design robustness)
We consider a system S and a set of system properties P =

{p1, . . . , pn}. Given a set of possible parameter configurations C
for S and a set of weights W = {w1, . . . ,wn} with ∀iwi ≥ 1, the
multi-dimensional dynamic design robustness of S with respect to
P is defined as follows:

DDRS ,C (P ,W) = λ̃
−
H (

[
c∈C

F sens
Sc

(P),W) , where

H =
[
c∈C

HSc(P)

The dynamic design robustness depends on the set of possible
configurations C . As an example, it can be possible to react to prop-
erty changes by adaptation of scheduling parameters or by remap-
ping parts of the application.

DDR can obviously be used to evaluate dynamic systems, but
it can more generally be used for the evaluation of the design risk
connected to specific components in a given system. More pre-
cisely, already early in the design flow the DDR metric allows the
designer to determine boundaries for properties of specific com-
ponents, allowing their integration into the system. This informa-
tion effectively facilitates feasibility and requirements analysis and
greatly assists the designer in pointing out critical system compo-

nents requiring special focus during specification and implementa-
tion.

Another usage scenario for the DDR metric concerns reconfig-
urable systems. In such a scenario the designer can use the DDR
metric to determine the theoretical robustness head room of crucial
system components with respect to future changes of their proper-
ties. By early choosing a system architecture offering high DDR
values for these crucial components the designer can significantly
increase system stability and maintainability.

5.4 Robustness gain through reconfiguration
Given the formal definition of the static design robustness (Defi-

nition 8) and the dynamic design robustness (Definition 9), we can
formally derive a metric (Definition 10) expressing the robustness
increase, which can be achieved through dynamic system reconfig-
uration compared to the static case, where all parameters remain
fixed during the systems’ lifetime.

Definition 10 (Dynamic Robustness Gain)
We consider a system S and a set of system properties P =

{p1, . . . , pn}. Given a set of possible parameter configurations C
for S and a set of weights W = {w1, . . . ,wn} with ∀iwi ≥ 1, the
dynamic robustness gain which can be achieved through dynamic
system reconfigurability compared to the static case is defined as
follows:

GS ,C (P ,W) = DDRS ,C (P ,W)−max
c∈C

{SDRSc(P ,W)}

Given this metric the benefit in terms of system robustness of
designing reconfigurable system components is explicitely measur-
able. Consequently, it can help system architects to decide whether
or not investing engineering effort into creating reconfiguration
mechanisms is worthwhile.

More generally, by adjusting the reconfiguration space C the
metric can be used to identify critical components for which re-
configurability is particularly advantageous, i.e. leading to a sig-
nificant robustness gain. By this means, engineering effort can be
efficiently focused to conceive robust systems.

6. EXPLORING MULTI-DIMENSIONAL
ROBUSTNESS

The robustness metrics introduced in the previous section are
defined on the sensitivity fronts of one or several system config-
urations. However, the exact calculation of a multi-dimensional
sensitivity front is computationally expensive. In this section we
therefore introduce exploration techniques for efficiently deriving
upper and lower robustness bounds for the static (Section 6.2) and
the dynamic case (Section 6.3). The proposed methods are based
on stochastic multi-dimensional sensitivity analysis (Section 6.1).

6.1 Stochastic sensitivity analysis
Performing an exact multi-dimensional sensitivity analysis for

dimensions greater than 2 is computationally expensive.
The authors of [6] therefore proposed a stochastic sensitivity

analysis approach. This stochastic approach formulates multi-
dimensional sensitivity analysis as optimization problem, and is ca-
pable of bounding the sought-after sensitivity front from two sides,
i.e. coming from the space of non-working system property com-
bination and coming from the space of working system property
combinations.

These two bounding fronts are called bounding working Pareto-
front and bounding non-working Pareto-front and are defined as
follows:

Definition 11 (Bounding Pareto-fronts)
Let Sc denote the system S with parameter configuration c. For a

given set of system properties P = {p1, . . . , pn} the bounding work-
ing and non-working Pareto-fronts are defined as follows:

1. The bounding working Pareto-front F w
Sc

(P) is defined as a

set of vectors ~f w
1 , . . . , ~f w

n with the following properties: (I.)
∀i~f w

i ∈ HSc(P), (II.) Ω+(F w
Sc

(P)) = F w
Sc

(P), (III.) ∀i∃~x ∈
F sens

Sc
(P) :~x.+ ~f w

i

2. The bounding non-working Pareto-front F nw
Sc

(P) is defined

as a set of vectors ~f nw
1 , . . . , ~f nw

n with the following proper-
ties: (I.) ∀i~f nw

i ∈ HSc(P), (II.) Ω−(F nw
Sc

(P)) = F nw
Sc

(P),
(III.) ∀i∃~x ∈ F sens

Sc
(P) :~x.− ~f nw

i

During stochastic sensitivity analysis the bounding Pareto-
fronts are constantly refined using evolutionary exploration tech-
niques [19]. Thereby, it is always assured that the exact sensitivity
front F sens

Sc
(P) lies between the bounding working and the bound-

ing non-working Pareto-fronts F w
Sc

(P) and F nw
Sc

(P). If the stochas-
tic sensitivity analysis runs long enough the bounding Pareto-fronts
ultimately converge to the sought-after sensitivity front. Details
about the multi-dimensional sensitivity analysis and the search
space bounding strategy can be found in [6].

The main reason for applying the stochastic multi-dimensional
sensitivity analysis to system robustness optimization is its capa-
bility to quickly derive upper and lower system sensitivity bounds
with relatively little computational effort. This property will be
used in in the following sections to efficiently approximate the
static and dynamic multi-dimensional robustness metrics proposed
in Section 5.

6.2 Static case
In the static case the optimization task consists in finding the sys-

tem parameter configuration for a given system S that maximizes
the multi-dimensional static design robustness with respect to a set
of system properties P weighted according to W .

In order to optimize a system for static design robustness we
propose a nested design space exploration approach. The outer

exploration loop variates free system parameters (e.g. scheduling
parameters), whereas the inner exploration loop evaluates the ro-
bustness of each candidate system parameter configuration c us-
ing the stochastic multi-dimension sensitivity analysis presented in
Section 6.1.

Based on the calculated bounding working Pareto-front F w
Sc

(P)
and bounding non-working Pareto-front F nw

Sc
(P) we can derive up-

per and lower bounds for the sought-after static robustness.

Definition 12 (Static Robustness Bounds)
Let Sc denote the system S with parameter configuration c and

P = {p1, . . . , pn} a set of system properties. Given the bounding
working and non-working Pareto-fronts F w

Sc
(P) and F nw

Sc
(P) as

well as the set of weights W = {w1, . . . ,wn}, the static design ro-
bustness SDRSc(P ,W) is bounded by the minimum guaranteed ro-
bustness R −

Sc
and the maximum possible robustness R +

Sc
:

R −
Sc

(P ,W)≤ SDRSc(P ,W) < R +
Sc

(P ,W), where

R −
Sc

(P ,W) = λ̃
−
HSc (P)(F

w
Sc

(P),W)

R +
Sc

(P ,W) = λ̃
−
HSc (P)(F

nw
Sc

(P),W)

It is always guaranteed that the real robustness of the analyzed
system configuration is contained in the interval defined by R − and
R +.

Consequently, the precision of the approach can be safely scaled.
This represents a huge advantage of the presented approach since
even for low approximation qualities, i.e. little invested computa-
tional effort for stochastic sensitivity analysis, the minimum guar-
anteed and the maximum possible robustness metrics are very good
indicators for identifying interesting system configurations worth to
be analyzed in detail.

In order to find all system configurations with high robust-
ness properties, despite variations in the evaluation results of the
stochastic multi-dimensional sensitivity analysis, we propose to
perform a two-dimensional Pareto-optimization of the minimum
guaranteed robustness R − and the maximum possible robust-
ness R + in the outer exploration loop. In so doing, the multi-
dimensional robustness optimization yields on the one hand system
configurations with large guaranteed robustness and on the other
hand system configurations with possibly large robustness poten-
tial, which needs to be confirmed or disapproved by further analy-
sis.

It is obvious that using this approach it is sufficient to invest
comparatively little computational effort in the robustness evalu-
ation during exploration to identify interesting system configura-
tions, and to postpone their detailed robustness analysis after the
exploration process.

6.3 Dynamic case
In order to determine the dynamic robustness of a given system

we have to integrate the robustness potential of several system con-
figurations. In order to do so we propose an iterative exploration
approach.

During exploration we maintain and update a dynamic bounding
working Pareto-front and a dynamic bounding non-working Pareto-
front. The dynamic Pareto-fronts integrate the information con-
tained in the bounding Pareto-fronts of each evaluated system pa-
rameter configuration. They therefore dynamically bound the space
of working and non-working system property combinations over
all evaluated system configurations at any time during exploration.
Note that each successive exploration iteration refines the approxi-
mation of the dynamic bounding Pareto-fronts.

For a given set of system properties P and a set of system pa-
rameter configurations C the multi-dimensional dynamic design ro-
bustness of the system S can be approximated using the following
iterative design space exploration approach:

Initialization. The initialization phase consists of the following
operations:

1. Initialization of the dynamic bounding hypercube

H̃S (P) = 0

2. Initialization of the dynamic bounding working and non-
working Pareto-fronts

F̃ w
S ,C = /0 and F̃ nw

S ,C = /0

3. Initialization of the sets containing the bounding working
and non-working Pareto-fronts of all so far evaluated system
parameter configurations

Γ
w = /0 and Γ

nw = /0

Exploration iteration. During an exploration iteration each
considered configuration c is evaluated using the stochastic multi-
dimensional sensitivity analysis (see Section 6.1). The resulting
bounding Pareto-fronts F w

Sc
(P) and F nw

Sc
(P) are utilized to calcu-

late the fitness value of c, and are stored in the sets Γw and Γnw,
respectively, to update the dynamic bounding Pareto-fronts at the
end of the current exploration iteration.

One possibility to assign fitness values to the evaluated system
configurations is to simply take their robustness potential, i.e. the
hypervolumes covered by their bounding Pareto-fronts. However,
the robustness of a system configuration does not represent a very
good metric to control the exploration in the dynamic case. The rea-
son for this is that a high individual design robustness does not au-
tomatically mean that the configuration contributes to the dynamic
design robustness, since another configuration might already cover
the same property space.

Therefore, we propose to use the improvement of the dynamic
design robustness, which is achieved by a configuration, as its fit-
ness value. More precisely, the fitness value of an evaluated system
configuration c is defined as the weighted percentage hypervolume
of the space covered by its bounding working Pareto-front that is
not already covered by the dynamic bounding working Pareto-front
that was calculated after the previous exploration iteration:

fitness(c) =λ̃
−
H (Ω+(F̃ w

S ,C ∪F w
Sc

(P)),W)

− λ̃
−
H̃S (P)

(F̃ w
S ,C ,W)

, where H = H̃S (P)∪HSc(P)

Note that during our iterative exploration approach the dynamic
bounding working Pareto-front F̃ w

S ,C , which represents the base-
line of the fitness assignment strategy, is updated after each iter-
ation. By this means the exploration is adaptively controlled and
re-focused after each iteration. This concept allows the exploration
to concentrate in each iteration on areas of the search space with
the most approximation improvement potential.

After each exploration iteration. After each exploration iter-
ations the dynamic bounding hypercube H̃S (P) as well as dynamic
bounding working and non-working Pareto-fronts F̃ w

S ,C and F̃ nw
S ,C

are updated.

The dynamic bounding hypercube can simply be determined by
calculating the union set of the bounding hypercubes corresponding
to all so far evaluated system configurations:

H̃S (P) =
[

evaluated c

HSc(P)

The update of the dynamic bounding working Pareto-front is
straightforward. It can be determined by simply calculating the
Pareto-optimal vectors of the union set of the bounding working
Pareto-fronts stored in Γw:

F̃ w
S ,C = Ω

+(
[

Γ
w) = Ω

+({~x|∃F ∈ Γ
w :~x ∈ F })

The calculation of the dynamic bounding non-working Pareto-
front is more involved. Figure 3 shows how the bounding non-
working Pareto-fronts of three considered system configurations
are merged in order to obtain the integrated dynamic bounding non-
working Pareto-front.

3: Dynamic bounding non-working Pareto-front update

In order to correctly integrate the information of the involved
bounding non-working Pareto-fronts into the dynamic bounding
non-working Pareto-front, the latter must cover all vectors which
potentially represent a working system property combination. This
is true for all vectors which are covered by at least one of the con-
sidered bounding non-working Pareto-fronts.

Therefore, we cannot simply proceed in the same way as for the
dynamic bounding working Pareto-front, i.e. building the union
set and then eliminating all Pareto-dominated vectors. This fact is
visualized in Figure 3.

On the left side we see three bounding non-working Pareto-
fronts, which we want to integrate into the dynamic bounding non-
working Pareto-front. On the right side two different methods for
deriving an integrated Pareto-front are visualized. The red dotted
line connecting all Pareto-optimal vectors (marked with a square)
with an upper step function represents the Pareto-front we obtain if
we pursue the same integration strategy as for the dynamic bound-
ing working Pareto-front. However, this strategy is not valid if
we compare the obtained Pareto-front with the real bounding non-
working Pareto-front visualized by the solid red line. In fact, the
red dotted line incorrectly does not cover several regions colored in
light gray, which corresponds to an underestimation of the real dy-
namic bounding non-working Pareto-front. Additionally, it covers
the region hatched in light gray, which corresponds to an overesti-
mation of the real dynamic bounding non-working Pareto-front.

In order to determine the correct dynamic bounding non-working
Pareto-front, we need to calculate help vectors. The set of help
vectors is equivalent to the set of all Pareto-optimal vectors that
Pareto-dominate (in the sense of a maximization problem) no vec-
tor in at least one of the considered bounding Pareto-fronts. For
the example given in Figure 3 the help vectors are marked with a
cross. As we can see, they correctly define the limits of the inte-
grated dynamic bounding non-working Pareto-front, and their inner
hypervolume corresponds to the volume of the space it covers. Ac-
cordingly, the dynamic bounding non-working Pareto-front can be

calculated as follows:

F̃ nw
S ,C = Ω

+{~f ∈ H̃S (P)|∃F ∈ Γ
nw : (6 ∃~x ∈ F : ~f .+~x)}

Dynamic robustness bounds. Like in the static case the dy-
namic bounding Pareto-fronts F̃ w

S ,C and F̃ nw
S ,C can be used to derive

bounds for the dynamic design robustness of the analyzed system.
Definition 13 formally characterizes the dynamic minimum

guaranteed robustness R̃ −
S , representing a lower robustness bound,

and the dynamic maximum possible robustness R̃ +
S , representing a

upper robustness bound.

Definition 13 (Dynamic Robustness Bounds)
We consider a system S and a set of system properties P =

{p1, . . . , pn}. Given a set of evaluated parameter configura-
tions C for S , the dynamic bounding working and non-working
Pareto-fronts F̃ w

S ,C and F̃ nw
S ,C , as well as the set of weights W =

{w1, . . . ,wn}, the dynamic design robustness DDRS ,C (P ,W) is
bounded by the dynamic minimum guaranteed robustness R̃ −

S and
the dynamic maximum possible robustness R̃ +

S :

R̃ −
S (P ,W)≤ DDRS ,C (P ,W) < R̃ +

S (P ,W), where

R̃ −
S (P ,W) = λ̃

−
H̃S (P)

(F̃ w
S ,C ,W)

R̃ +
S (P ,W) = λ̃

−
H̃S (P)

(F̃ nw
S ,C ,W)

Note that R̃ −
S represents a real lower dynamic robustness bound

for the analyzed system, i.e. its real dynamic robustness potential is
larger or equal to R̃ −

S . However, R̃ +
S only represents an upper dy-

namic robustness bound for the set of system parameter configura-
tions C evaluated during robustness approximation. Note that this
is not a limitation of our approach, since generally a hard global
upper bound cannot be determined without evaluating all possible
system parameter configurations.

It is obvious that the approximation quality of the dynamic ro-
bustness bounds depends very much on the number of performed
exploration iterations and the precision of the underlying multi-
dimensional stochastic sensitivity analysis.

Illustrative example. Figure 5 gives an example for the multi-
dimensional dynamic robustness approximation.

Figure 5a shows the initial approximations of the dynamic
bounding working Pareto-fronts. Two new system parameter con-
figurations are evaluated in the pending exploration iteration. The
approximations of the bounding Pareto-fronts for these two con-
figurations, obtained through stochastic multi-dimensional sensi-
tivity analysis, are visualized in Figures 5b and 5d, respectively.
The fitness values assigned to the newly evaluated configurations,
i.e. the weighted percentage hypervolume of the space covered by
their bounding working Pareto-fronts that is not already covered by
the dynamic bounding working Pareto-front, are visualized in Fig-
ures 5c and 5e. Figure 5f shows the updated dynamic bounding
Pareto-fronts at the end of the performed exploration iteration.

7. CASE STUDY
In this section we apply the robustness optimization techniques

presented in this paper to a small but realistic example system. The
system is described in Section 7.1 and in Section 7.2 we optimize
its robustness properties.

7.1 Example system
We consider the example setup shown in Figure 4. It contains

four different computational units connected by a bus. Three appli-
cations are mapped on the architecture. A video application (solid
chain) gathers data from a camera controlled by the micro con-
troller uC, performs preprocessing on the DSP, and post-processing
on the PPC core. The second application (dashed chain) reads data
from a sensor, which is first processed on the ARM core and then
forwarded to the PPC core, which, in turn, controls an actor. The
third application (dotted line) is a streaming application that runs
on the ARM processor core and uses the DSP for data processing.

All three applications have constrained end-to-end latencies
which need to be satisfied for the system to function correctly (Ta-
ble 1c).

The computational resources (PPC, uC, DSP, and ARM) are all
scheduled according to the static priority preemptive policy, and
the interconnecting bus is arbitrated by the CAN protocol. Core
execution and core communication times as well as priorities of
all tasks and exchanged messages are given in Tables 1a and 1b,
respectively. The periods of incoming data at the system inputs
(Cam, Sens, and Sin) are specified in Table 1d.

4: Example system

Channel CCT Priority
C0 [10.4, 12.4] 5
C1 [12, 14.4] 3
C2 [20, 26.4] 2
C3 [15.2, 20] 6
C4 [10.4, 14.4] 1
C5 [15.2, 26.4] 4

(a) Core Communication
Times

Task CET Priority
T5 [30.9, 43.1] 2
T2 [15.8, 27.4] 1
T3 [36.9, 46.3] 2
T0 [20.1, 48.5] 1
T4 [13, 86] 2
T7 [40.3, 44.5] 1
T1 [27.1, 160] 2
T6 [14.2, 63.6] 1
T8 [11.5, 291.2] 3

(b) Core Execution Times

Path Deadline
Sens→ Act 850
Cam→Vout 1100
Sin → Sout 1000

(c) End-to-End Con-
straints

System Input Period P
Sens 500
Cam 100
Sin 1000

(d) Input Event Models

1: System Parameters

7.2 Robustness optimization
We optimize the two-dimensional static and dynamic robustness

of the worst-case communication time of communication channel
C3 and the worst-case execution time of task T1. Thereby, we at-
tach a higher importance to the robustness of the task T1 (weight
2) than to the communication channel C3 (weight 1).

Table 2 shows the four relevant system configurations that we

(a) Dynamic bounding Pareto-fronts be-
fore current exploration iteration

(b) Bounding Pareto-fronts of first evalu-
ated configuration

(c) Fitness of first evaluated configuration

(d) Bounding Pareto-fronts of second
evaluated configuration

(e) Fitness of second evaluated configura-
tion

(f) Dynamic bounding Pareto-fronts after
current exploration iteration

5: Multi-dimensional dynamic design robustness approximation example

Config. # CAN DSP PPC ARM uC Robustness (C3 weight=1, T1 weight=2)
org C4 > C2 > C1 > C5 > C0 > C3 T 7 > T 4 T 2 > T 5 T 6 > T 1 > T 8 T 0 > T 3 0.2864
1 C4 > C2 > C5 > C0 > C1 > C3 T 7 > T 4 T 2 > T 5 T 6 > T 1 > T 8 T 3 > T 0 0.6452
2 C4 > C5 > C1 > C0 > C2 > C3 T 7 > T 4 T 2 > T 5 T 6 > T 1 > T 8 T 3 > T 0 0.5014
3 C0 > C5 > C4 > C2 > C1 > C3 T 7 > T 4 T 2 > T 5 T 6 > T 1 > T 8 T 3 > T 0 0.5492
4 C4 > C5 > C0 > C2 > C1 > C3 T 7 > T 4 T 2 > T 5 T 6 > T 1 > T 8 T 0 > T 3 0.2772

2: System configurations obtained during robustness optimization

(a) Static design robustness - original and op-
timized configurations

(b) Dynamic design robustness - including
scheduling on CAN bus

(c) Dynamic design robustness - including
scheduling on CAN bus and uC

6: Robustness optimization results: static and dynamic case

found during robustness optimization annotated with their individ-
ual robustness properties.

The highest static design robustness (0.6452) is achieved by con-
figuration 1. Compared to the original configuration, which has a
static robustness of 0.2864, this represents an increase of approxi-
mately 125% (Figure 6a).

If we add dynamic parameter reconfiguration we can further in-
crease system robustness.

If we assume that the CAN message Ids (priorities) on the bus
can be adapted as a reaction to property variations we can in-
crease system robustness by more than 13% to 0.7317 (Figure 6b).
Adding the priorities on uC to the reconfiguration space leads to a
further dynamic design robustness increase to 0.7672, which cor-
responds to a total robustness increase of approximately 19% com-
pared to the static case (Figure 6c).

If we apply the robustness gain metric G we obtain the following
values for our two different reconfiguration spaces:

GS ,{CAN}({C3,T 1},{1,2}) = 0.0865

GS ,{CAN,uC}({C3,T 1},{1,2}) = 0.122

From these numbers we can conclude that bus reconfigurability
is important to achieve high robustness for C3 and T 1. Also, more
surprisingly, a further robustness increase can be achieved if uC is
reconfigurable. The robustness gain is smaller but still relevant.

8. CONCLUSION
In this paper we addressed the problem of system property varia-

tions during the design and the maintainance of complex embedded
systems.

We presented expressive multi-dimensional robustness metrics
for different design scenarios. The static design robustness is
adapted to the scenario where parameters are defined and fixed
early at design time and cannot be modified later as a reaction
to system property variations, whereas the dynamic design robust-
ness includes potential counteractions in reaction to system prop-
erty variations. Since robustness optimization is a computation-
ally intensive problem, we proposed efficient exploration methods
allowing to derive upper and lower robustness bounds with little
computational effort.

The consideration of the proposed multi-dimensional robustness
criteria during early phases of the embedded system design flow
can significantly reduce design risk and increase system stability
and maintainability.

9. REFERENCES
[1] S. Ali, A. Maciejewski, H. Siegel, and J. Kim. Measuring the

robustness of a resource allocation. IEEE Transactions on
Parallel and Distributed Systems, 15(7):630–641, July 2004.

[2] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in platform-based
embedded system designs. In Proc. of the IEEE/ACM
Design, Automation and Test in Europe Conference (DATE),
Munich, Germany, 2003.

[3] M. Fleischer. The measure of pareto optima: Applications to
multi-objective metaheuristics. Lecture Notes in Computer
Science, 2632:519–533, 2003.

[4] D. Gu, F. Drews, and L. Welch. Robust task allocation for
dynamic distributed real-time systems subject to multiple
environmental parameters. In Proc. of the 25th IEEE
International Conference on Distributed Computing Systems
(ICDCS), Columbus, Ohio, USA, June 2005.

[5] A. Hamann, R. Racu, and R. Ernst. A formal approach to
robustness maximization of complex heterogeneous
embedded systems. In Proc. of the IEEE/ACM/IFIP

International Conference on HW/SW Codesign and System
Synthesis (CODES-ISSS), Seoul, South Korea, October 2006.

[6] A. Hamann, R. Racu, and R. Ernst. Multi-dimensional
robustness optimization in heterogeneous distributed
embedded systems. In Proc. of the 13th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
Bellevue, WA, USA, April 2007.

[7] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the SymTA/S
approach. IEE Proceedings Computers and Digital
Techniques, 152(2):148–166, March 2005.

[8] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design
optimization of time- and cost-constrained fault-tolerant
distributed embedded systems. In Proc. of the Design
Automation and Test in Europe Conference (DATE), Munich,
Germany, March 2005.

[9] C. Lu, J. Stankovic, S. Son, and G. Tao. Feedback control
real-time scheduling: framework, modeling, and algorithms.
Real-Time Systems Journal, 23(1-2):85–126, 2002.

[10] R. Racu and R. Ernst. Scheduling anomaly detection and
optimization for distributed systems with preemptive
task-sets. In 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), San Jose,
USA, April 2006.

[11] R. Racu, R. Ernst, M. Jersak, and K. Richter. A virtual
platform for architecture integration and optimization in
automotive communication networks. In Proc. of the SAE
World Congress, Detroit, USA, April 2007.

[12] R. Racu, A. Hamann, and R. Ernst. A formal approach to
multi-dimensional sensitivity analysis of embedded real-time
systems. In Proc. of the Euromicro Conference on Real-Time
Systems (ECRTS), Dresden, Germany, July 2006.

[13] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity
analysis in real-time distributed systems. In Proc. of the 11th
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), San Francisco, California, March 2005.

[14] M. Verhoef, E. Wandeler, L. Thiele, and P. Lieverse. System
architecture evaluation using modular performance analysis -
a case study. In Proc. of the 1st IEEE/ACM International
Symposium on Leveraging Applications of Formal Methods
(ISOLA), Pafos, Cyprus, Oct 2004.

[15] S. Vestal. Fixed-priority sensitivity analysis for linear
compute time models. IEEE Transactions on Software
Engineering, 20(4), april 1994.

[16] L. While, P. Hingston, L. Barone, and S. Huband. A faster
algorithm for calculating hypervolume. IEEE Transactions
on Evolutionary Computation, 10(1):29–38, February 2006.

[17] E. Zitzler. Hypervolume metric calculation:.
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c, 2001.

[18] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In Proc. 8th International Conference
on Parallel Problem Solving from Nature (PPSN VIII),
volume 3242 of Lecture Notes in Computer Science,
Heidelberg, Germany, September 2004. Springer.

[19] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for
multiobjective optimization. In Proc. Evolutionary Methods
for Design, Optimisation, and Control, pages 95–100,
Barcelona, Spain, 2002.

