
Automotive Software Integration

Razvan Racu and Arne Hamann and
Rolf Ernst

Institute of Computer and Communication
Network Engineering

Technical University of Braunschweig, Germany
{racu|hamann|ernst}@ida.ing.tu-bs.de

Kai Richter
Symtavision GmbH

Braunschweig, Germany
richter@symtavision.com

ABSTRACT
A growing number of networked applications is implemented on
increasingly complex automotive platforms with several bus stan-
dards and gateways. Together, they challenge the automotive de-
sign process. Recent automotive software standards, in particular
AUTOSAR that defines a network runtime environment on top of
the existing automotive standards, are intended to improve portabil-
ity and interoperability. AUTOSAR shall replace or extend earlier
proprietary software architecture solutions, but it does not yet suffi-
ciently address time and platform modeling and specification. The
presentation will give some examples for open issues with respect
to performance, timing and interoperability. It will show how re-
cent results in compositional performance analysis can be exploited
to analyze such networked systems, and how to apply design space
exploration in a complex automotive supply chain. The resulting
tools and methods can even be used to optimize the robustness of
an architecture which is important to handle updates and extend the
lifetime of an architecture

Categories and Subject Descriptors
C.3 [Special-Purpose and application-based systems]: Real-time
and embedded systems; C.4 [Performance of systems]: Model-
ing techniques; Performance attributes; Reliability, availability, and
serviceability

General Terms
Design, Performance, Reliability, Verification

Keywords
AUTOSAR, Automotive Systems, Timing Model, Software Inte-
gration, Formal Analysis, SymTA/S

1. INTRODUCTION
The increasing application complexity, together with a strong

time-to-market pressure, requires a massively parallel design of
systems, such as in automotive, avionics, multimedia, or telecom-
munication industries. The supply-chain often contains hundreds

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978-1-59593-627-1/07/0006 ...$5.00.

of companies that design their individual components based on re-
quirement definitions from the OEMs or Tier-1 suppliers.

While software modularity is a commonplace in software engi-
neering, it is far from practice in the automotive industry where the
electronics system architecture follows company organization and
automotive supply chains. There have been good reasons for that
approach as it allows clear identification of responsibilities and li-
abilities. Meanwhile, however, the cost and risk of more complex
function integration over a growing software and automotive net-
work complexity have started to change that approach. Automotive
networks, today, combine several buses using different protocols
(CAN, LIN, FlexRay, MOST) that are combined via gateways [13].

Networked control functions that share sensors and actuators for
different functions over a single network with gateways require an
integrated view of the automotive electronic systems architecture.
Software standards for communication and modularization are ur-
gently needed to support that development.

Even then, systems integration remains a major challenge. Dy-
namic component interactions result in a variety of non-functional
timing and performance dependencies due to scheduling, arbitra-
tion, blocking, buffering etc., eventually generating hard-to-find
timing problems, including transient overload, buffer under- and
over-flows, and missed deadlines. Not having a systematic timing
analysis procedure is currently challenging the automotive design
process. At the same time, the cost of electronic systems has been
rising. This cost increase is mainly due to a lack of understand-
ing and control of integration effects, and a resulting conservative
design style.

2. AUTOSAR AND TIMING
The AUTOSAR partnership [7, 8], an alliance of OEM man-

ufacturers and Tier-1 automotive suppliers with many associates,
has recognized integration as a major challenge several years ago.
Since then, a number of de-facto open industry standards for au-
tomotive E/E architectures have been developed: at first confiden-
tially, now for a large part open to the public. The main goal of
AUTOSAR is to define a standard modular software infrastructure
for application and basic software, which allows exchanging parts
of the system’s software. This shall enable modularity, scalability,
transferability and re-usability of software among projects, vari-
ants, suppliers, customers, etc. Figure 1 shows the software layers
within a component, as specified in the AUTOSAR standard. In-
terestingly though, the current AUTOSAR standard still does not
contain key aspects of timing and performance. It is important to
understand that the primary objective of AUTOSAR is not solv-
ing timing problems in particular but supporting integration from a
software-engineering perspective.

Timing properties shall be added to the existing component mod-

Figure 1: Standardized AUTOSAR software

els in a second step. However, the host of interaction and commu-
nication mechanisms defined by AUTOSAR –many of them bor-
rowed from earlier standards such as OSEK/VDX [1, 2]– leads to
numerous timing use cases. These, in turn, have many possible in-
terpretations of timing with no obvious solution. In the next section
we present some examples that show why timing represents a major
issue for the correct component integration, and should be consid-
ered from the beginning by the AUTOSAR standard. But why is
defining a timing model so complex?

The reasons are manifold. Technically, the software engineering
view of AUTOSAR lacks clear execution semantics, on which the
known approaches to timing analysis could build upon. The simul-
taneous use of heterogeneous interaction mechanisms complicates
timing analysis further and does not match the clear, well-defined
models of computation used in real-time systems. Introducing an
effective timing model after the software architecture has been de-
fined is a tough technical challenge and requires practical restric-
tions.

Practicability concerns and economical issues add to that dilemma.
A successful technology must support designers in consequently
taking decisions; directly and quickly. Therefore, a suitable method-
ology for using the model and applying the analysis must be in
place. The model and methodology must further consider estab-
lished design and supply-chain processes. IP protection, in partic-
ular, complicates modeling as important details are often not avail-
able in a particular design stage today.

3. MODEL MISMATCH
In this section we present three key examples of model mis-

matches that emphasize the complex relations between the timing
properties of the system components [12, 11].

3.1 Runnables
At the ECU level, AUTOSAR defines so called software com-

ponents (SW-Cs) as atomic entities from a software development
view. However, when it comes to scheduling, each SW-C com-
prises several so called runnables. In the implementation, runnables
belonging to different software components are then grouped into
tasks, which are finally put under operating system control.

Figure 2 shows two software components containing more runnables
building three distributed tasks: the first task contains runnableX on
SW-C2 and runnableC and runnableB on SW-C1; the second task
contains runnableA on SW-C1 and runnableY on SW-C2; the third
task contains runnableZ on SW-C2. The Gantt diagram shown in
Figure 2 presents the execution trace of the three tasks.

Figure 2: Hidden timing dependencies between SW-Cs

As we can observe, implementation dependent timing behavior
results from the low level dependencies crossing the component
boundaries. This challenges the real-time behavior of the high level
components, by introducing hidden, implementation and state de-
pendent additional jitters and delays at the level of software com-
ponents.

Clearly, a scheduling analysis can be performed on the low level,
but the resulting task timing reveals hardly any direct and intuitive
timing-relation with the high-level software components, to which
timing information shall finally be attached.

3.2 End-to-End Timing
The second example illustrates another important type of model

mismatch at a higher level of communication. With the increasing
distribution of functions over several ECUs in a car, the importance
of end-to-end timing (and deadlines) is also increasing.

AUTOSAR has already defined models for capturing such timing
chains composed of communicating software components (SW-C).

Figure 3 illustrates the software component view of the timing
dependencies, mostly determined by the logical flow of data be-
tween the software components. Hand-over points (HOPs) shall en-
able easy composition and decomposition of such chains, thereby
providing a framework for system-level timing considerations.

Figure 3: AUTOSAR view on ”timing chains”

Similar models are also known from data-flow theory, where
clear semantics relate the execution of nodes (here: software com-
ponents) with timing behavior of the stream. However, AUTOSAR
has not yet defined clear rules to describe the activation of the
tasks within the software components. Hence, the actual timing

Figure 4: Causality chains in automotive implementations

of software components is undetermined. Moreover, there exist
several valid communication semantics including client-server (re-
mote procedure call), periodic sampling including under- and over-
sampling, polling, and event-driven. This leads to a variety of indi-
rect causality chains in the actual implementation. Figure 4 shows
examples for these causality chains through the layered software
defined by AUTOSAR.

So, what does end-to-end timing mean in absence of clear execu-
tion, communication, and HOP-buffering semantics? The timing is
a result of implementation properties and will change with the im-
plementation, uncontrolled by specification and untestable against
test component model that lacks the necessary details. There are
timing models available that could unambiguously capture and spec-
ify such timing properties.

3.3 Bus Communication
A look at bus communication reveals another type of mismatch.

AUTOSAR defines a detailed API for the communication stack in-
cluding several frame transmission modes (direct, periodic, mixed,
none) and signal transfer properties (triggered, pending) with key
influences on communication timing. Interestingly, the role of buffers
and, in particular, buffer access strategies (FIFO, priority order,
etc.) and the over-/underflow mechanisms are mostly left open,
despite their enormous influence on signal timing.

Figure 5 illustrates the communication mechanism between the
software components of two ECUs connected via a CAN bus. The
messages to be transmitted are translated into signals and sent into
a queue through periodic, direct or mixed frames. The waiting sig-
nals are buffered into the queue according to different buffering
strategies (FIFO, priority ordered, hybrid). The signals waiting in
the queue are dispatched by driver interrupts and send over the bus
as message objects. Obviously, the frame generation modes and the
buffering strategy complicate the timing behavior of the transmitted
frames and introduce ambiguity and implementation dependency.

Networked functions make guarantees for bus and network com-
munication timing even more important than before. Besides band-
width and reliability considerations, end-to-end latency becomes
crucial as a delay parameter in the control algorithm.

4. THE SYMTA/S APPROACH
With SymTA/S [9], the designer follows an analysis based ap-

proach. SymTA/S is based on a modular mathematical model [4]
which scales to include software architectures from different sources
and suppliers. It capitalizes on the host of work in scheduling the-
ory (e.g. [14, 5, 6]) . For any new architecture, a new model can be

easily developed or adapted, such that the tool can follow the de-
velopment of automotive architectures over time. As an important
example, SymTA/S is also capable of considering frame offsets and
task-dependencies that will play a dominant role in the experiments
later in this paper.

Then, we embedded the powerful analyses into a flexible design
framework that poses very few restrictions on the systems and de-
sign processes. This framework supports incomplete requirements,
missing data, and heterogeneous system configurations. Thanks to
this flexibility, SymTA/S can be applied in non-ideal situations that
were not amenable to effective and safe analysis, so far.

In practice very often only part of data is available to the OEM,
usually in the form of a so called communication matrix, cover-
ing the period, length, and priority (CANId). The important dy-
namic influences are often not available in detail. These include so
called mixed and direct frames that can dynamically appear at vir-
tually any time within the periodic frames (names according to AU-
TOSAR and OSEK-VDX definitions of frame transmission mode).
Similarly, the queuing strategies influence frame ordering in the
COM layers and drivers, and can ”undermine” the priority-driven
nature of the CAN protocol. This data is part of the ECU imple-
mentation and typically not disclosed to the OEM.

The same holds for frame offset values. Such offsets define local
phase relations between frames sent by the same ECU. The ratio-
nale behind using offsets is to ”balance” the production of frames.
Roughly speaking, offsets produce gaps (idle times) in the schedule
that other frames can exploit. This balances the ECU interruptions
by COM, and it also balances the bus load. Hence, offsets have a
positive effect on bus load and, subsequently, response times. But
again, such local offsets are typically defined by the ECU supplier
and not disclosed to the OEM, nor asked for by the OEM.

From our experience, it seems that such non-ideal situations with
lots of ”unknowns” are the typical ones, while precise timing re-
quirements and design from scratch are exceptions.

So, can analysis technology really help when data availability is
a major concern? In fact, it can, if it is only flexible enough, as we
will see by the end of the next section.

5. CASE STUDY
We have applied the SymTA/S technology in a number of stud-

ies for automotive OEMs [10], where several ECUs are connected
to a bus, sending and receiving a total number of 100 frames and
more. In all studies, we imported the length, CAN id (priority), and
the period of each frame from a (customer-specific) communication
matrix or dictionary. We knew the frame offsets of only few ECUs,

Figure 5: Communication mechanism defined in AUTOSAR

typically the gateways that are under control of the OEM. For other
ECUs, we had no offset information. Information about dynamic
patterns of mixed and direct frames was mostly missing.

Due to the lack of this important information, we typically con-
ducted a set of experiments with SymTA/S, each based on differ-
ent assumptions on the missing information. Simulators or pro-
totypes were not required, as SymTA/S is based on mathematical
techniques known from real-time scheduling theory. However, the
SymTA/S analysis libraries are tailored to the specific real-world
mechanisms of protocols (and OSes), and thus, the results have a
quite high degree of accuracy.

In the case study presented here, we first ignored all offsets. We
considered all frames as being asynchronous and determined their
response times. Obviously, such simplifications (no offsets) lead to
overestimations with limited practical relevance. However, the fact
that we were able to carry out such ”what-if” observations within
minutes, without any simulation, prototype or test equipment is
very important.

Next we repeated the experiment with typical offset values and
found out that frame response times dropped by almost 50% for
the lower-priority frames (see ”utilization gain” in Figure6). This
improvement results from the load balancing that the offsets in-
troduce. We determined these typical values based on experience
from other projects in which we were able to compare experimental
assumptions with real CAN traces. It turned out that the SymTA/S
typical values represent a reasonable approximation to the real world.
In other words, the results resemble realistic timing profiles of the
studied CAN buses, even though detailed design data was not avail-
able.

6. OFFSET OPTIMIZATION
In another set of experiments, we used the SymTA/S automatic

exploration plug-in [3, 15] to optimize the offsets in order to reduce
the response times further by more than 35%. The results of these
experiments are summarized in Figure 6. Each curve represents
one experiment. The response times (y-axis) are shown for a rep-
resentative subset of frames in the order of their priority (x-axis).
The frame number 23 (by the bold arrows) resembles a response
time improvement from initially 90ms to 45ms (with typical off-
sets) down to 30ms (with optimized offsets).

It might surprise that –without changing the number of frames,
their length and CANId, the bus speed or the average bus load–
such an enormous improvement in bus utilization was achieved.

These experiments show that offsets in particular make a huge dif-
ference in bus utilization and responsiveness of frames. These are
the important dynamic properties of ”performance”.

We conclude that having an analysis that allows comparing and
reasoning about offsets systematically, provides new possibilities
for OEMs to optimize their networks without the need for changing
the design process.

7. ROBUSTNESS TO ACCEPT ADDITIONAL
FRAMES

In the last set of experiments, we were interested in the robust-
ness of each bus configuration against additional frames. We wanted
to know how many and what frames can be added to a given bus
without violating constraints. This is a frequent question when au-
tomotive product lines are planned. Room for additional frames
allows for additional functions in variants and ”face-lifted” later
versions of a car.

To analyze this robustness, we gradually added more and more
asynchronous high-priority frames to each configuration. We ana-
lyzed the new response times and determined which and how many
frames miss their deadlines. These additional frames could be mixed
or direct frames, or they could model frame retransmission that re-
sult from bus errors. In principle, the experiment provides a general
measure that could be particularized further.

The results are shown in Figure 7. Again, each curve resembles
one of the three known configurations. On the x-axis, the number
of additional frames is provided. The y-axis captures the number of
frames for which the deadline (10% of frame period, at least 40ms)
is violated. The optimized configuration can accept significantly
more additional frames before a deadline violation occurs. We call
such a configuration robust, because the network can safely carry
more frames without violating any performance requirements. The
number of deadline violations in the typical configuration increases
much faster. In that case the bus is much more sensitive to addi-
tional frames, and therefore less extensible.

The curves indicate a quality increase similar to that in Figure 6,
but this time in a more sophisticated context. Not only response
times are considered, but they are also related to performance re-
quirements/constraints such as deadlines. Scheduling analysis us-
ing SymTA/S offers a wide range of such views that can be cus-
tomized and extended.

Figure 6: Reducing frame response times through offset optimization

Figure 7: Reducing deadline violations through offset optimization

8. PRACTICABILITY CONCERNS
In addition to a clear and intuitive timing model, designers also

need a methodology to determine and to utilize the timing model in
the established design flow. Based on the feedback we have been
receiving from a variety of designers, this in particular requires:

• Generating or obtaining the data needed for analysis (be it
by definition, measurement, test, or simply asking the right
people).

• Having a specific strategy when and how to apply the tech-
nology.

• Interpreting the results and consequently taking decisions.

• Being able to do all this in a reasonable amount of time, after
a reasonable amount of training on that technology.

If a technology appears too complex, designers will avoid it. If
input data is not readily available, they cannot use it, and if using
the technology takes longer than finding a sub-optimal but accept-
able manual solution, it will be considered equally useless. We
highlight this, as researches (rightfully) tend to do work that is el-
egant or systematic in itself without paying too much attention to
practical issues.

8.1 Supply-Chain Issues
Specifically car manufacturers nowadays have to cope with an

increasing number of unprecedented real-time problems that are
caused by the integration of networked applications. Even though
OEMs do not develop large parts of the software, they are respon-
sible for the network that is the main basis of integrations. The
network timing, however, depends not only on the protocol but
also on driver hardware and software (SW-Cs and COM stack),
which is mostly out of the OEM’s scope of responsibility and con-
trol. The supply-chain communication between OEMs and suppli-
ers will have to evolve, most likely by establishing timing contracts
between OEMs and suppliers. In order to be accepted

• Responsibilities and scope must be clearly defined, and must
match the established roles of suppliers and OEMs.

• IP protection must be ensured, in particular on the supplier’s
side. Together with already existing standards like AUTOSAR,
this will have a dominant impact on the abstraction of a tim-
ing model.

• A comprehensive and reliable timing verification methodol-
ogy must be in place, since there is no point in modeling
something that cannot be analyzed.

• It must be clarified what kind of analysis results and what
level of accuracy can be obtained at a particular design stage,
and the required effort.

9. EXPERIENCE WITH FORMAL TIMING
MODELS

It is clear that automotive platform design and planning can be
much more systematic, if supported by a suitable global timing
view, the enables reasoning about timing across company borders.
On the one hand, academic expertise and support in defining such
a model is extremely welcome but it must carefully consider es-
tablished technological and business processes. On the other hand,
industry design practice must also evolve to make designs much
more transparent and analyzable, possibly imposing new roles and

responsibilities (and liabilities?) for both OEMs and suppliers. As
we have shown in the examples above, such a trend is not well sup-
ported by the current AUTOSAR standard. Rules and best practice
examples are needed to avoid non-transparent and inflexible de-
signs that counter some of the key goals of AUTOSAR, platform
and supplier independence.

10. REFERENCES
[1] OSEK/VDX Consortium. OSEK/VDX Communication.

v.3.0.3, July 2004.
[2] OSEK/VDX Consortium. OSEK/VDX Operating System.

V.2.2.3, February 2005.
[3] Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. A

Framework for Modular Analysis and Exploration of
Heterogeneous Embedded Systems. Real-Time Systems
Journal, 33(1-3):101–137, July 2006.

[4] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai
Richter, and Rolf Ernst. System Level Performance Analysis
- the SymTA/S Approach. IEE Proceedings Computers and
Digital Techniques, 152(2):148–166, March 2005.

[5] M. Joseph and P. Pandya. Finding Response Times in a
Real-Time System. The Computer Journal, 29(5):390–395,
1986.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the ACM, 20(1):46–61, 1973.

[7] AUTOSAR Partnership. www.autosar.org.
[8] AUTOSAR Partnership. AUTOSAR–Current Results and

Preparations for Exploitation. In 7th EUROFORUM
Conference ”Software in the vehicle”, Stuttgart, Germany,
May 2006.

[9] SymTA/S Project. http://www.symta.org. Institute of
Computer and Communication Network Engineering,
Technical University of Braunschweig, Germany.

[10] Razvan Racu, Rolf Ernst, Kai Richter, and Marek Jersak. A
Virtual Platform for Architecture Integration and
Optimization in Automotive Communication Networks. In
SAE Congress, System Level Architecture Design Tools and
Methods, volume SP-2129, Detroit, Michigan, April 2007.
SAE International.

[11] Razvan Racu, Kai Richter, and Rolf Ernst. The Need of a
Timing Model for the AUTOSAR Software Standard. In
Workshop on Models and Analysis Methods for Automotive
Systems (RTSS Conference), Rio de Janeiro, Brazil,
December 2006.

[12] Kai Richter. The AUTOSAR Timing Model – Status and
Challenges. In ARTIST2 Workshop Beyond AUTOSAR,
Innsbruck, Austria, 2006.

[13] Kai Richter and Michael Bartels. Scheduling Analysis of
ECUs and Controller Networks. ATZ Elektronik, 2, April
2007.

[14] K. Tindell, A. Burns, and A. Wellings. An Extendible
Approach for Analysing Fixed Priority Hard Real-Time
Systems. Journal of Real-Time Systems, 6(2):133–152, Mar
1994.

[15] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for
Multiobjective Optimization. In Proc. Evolutionary Methods
for Design, Optimisation, and Control, pages 95–100,
Barcelona, Spain, 2002.

