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Abstract There have been major advances in formal methods and related tools in em-
bedded system design in recent years that support analysis and optimization of
heterogeneous automotive architectures. We demonstrate the application of the
SymTA/S methodology to an automotive example where we analyze the sen-
sitivity of different system properties and determine optimal system configura-
tions. The use of this methodology in the early phases of system design conduct
to results that cannot be obtained using simulation or prototyping.

1. Introduction
With increasing automotive system complexity, formal methods become

more important as a complement to simulation and prototyping. Formal meth-
ods have already been used in early architecture design, e.g. to optimize bus
architectures as such models can be applied before executable models are avail-
able. Recent advances in real-time system analysis have extended the scope of
formal models to heterogeneous networks with different protocols and gate-
ways, and with electronic control units (ECUs) running different scheduling
algorithms. These formal models can be used to optimize those systems and
analyze the sensitivity to later changes in the design process or to run time
events such as retransmission due to errors. In this paper, we give a brief in-
troduction to the underlying model and algorithms of the tool, SymTA/S, and
give a small example for its application to system integration.

The remainder of this paper is structured as follows. First, we will give
a short overview of existing formal techniques for system level performance
analysis (Section 2). Afterwards, we briefly present the SymTA/S composi-
tional analysis methodology based on event model interfacing and propagation
(Section 3).

In Section 4 we present the main scheduling concepts of the ERCOSEK
operating system and the CAN bus protocol.
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Finally, we introduce a small example of an automotive system consisting
of two independent subsystems (Section 5) and demonstrate the application of
the SymTA/S exploration and sensitivity analysis frameworks to system inte-
gration (Sections 6 to 9).

2. Formal Techniques in System Performance
Analysis

In this section, we briefly review existing analysis approaches from real-
time research for formal system performance analysis of heterogeneous dis-
tributed systems and MpSoC.

The holistic analysis approach developed by Tindell [12] systematically ex-
tended the classical local analysis techniques, considering the scheduling in-
fluences along functional paths in the system. He proposed a performance
verification model for distributed real-time systems with preemptive task sets
communicating via message passing and shared data areas. Eles et al. [7] ex-
tended this approach for systems consisting of fixed-priority scheduled CPUs
connected via a TDMA scheduled bus. Later on, Palencia et al. [6] extended
the analysis for tasks with precedence relations and activation offsets.

Gresser [4] and Thiele [11] established a different view on scheduling anal-
ysis. The individual components or subsystems are seen as entities which inter-
act, or communicate, via event streams. Mathematically speaking, the stream
representations are used to capture the dependencies between the equations
(or equations sets) that describe the individual components timing. The differ-
ence to the holistic approach (that also captures the timing using system-level
equations) is that the compositional models are well-structured with respect to
the architecture. This is considered a key benefit, since the structuring signifi-
cantly helps designers to understand the complex dependencies in the system,
and it enables a surprisingly simple solution. In the “compositional” approach,
an output event stream of one component turns into an input event stream of
a connected component. Schedulability analysis, then, can be seen as a flow-
analysis problem for event streams that, in principle, can be solved iteratively
using event stream propagation.

3. The SymTA/S approach
SymTA/S [10] is a formal system-level performance and timing analysis

methodology for heterogeneous SoCs and distributed systems. The key novelty
of the SymTA/S approach is that it uses intuitive event models from real-time
system research to describe the timing behavior the activating events, rather
than introducing new, complex stream representations. SymTA/S uses a six-
class standard event models and a mathematical formalism that easily allow
the interfacing and transformations between models [9].

Periodic events or event streams with jitter and bursts are examples of stan-
dard models that can be found in literature. The SymTA/S technology extracts
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the stream parameters from a given schedule and automatically adapts the event
stream to the specific needs within these standard models, so that designers can
safely apply existing subsystem techniques of choice without compromising
global analysis.

The compositional performance analysis methodology defined in SymTA/S [9]
alternates local scheduling analysis and event model propagation during system-
level analysis. The system analysis is performed iteratively in several global
analysis steps. A global analysis step consists of two phases. In the first phase
local scheduling analysis is performed for each resource and output event mod-
els are calculated. In the second phase, all output event models are propagated.
Then, it is checked if the first phase has to be repeated because some activating
event models are no longer up-to-date, meaning that a newly propagated output
event model is different from the output event models that was propagated in
the previous global analysis step. Analysis completes if either all event models
did not change during last propagation phase, or an abort condition, e. g. the
violation of a timing constraint, has been reached.

The propagation phase requires the modeling of possible timing of the out-
put events of a component. The standard event models allow to specify simple
rules to obtain output event models from the parameters of the input event
models, considering the scheduling influences.

4. Automotive embedded technology
In the following sections we give a brief overview about the most important

scheduling concepts of ERCOSEK operating system and CAN bus protocol.
Both arbitration techniques are well established in the automotive industry and
deployed in various car platforms and product lines.

4.1 ERCOSEK
The ERCOSEK [3] operating system builds upon the core ideas of static-

priority preemptive scheduling. However, this underlying scheduling policy is
extended by a variety of additional concepts.

ERCOSEK distinguishes hardware tasks (interrupts), preemptive software
tasks and cooperative software tasks. Software tasks are comprised of pro-
cesses that are sequentially executed. In contrast to preemptive software tasks,
cooperative software tasks are preemptive only at process boundaries. This
reduces the context switch overhead but results in additional blocking for the
higher priority cooperative tasks.

Certain scheduling-related OS routines can request a considerable amount
of execution time at various priority levels. For instance, the activate task and
terminate task routines are called by the OS before and after task execution,
respectively. Both OS routines are executed with the so-called kernel priority,
which is higher than the priority of all software tasks.



4

Furthermore, task activation can be initiated in a variety of ways. Time ta-
bles allow the specification of periodic tasks with phase offsets (startup delays)
between them. Alarms use more dynamic time-out mechanisms and can be is-
sued and disabled at any point in time. Finally, tasks can be activated from
software tasks and interrupts (hardware tasks) dynamically and bursty.

4.2 CAN (Controller Area Network)
The CAN bus protocol [2] is also based on static priorities but the message

transmission is non-preemptive, as typical for serial line protocols.
Compared to ERCOSEK’s characteristics, the actual CAN protocol is rel-

atively simply. However, due to cost reasons, CAN interfaces are typically
realized with a very limited number of sender buffers, so-called message ob-
jects. A message, once written into such a buffer, can not be “overtaken” by
another higher-priority message that is generated later. This behavior can turn
the static-priority scheme into a complex queuing scheme when it comes to
scheduling analysis.

Furthermore, CAN messages inherit the time-table-like behavior of the tasks
that generate the messages. In combination with dynamic phase shifts between
request and acknowledge frames in an end-to-end path this leads to complex
best-case and worst-case scheduling scenarios.

Finally, transmission errors can enforce retransmissions that increase the
overall load and message latency.

5. Automotive Example System
Figure 1 shows a SymTA/S model of two electronic subsystems. The two

subsystems are functionally independent, and are designed separately by two
different electronic suppliers.

The automotive OEM would like to integrate both subsystems in a vehicle.
Note that ECU1 is arbitrated by the ERCOSEK operating system, whereas

all other ECUs are arbitrated according to the static priority preemptive pol-
icy (SPP). The buses used to exchange messages between the ECUs in both
subsystems are running the CAN protocol.

The core execution times of the software-functions running on the ECUs
are given in Table 1. The communication delays of the messages exchanged
over the CAN buses, assuming no concurrent communication requests, are
given in Table 2. Tables 1 and 2 additionally contain the priorities of each
software-function as well as the IDs of the CAN messages (representing also
the priorities). Except for the ERCOSEK scheduled software-functions lower
values correspond to higher priorities.

The gray, rounded boxes model the activation of the software-functions (in
this case, timers). The activation periods are given in table 3.

Note that both subsystems need to satisfy certain timing constraints in order
to function correctly:
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Figure 1. Automotive system example: independent subsystems

Table 1. Computational Tasks

Task Execution time Priority
ECU1 (ERCOSEK)

T0 [0.2,0.3] 10 (preemptive)
T1 [0.2,0.3] 5 (preemptive)
T2 [0.1,0.2] 2 (cooperative)
T3 [1.2,2.3] 1 (cooperative)

ECU2 (SPP)
T4 [0.7,0.8] 2
T5 [0.1,0.2] 3
T7 [0.1,0.6] 1

ECU3 (SPP)
T8 [0.3,0.4] 2
T9 [1,2] 1
T11 [3,5] 3

ECU4 (SPP)
T6 [1.1,1.5] 2
T10 [0.3,0.6] 1

– path S2→ S5 has an end-to-end deadline equal to 15.
– path S9→ S11 has an end-to-end deadline equal to 15.
– path S3→ S8 has an end-to-end deadline equal to 15.
Figure 1 shows both subsystems before integration. Both the upper and the

lower subsystem are implemented on 2 ECUs (vertical square boxes on the left
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Table 2. Communication Tasks

Channel Communication time Priority
CAN1 (Controller Area Network)

C0 [1.08,1.32] 1
C1 [0.76,0.92] 3

CAN2 (Controller Area Network)
C2 [0.6,0.72] 4
C3 [0.68,0.82] 2

Table 3. Input Event Models

Input Event Model Parameters

S0 periodic P1 = 1
S1 periodic P1 = 2
S2 periodic P2 = 5
S3 periodic P3 = 15
S4 periodic P3 = 20
S6 periodic P3 = 5
S7 periodic P3 = 7
S9 periodic P9 = 2
S10 periodic P10 = 10

and right) that exchange messages over a dedicated CAN bus (vertical square
boxes in the middle).

Timing and performance analysis of both subsystems reveals the following
worst-case delays for the constrained paths:

– 12.01 time units for the path S2→ S5
– 5.12 time units for the path S9→ S11
– 9.92 time units for the path S3→ S8
If we compare these worst-case delays with the deadlines imposed by sys-

tem specification, we observe that both suppliers implemented their subsys-
tems so that all timing constraints are satisfied.

6. Sensitivity Analysis
The robustness of an architecture to parameter changes is a major concern

in the design of embedded real-time systems. Robustness is important in early
design stages to identify if and in how far a system can accommodate later
changes or updates. Furthermore, system robustness is an important metric
in the later design phases during subsystem or third-party component integra-
tion. In general, the system robustness is defined by the available headroom
or slack corresponding to different properties of the system. These can be task
execution demands, channel communication times, the parameters of the acti-
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vation models, the speed of the computation resources or the throughput of the
communication buses.

Sensitivity analysis allows the system designer to permanently keep track of
the system robustness, and thus to quickly asses the impact of changes of indi-
vidual hardware or software components on system performance. Section 6.1
gives a short overview on the sensitivity analysis framework implemented in
SymTA/S. In Section 6.2 we determine the robustness of the independent sub-
systems presented in Figure 1 with respect to variations of different parameters.

6.1 Sensitivity Analysis Framework
The sensitivity analysis framework implemented in SymTA/S combines a

binary search technique and the compositional analysis model presented in
Section 3. The binary search technique is known as a simple and fast search
algorithm used to determine a specific values within an ordered set of data.
Since the variations of specific system parameters like execution demands, ac-
tivation periods, resource speeds have a monotonic impact on the set of system
timing properties, the binary search can quickly determine the values of these
parameters that leading to conforming system configurations. A detailed de-
scription of the sensitivity analysis framework is presented in [8].

Parameters for sensitivity analysis are the system properties that may vary
during design process. Very common are variations of execution times, the
parameters of the activation models, like period, jitter and offset, communi-
cation volumes, bus and processor speeds. The variations of these parameters
affect different system performance metrics, like task response times, end-to-
end latencies, output jitters, buffer sizes or deadline miss-ratio in case of soft
real-time systems.

6.2 The Robustness of the Independent
Subsystems

In this section we determine the robustness of the independent subsystems
presented in Figure 1. Firstly, we investigate the available slacks of the execu-
tion times of the tasks mapped on the ECUs and of the communication chan-
nels mapped on the CAN resources. The results are presented in Figure 2(a).
We observe that tasks T2, T5, T7 and channel C2 have a very large flexibility
compared with the other tasks and channels. This is explained by the fact that
these tasks belong to functional paths without or with loose timing constraints.

Figure 2(b) shows the flexibility of the operational speeds of computation
and communication resources. The minimum speed of these resources is de-
termined on one hand by the utilization factor, and, on the other hand, by the
timing constraints defined for the tasks executed on these resources.

The last investigated set of parameters are the task execution rates defined
at system inputs. Figure 2(c) shows the maximum decrease permitted for task
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activation periods without violating the set of constraints or the system schedu-
lability.

The resulting slacks of investigated system parameters represent an addi-
tional argument for the feasible integration of the two independent subsystems.
The available resource headroom allows all messages to be transmitted on a
single bus without disturbing too much the performance of the other system
components.
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Figure 2. Flexibility of the initial system configuration

7. Integrating both subsystems
We now integrate both independent subsystems. Figure 3 shows the system

after integration. Instead of utilizing a dedicated CAN bus for each of the
subsystem, all messages are now transmitted over a single CAN bus. Of course,
this leads to additional load and potentially longer blocking of low-priority
messages.

Again we verify performance and timing of the system with SymTA/S, and
obtain the following worst-case delays for the constrained paths:

– 20.18 time units for the path S2→ S5
– 7.92 time units for the path S9→ S11
– 33.09 time units for the path S3→ S8
We observe that the constrained paths S2→ S5 and S3→ S8 exceed their

deadlines by 34.5% and 120.6%, respectively.
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Figure 3. Automotive system example: after system integration

8. System Optimization
In section 7 we have seen that the integration of two independently working

subsystems is usually not possible in a straight-forward manner. In practice,
system parameters like CAN message IDs, task priorities, and time slots need
to be adapted to successfully integrate several subsystems.

In the following we first introduce the design space exploration framework
of SymTA/S, assisting the designer in exploring the configuration space of
complex distributed systems and pointing out pareto-optimal system configu-
rations with respect to an arbitrary numbers of optimization criteria, including
timing properties, power consumption, buffer sizes, etc. In the second part, we
use this framework to explore the integrated automotive example system.

8.1 Design Space Exploration Framework
Figure 4 shows the design space exploration framework [5] of SymTA/S.

The Optimization Controller is the central element. It is connected to the
scheduling analysis of SymTA/S and to an evolutionary multi-objective op-
timizer. SymTA/S checks the validity of a given system parameter set, that is
represented by an individual, in the context of the overall heterogeneous sys-
tem. The evolutionary multi-objective optimizer is responsible for the problem-
independent part of the optimization problem, i.e. elimination of individuals
and selection of interesting individuals for variation. Currently, we use SPEA2
(Strength Pareto Evolutionary Algorithm 2) [13] for this part, which is cou-
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pled via PISA (Platform and Programming Language Independent Interface
for Search Algorithms) [1].

Figure 4. Exploration Framework

Different parameters of a system, such as priorities or time slots, are en-
coded on separate chromosomes. The user selects a set of parameters for op-
timization. The chromosomes of these parameters form an individual, and are
included in the evolutionary optimization while all others are fixed and im-
mutable. The variation operators of the evolutionary algorithm are applied
chromosome-wise for these individuals.

8.2 Exploring the integrated system
In this section we use the design space exploration framework of SymTA/S

to explore the integrated automotive system in Figure 3.
The search space of our exploration consists of the priority assignments on

all ECUs as well as the assignment of CAN message IDs on the bus. Since
the straight-forward integration of the two subsystems lead to the violation of
hard timing constraints, our primary optimization objective is to find a working
system configuration. Additionally we are interested in pareto-optimal trade-
offs between the three constrained end-to-end paths.

In the real world, no single design team has full control over the entire
system. Instead, numerous design teams from different companies contribute
along an automotive supply chain. Each team is in control of only part of the
system. Therefore, system-level exploration across team-boundaries is a com-
plicated task. The OEM as the bus integrator, for instance, usually controls
CAN message IDs, but has very limited insight into the configuration of the
ECUs.
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Unfortunately, dynamic behavior between several subsystems usually can-
not be observed until late in the design process when first ECU prototypes be-
come available. By that time, it is very costly to re-assign system parameters
like priorities of software-functions or CAN message IDs.

In order to account for the difficulty and the high cost of system parame-
ter modifications at system integration time, we add the minimization of pa-
rameter changes to the optimization objectives considered during design space
exploration. More precisely, we are interested in finding working system con-
figurations with as few parameter changes as possible.

Table 4 shows the pareto-optimal system configurations obtained by an ex-
ploration considering 1000 system configurations (40 generations with 25 in-
dividuals each). Note that this exploration took approximately 70 seconds on
a standard PC running at a clock-rate of 2.4 GHz.

Table 4. Pareto-optimal solutions

# S2→ S5 S9→ S11 S3→ S8 # param. changes

1 12.24 10.12 11.52 9
2 12.24 13.72 10.72 7
3 12.86 10.12 11.52 7
4 12.99 10.12 8.87 8
5 12.99 13.72 8.07 6
6 13.84 8.42 12.97 8
7 13.84 10.12 6.57 10
8 13.84 12.12 14.57 5
9 13.84 13.82 5.77 7
10 14.06 9.37 12.97 7
11 14.46 9.37 12.97 5
12 14.46 11.07 6.57 7
13 14.46 12.97 14.57 4

We observe that we found 13 pareto-optimal working system configurations,
each of them representing an optimal trade-off between the constrained timing
properties and the number of parameter changes with respect to the initial con-
figuration.

In order to decide which system configuration to adopt, the system integrator
needs to interpret the pareto-set. Depending on special requirements to the
system she can consider additional information such as system sensitivity to
property variations (see Section 9) to make a decision.

Figures 5(a) and 5(b) show the 2-dimensional Pareto-fronts representing the
optimal trade-offs between the constrained timing properties and the number
of parameter changes necessary to achieve them.

If we consider, for instance, the path S2→ S5, we can see from the pareto-
front in figure 5(a), that the minimum number of necessary parameter changes
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(a) Pareto-Front: #Param changes - S2→ S5 (b) Pareto-Front: #Param changes - S9→ S11

Figure 5. Optimization results

to obtain a working system is 4 (config. #13), corresponding to an delay of
14.46 time units, which is short of the constraint (15 time units).

Increasing the number of allowed parameter changes leads to shorter end-to-
end delays. With 5 (config. #8) and 6 (config. #5) parameter changes we can
obtain end-to-end delays of 13.84 and 12.99 time units for the path S2→ S5,
respectively. The shortest end-to-end delay for the path S2 → S5, 12.24 time
units, can be achieved with a minimum number of 7 parameter changes.

9. Sensitivity Analysis of the Integrated System
In this section we determine the sensitivity of the pareto-optimal system

configurations presented in Section 8.2. Figure 6 shows the flexibility of the
task execution times and channels communication times. From the set of
pareto-optimal configurations we removed those that dominate the other con-
figurations in at least one computed parameter slack. At a closer look we ob-
serve that configurations #4 and #7 determine the maximum available slack
for most execution times. In general, comparing the results presented in Fig-
ure 6 with the results obtained for the two independent subsystems (Figure 2(a))
we observe that the slacks of the execution times of the system tasks have de-
creased only by a small amount after system integration. The slack of the
communication channels has evidently decreased due to the load increase of
CAN1.
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Figure 6. WCET Flexibility

Figure 7 shows the slack values obtained for the hardware resource speed.
Again, we selected only those configurations that have a high overall robust-
ness or those which dominate all other configurations in at least one computed
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parameter slack. Compared to the results presented in Figure 2(b) the only
resource with a noticeable smaller slack is the communication bus, CAN1.
The reason is again the increase of the overall resource utilization after system
integration.
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Figure 7. Resource Speed Flexibility

Lastly, we determine the available slack corresponding to the task activation
periods. Figure 8 shows the values obtained for some configuration selected
from the set of pareto-optimal configurations obtained in Section 8.2. Com-
paring these results with the results obtained before system integration (Fig-
ure 2(c)) we observe that the only periods whose slacks clearly decreased are
S2, S3 and S9. Since these periods obviously determine the communication
rates of the channels on CAN1 and, consequently, automatically the utilization
of this bus, and since the overall load on CAN1 has increased after subsystem
integration, the available headroom of these periods decreased accordingly.
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Figure 8. Activation Period Flexibility

10. Conclusion
Formal models are an ideal basis to determine system properties that are

not amenable to simulation, such as system robustness, and they allow rapid
design space exploration. In this paper we showed how sensitivity analyis
can help in quickly dimensioning and optimizing automotive platforms. In the
future, formal models based techniques are considered to play a major role in
automotive design.
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