
Improved Offset-Analysis Using Multiple Timing-References

Rafik Henia, Rolf Ernst
Technical University of Braunschweig

Institute of Computer and Communication Network Engineering (IDA)
D-38106 Braunschweig, Germany
{henia, ernst}@ida.ing.tu-bs.de

Abstract

In this paper, we present an extension to existing ap-
proaches that capture and exploit timing-correlation be-
tween tasks for scheduling analysis in distributed systems.
Previous approaches consider a unique timing-reference for
each set of time-correlated tasks and thus, do not capture the
complete timing-correlation between task activations. Our
approach is to consider multiple timing-references which
allows us to capture more information about the timing-
correlation between tasks. We also present an algorithm that
exploits the captured information to calculate tighter bounds
for the worst-case response time analysis under a static pri-
ority preemptive scheduler.

1. Introduction
With increasing embedded system complexity, timing-

correlation between task activations and communication tim-
ing grows. However, even if such correlations can have a
large influence on system timing, as shown in [8] [4], most
formal scheduling analysis ignore them to avoid the growing
analysis complexity.

Figure 1. Distributed system example
Take a look on the system in Figure 1. The system is

composed of nine tasks mapped on five resources. Let us
focus on the worst-case response time calculation on the re-
source R4. Due to the data-dependency between the tasks
T3, T5 and T8, their activating events are time-correlated,

which could rule out simultaneous activation of all three
tasks. We call the information about such correlation in-
ter event stream context [2]. However, a typical scheduling
analysis would ignore the available inter event stream con-
text information and would assume that all three tasks are
independent and that in the worst-case they are activated si-
multaneously [9]. This may result in pessimistic calculated
worst-case response times.

Methods exploiting inter event stream contexts for the
scheduling analysis already exist [8, 4, 3]. However, they are
unable to capture the complete timing-correlation between
tasks, because they would consider the external events pro-
duced by Source as unique reference to capture the timing-
correlation between T3, T5 and T8.

In [1], we presented a new technique allowing capturing
more information about the timing-correlation between tasks
in parallel paths by considering the completion time of the
task at which the parallel paths start, as additional reference:
e.g. the completion time of T1 is considered as additional
reference to capture the timing-correlation between the acti-
vations of T3 and T8 and the activations of T5 and T8. Even
though improvements can be obtained using this technique,
it does not allow to capture the complete timing-correlation
between tasks belonging to a same single path, e.g. the
timing-correlation between activations of T3 and T5.

In this paper, we extend the technique presented in [1]
by considering additional timing-references in the system to
capture the timing-correlation between tasks belonging to a
single path or to parallel paths in a more accurate way.

The paper is organized as follows: in the next section, we
review the existing approaches from literature that exploit
inter event stream contexts for scheduling analysis. In Sec-
tion 3, we present our computational model before giving
an overview about inter event stream context preliminaries
in Section 4. In Section 5, we show the limits of existing
techniques and extend the relative offset and relative jitter
approach. An algorithm exploiting the relative offset and jit-
ter information for the worst-case response time calculation
is presented in Section 6. In Section 7 we carry out experi-
ments and interpret the results, before we draw our conclu-
sions.



2. Related Work
Tindell developed in [8] a technique to capture the timing-

correlation between tasks in a way that can be exploited by
scheduling analysis. Tindell introduced this idea for tasks
scheduled under a static priority preemptive scheduler. In
his paper, each set of time-correlated tasks is grouped into
a so called transaction. Each transaction is activated by a
periodic sequence of external events. Each task belonging to
a transaction is activated when a relative time, called offset,
elapses after the arrival of an external event at the transaction
input. An activation of a task releases the execution of one
instance of that task, called job. A limitation of Tindell’s
technique is that offsets are not allowed to be larger than the
transaction period.

Tindell’s work was later generalized by Palencia and Har-
bour [4]. They presented the WCDO-algorithm (Worst Case
Dynamic Offsets), which allows task offsets to be larger than
the transaction period. In [6], they also presented an al-
gorithm that exploits the inter event stream context infor-
mation for tasks scheduled under EDF scheduling. In [5],
they presented a new analysis technique exploiting the prece-
dence relation between tasks scheduled under a static prior-
ity preemptive scheduler. However, the presented algorithm,
called WCDOPS (Worst Case Dynamic Offsets with Priority
Schemes), only took into account tasks in linear transactions,
where each task is allowed to have at most one output.

Recently, Redell extended the WCDOPS algorithm by
considering the precedence relation between tasks in so
called tree-shaped transactions [3], i.e. tasks are allowed
to have more than one output. Even though the proposed
algorithm (the WCDOPS+ algorithm) allows to exploit the
precedence relation in a more accurate way, it was based on
the inter event stream context capturing technique presented
by Tindell, which only considers the external events at the
transaction input as unique reference to calculate offsets.

In [1], we presented a new approach that allows to cap-
ture the timing-correlation between tasks belonging to paral-
lel paths in a more accurate way by considering the com-
pletion time of tasks having several outputs as additional
timing-references. Then, so called relative offset and jitter
are calculated for each task belonging to a path starting at
an output of the multi-output task. We also developed an al-
gorithm to exploit the relative offset and jitter information
for the worst-case response time calculation under a static
priority preemptive scheduler.

3. Computational Model
The model that we consider is composed of tasks execut-

ing in a distributed system consisting of computation and
communication resources. Tasks are allowed to have more
than one immediate successor. Each task is assumed to have
exactly one input and is activated due to one activating event.
The core execution time of a task, i.e. execution assuming
no interrupts, is noted CET. After finishing its execution, a
task produces simultaneously one event at each of its out-
puts. The possible timing of events is described using event

models. Event models are described using two parameters:
the period and the jitter, noted P and J. These parameters
state that each event generally occurs periodically with a pe-
riod P, but that it can jitter around its exact position within a
jitter interval J. If the jitter is larger than the period, then two
or more events can occur at the same time, leading to bursts.

We assume static priority preemptive scheduling on the
resources, i.e. tasks are assigned priorities and the execution
of a lower priority task can be interrupted by the execution
of higher priority tasks mapped on the same resource. The
response time R of a task is defined as the difference between
its completion and its activation time.

4. Preliminaries
In this section, we review preliminaries about the offset

analysis, as presented in [8] and [4]. Each set of time-
correlated tasks in the distributed system is grouped into one
transaction: e.g. in the system in Figure 1 all nine tasks be-
long to a same transaction, which is activated by the events
produced by Source. In addition, each task belonging to a
transaction is identified by an offset parameter which indi-
cates the earliest activation instant of the task after the ar-
rival of the associated external event activating the transac-
tion: e.g. the offset of T1 is Φ1 = 0, since T1 is activated
immediately after the arrival of an event at the transaction
input. In the following, we call this offset global offset.

To calculate the worst-case response time of a lower pri-
ority task Tl , we must calculate the maximum contribution
from all transactions to its busy window. The busy window
of Tl is a time-interval during which the resource is busy pro-
cessing Tl or another task from hp(Tl), where hp(Tl) is the
set of higher or equal priority tasks sharing the same resource
with Tl . The instant that starts the busy window is called crit-
ical instant and is noted tc.

Let now hpΓ(Tl) be the set of tasks belonging a given
transaction Γ and to hp(Tl). In [8] and [4], it was shown
that the maximum contribution of Γ to the busy window is
obtained when the critical instant tc coincides with the acti-
vation time of some task Tc ∈ hpΓ(Tl), when Tc is delayed
by its maximum jitter. We say that Tc determines the critical
instant tc. The maximum contribution of each other task Ti
from hpΓ(Tl) to the busy window is obtained by activating
each of its jobs, if possible, at or as soon as possible after tc.

Figure 2. transaction Γ with executions of Tl
and jobs from Ti

This is shown in Figure 2. The downward arrows indicate
the external events activating the transaction. The upward
arrows indicate the offset Φi of Ti. Each job of Ti is delayed,



if possible, by a certain amount of time denoted δi, to occur
at tc. Note that δi ≤ Ji. Jobs of Ti, whose activations always
occur after tc, are activated without any delay. Note that jobs
of Ti that cannot be activated at tc, even with a maximum
delay, do not contribute to the busy window.

5. Relative Offset And Relative Jitter
5.1 Problem Formulation

Observe the system in Figure 1. We assume static prior-
ity scheduling on all resources. Priorities and core execu-
tion times of tasks are shown in the figure. T1 is assumed
to be activated periodically by events sent by the source task
Source. Let the activating event model at the input of T1 be
(P1 = 20,J1 = 0). Due to the data-dependency between all
tasks, they are grouped into one transaction ΓSource. With-
out loss of generality, we assume that T1 has a global off-
set Φ1 = 0. In the following, we will focus on the worst-
case response time calculation of the task T8 on R4. We use
the compositional performance analysis methodology to per-
form the response time calculation [7], i.e. initially, all exter-
nal event models are propagated along all system paths until
an event model is available for each task, then local schedul-
ing analysis and event model propagation are performed al-
ternately. This process is repeated until no newly propagated
event model is different from the event model that was prop-
agated in the previous step, or if some timing constraint is
violated. Table 1 shows the activating event models and the
global offsets at the inputs of T3, T5 and T8 after having ana-
lyzed the resources R1, R2, R3 and R5. Note that the jitter is
due to the response time variation of T1 and T2.

task input event model global offset
T3 (P3 = 20,J3 = 8) Φ3 = 2
T5 (P5 = 20,J5 = 8) Φ5 = 6
T8 (P8 = 20,J8 = 6) Φ8 = 4

Table 1. Input event models and global offsets
at the inputs of T3, T5 and T8

Now having the activating event model of all tasks mapped
on R4, we can calculate the worst-case response time of
the lower priority task T8. The worst-case response time
of T8 calculated by the WCDO [4], WDOPS [5] and WC-
DOPS+ [3] algorithms is Rw

8 = 6. This worst-case response
time calculation using the WCDO algorithm is shown in the
gantt-chart in Figure 3. The worst-case scenario is obtained
when T3 determines the critical instant, i.e. T3 is activated
after having arrived as late as possible. The maximum con-
tribution of T5 and T8 to the busy-window is obtained by ac-
tivating them as soon as possible after the critical instant, i.e.
by activating them with a delay, which causes them to coin-
cide with the critical instant. Therefore, two interrupts of T8
by T3 and T5 are calculated.

When using the technique presented [1] for the calcula-
tion, the events produced at the outputs of T1 are considered
as additional reference to capture the timing correlation be-
tween the tasks mapped on R4. Exploiting this additional

Figure 3. W-C response time calculation of T8
using the WCDO algorithm

timing-reference results in a different calculated activation
instant of T5: tc + 2. However, the obtained worst-case re-
sponse time of T8 is the same as the one calculated using the
WCDO, WDOPS and WCDOPS+ algorithms.

Now, let us take a closer look on our system. Since T4 has
the highest priority on R5, its execution takes 2 time units
in both best- and worst-case to finish. Since an execution of
T4 activates T5, a gap of 2 time units always exists between
an execution of T3 and an execution of T5. Since this gap is
large enough to allow T8 to finish its execution, an execution
of T8 can either be interrupted by an execution of T3 or by an
execution of T5, but not by both. Therefore, the true worst-
case response time of T8 is Rw

8 = 4.
So why are the previous calculations pessimistic? The

reason is that the WCDO, WDOPS and WCDOPS+ algo-
rithms consider the arrival of external events at the system
inputs (here events produced by Source) as unique reference
to capture the timing correlation between tasks in a trans-
action. The algorithm presented in [1] on his part, consid-
ers an additional timing-reference (here events produced by
T1), however this reference allows to capture more timing-
correlation between tasks belonging to parallel paths but not
between tasks belonging to a same single path (here T3 and
T5). Therefore, not all correlations between tasks activations
are captured. E.g. the algorithms cannot recognize that if
T3 is activated after having experienced a maximum delay,
the activation of T5 will experience at the minimum the same
delay, since T3 and T5 belong to a same path and T3 precedes
T5. Such correlations could be captured by taking other tim-
ing references into account. In our example, it would be
more accurate to consider the events arrival at the input of
T3 as additional reference to capture the timing correlation
between the activations of T3 and T5.

5.2 Relative Offset and Relative Jitter Concept

To capture the timing-correlation between tasks in dis-
tributed systems in a more accurate way, we extend the con-
cept of relative offset and relative jitter, which we already
introduced in [1].

Definition 1 (relative offset) A task Ti is said to be acti-
vated after an offset Φi(re f ) relative to a timing-reference
re f , if Ti is activated at the earliest, when a relative time
Φi(re f ) elapses after the occurrence of the timing-reference



re f . Φi(re f ) is called offset of Ti relative to the timing refer-
ence re f .

Definition 2 (relative jitter) The activation of a task Ti rel-
ative to a timing-reference re f can vary within a jitter inter-
val of length Ji(re f ). Ji(re f ) is called jitter of Ti relative to
the timing-reference re f .

A timing-reference could be the events arrival at the in-
puts of a task Tr. In this case, the relative offset and jitter
information of Ti is denoted: (Tr, in , Φi(Tr, in) , Ji(Tr, in)).
If the timing-reference corresponds to the completion time
of a task Tr, the relative offset and jitter information of Ti is
denoted: (Tr,out , Φi(Tr,out) , Ji(Tr,out)).

In the example in Figure 1, since T5 is activated exactly
4 time units after the activation of T3, the offset and jitter
information of T5 relative to the events arrival at the input of
T3 is: (T3, in , 4 , 0). The offset and jitter information of T3
relative to the events arrival at its input is: (T3, in , 0 , 0).

6. Worst-Case Response Time Calculation
In this section, we present an algorithm that exploits the

relative offset and jitter information for the worst-case re-
sponse time calculation. First, we perform the calculation
only for tasks belonging to a same single path. Then, we re-
call the algorithm presented in [1], which performs the cal-
culation for tasks belonging to parallel paths. Finally, we
merge both algorithms to obtain a single algorithm that ex-
ploits the relative offset and jitter information for distributed
systems with tree-shaped task-dependencies.

6.1 Tasks Belonging to a Single Path
We begin deriving the worst-case response time calcula-

tion for a lower priority task Tl considering global offsets
only. Then we will additionally consider the relative offset
and jitter information.

6.1.1 Global offsets exploitation
As already introduced in Section 4, to calculate the maxi-
mum contribution of a transaction Γ to the worst-case re-
sponse time of Tl we begin constructing a critical instant tc
that starts the worst-case busy window. Let us assume that
tc is determined by some task Tc ∈ hpΓ(Tl). We assign in-
dexes to each external event, e, activating the transaction Γ as
shown in Figure 2. The first external event that occurs before
or at tc is denoted e0. Previous external events have negative
indexes assigned. Subsequent external events have positive
indexes assigned. For each task Ti from hpΓ(Tl), each job is
assigned the index of the associated external event. A job of
Ti with an index k is denoted Ti,k. The activation instant of
Ti,k is denoted ti,k. Depending on the critical instant tc, the
global offset and the jitter, each job is categorized into one
of the following sets:

• Set0: Jobs whose activations cannot occur inside the
busy window even with a maximum delay.

• Set1: Jobs whose activations can be delayed to coincide
with tc.

• Set2: Jobs whose activations always occur after tc.

In [8] and [4], it was proven that the maximum contribu-
tion of a task Ti to the busy window is obtained by delay-
ing the activations of its jobs belonging to Set1 by a certain
amount of jitter to coincide with tc and activating its jobs be-
longing to Set2 as soon as possible, i.e. without any delay.
E.g. in Figure 2, the maximum contribution of Ti to the busy
window is obtained by activating Ti,−1 and Ti,−2 at tc and all
the following jobs without any delay. Note that jobs from
Set0 are not considered since they cannot be delayed enough
to be activated at tc.

6.1.2 Relative offsets and jitter exploitation
So far, to calculate the maximum contribution of a job Ti,k to
the worst-case busy window of Tl , we determined its activa-
tion instant depending on its global offset only. However, an
other dependency could exist between Ti,k and jobs triggered
by the associated external event ek, i.e. jobs having the same
index k, and belonging to other tasks from hpΓ(Tl). Recall
the example in Section 5.1: when considering the global off-
sets only, we found out that the activations of the jobs T3,0
and T5,0 can be both delayed to coincide with tc. However,
when considering the available offset and jitter information
relative to the events arrival at the input of T3, we found out
that the activation of T3,0 always precedes the activation of
T5,0, by exactly 4 time units and thus, it is impossible to ac-
tivate both jobs simultaneously at tc.

In the following, we show the maximum contribution of
tasks belonging to hpΓ(Tl) to the worst-case busy window of
Tl , when considering both global offsets and relative offset
and jitter information.

Let us denote the activation scenario of jobs triggered by
the external event ek by Ak. When a maximum contribution
to the busy window is assumed for a job with index k (i.e.
the job is activated at tc), we say that this job determines
the activation scenario Ak. Let us now assume that Ak is
determined by a job Ti,k, which belongs to Set1. Let Tj be a
task from hpΓ(Tl) that belongs to the same path than Ti. In
order to calculate the contribution of Tj,k to the busy window,
we categorize Tj into one of the following sets:

• Predecessors(Ti): Set of tasks belonging to hpΓ(Tl) and
preceding Ti.

• Successors(Ti): Set of tasks belonging to hpΓ(Tl) and
preceded by Ti.

Once the task Tj have been categorized into the sets above,
the activation instant of Tj,k that leads to its maximum con-
tribution to the busy window can be determined according to
the following theorem:

Theorem 1 Assuming a maximum contribution of a job Ti,k
from Set1 to the busy window by activating it at tc, a job
Tj,k can only contribute to the busy window if Tj belongs
to Successors(Ti). The maximum contribution of Tj,k is ob-
tained by activating it at the instant: t j,k = tc + Φ j(Ti, in),



where Φ j(Ti, in) is the offset relative to the event arrival at
the input of Ti.

Proof 1 Let us assume that Tj belongs to Predecessors(Ti).
In this case, Ti,k is activated after Tj,k finishes its execution.
Therefore Tj,k is executed before tc, and thus it does not con-
tribute to the busy window. We assume now that Tj belongs
to Successors(Ti). In this case Tj,k is activated after Ti,k fin-
ishes its execution. Therefore Tj,k is activated after tc, and
thus it may contribute to the busy window. The maximum
contribution of Tj,k to the busy window is obtained by acti-
vating it as soon as possible after tc. Since Ti,k is activated
at tc, the earliest activation instant t j,k of Tj,k occurs when
Tj,k is activated without any delay relative to the event ar-
rival at the input of Ti. Therefore, the activation instant that
leads to a maximum contribution of Tj,k to the busy window
is t j,k = tc +Φ j(Ti, in).

Let us apply theorem 1 to the system example in Fig-
ure 1. Assuming that T5,0 determines the activation sce-
nario A0, T3,0 would not contribute to the busy window
since T3 belongs to Predecessors(T5). Assuming now that
the job T3,0 determines the activation scenario A0, the acti-
vation instant t5,0 that could lead to a maximum contribu-
tion of T5,0 to the busy window is according to theorem 1:
t5,0 = tc + Φ5(T3, in) = tc + 4 (in this case, since T8 finishes
its execution at the instant tc +4, the activation of T5,0 occurs
outside the busy window).

Given a job Ti,k that belongs Set1 and determines the acti-
vation scenario Ak, we can now calculate the maximum con-
tribution to the busy window for all jobs involved in Ak and
belonging to tasks situated on the same path than Ti. This is
given by the following algorithm:

Algorithm 1 MSC: Maximum Scenario Contribution
Input: busy window, Ti,k
Output: maxContribution

1: maxContribution = 0;
2: for all task Tj belonging to hpΓ(Tl) do
3: if Tj = Ti or Tj belongs to Successors(Ti) then
4: t j,k = tc +Φ j(Ti, in);
5: if t j,k is within busy window then
6: maxContribution = maxContribution + CET max

j ;

Note that if all jobs involved in a given activation scenario
Ak belong to Set2, none of these jobs can be activated at tc.
Therefore, no job can determine the activation scenario Ak.
In this case, the maximum contribution of these jobs to the
busy window is obtained when they are activated, as before
(see Section 6.1.1), without experiencing any delay.

6.2 Tasks Belonging to Single or Parallel Paths
As mentioned in Section 2, we already presented an ap-

proach to capture the relative offset and jitter information
between tasks in parallel paths [1]. The main idea of this ap-
proach is to consider the completion time of each task having

several outputs as additional timing-reference. Consider the
resource R5 in Figure 1. The offset and jitter information
relative to the completion time of T1 can be exploited when
calculating the contribution to the busy window of activation
scenarios, where jobs from T4 and T9 are involved, since this
reference is the most recent common reference between the
two tasks. In the following, we recall how to exploit the rel-
ative offset and jitter information for tasks belonging to par-
allel paths (Note that theorem 1 cannot be applied for such
tasks since there is no precedence relation between them).
Proofs and details can be found in [1].

Let Ti be a task from hpΓ(Tl) that belongs to a path starting
at an output of some task Tr. Let us assume that the job Ti,k
from Set1 determines the activation scenario Ak, i.e. Ti,k is
activated at the critical instant tc. Let δi,k be the delay needed
by Ti,k to be activated at tc (see δi,k in Figure 2). Let now Tj
be another task from hpΓ(Tl) that belongs to a path starting
at another output of Tr. In [1] we proved that the activa-
tion instant t j,k of Tj,k occurs within the interval [tmin

j,k , tmax
j,k ],

where:

tmin
j,k = tc +Φ j(Tr,out)−Φi(Tr,out)−min(δi,k,Ji(Tr,out))

tmax
j,k = tc +Φ j(Tr,out)−Φi(Tr,out)+ J j(Tr,out)

−max(0,δi,k + Ji(Tr,out)− Ji)

Depending on whether tc occurs within the interval
[tmin

j,k , tmax
j,k ], it was shown that the activation instant t j,k that

may lead to a maximum contribution to the busy window
occurs:

• before tc, if tmax
j,k < tc (i.e no contribution the busy win-

dow)

• at max(tc, t j,k−1), if tc ∈ [tmin
j,k , tmax

j,k ]

• at tmin
j,k , if tc < tmin

j,k

Now, we can extend the algorithm MSC to make it con-
sider tasks belonging to a single path as well as tasks be-
longing to parallel paths.

Algorithm 2 MSC: Maximum Scenario Contribution
Input: busy window, Ti,k
Output: maxContribution

1: maxContribution = 0;
2: for all task Tj belonging to hpΓ(Tl) do
3: if Ti and Tj belong to a same path then
4: if Tj = Ti or Tj belongs to Successors(Ti) then
5: t j,k = tc +Φ j(Ti, in);
6: else if Ti and Tj belong to parallel paths then
7: calculate [tmin

j,k , tmax
j,k ];

8: determine t j,k depending on tc and [tmin
j,k , tmax

j,k ];
9: if t j,k is within busy window then

10: maxContribution = maxContribution + CET max
j ;



Depending on whether Tj,k belongs to a same single path
than Ti,k or not, the new MSC algorithm calculates the acti-
vation instant of Tj,k either by exploiting the offset and jitter
information relative the event arrival at the input of Ti (line
3−5) or by exploiting the offset and jitter information rela-
tive the completion time of the task at which start the parallel
paths to which Ti and Tj belong (line 6−8). Let us apply this
for the response time calculation of T8 on the resource R4.
Assume that the job T3,0 determines the activation scenario
A0. The activation instant of T8,0 is calculated by exploiting
the offset and jitter information relative to the completion
time of T1, since T3 and T8 belong to parallel paths starting
at the outputs of T1. When calculating the activation instant
of T5,0, it is more accurate to exploit the offset and jitter in-
formation relative to the arrival of events at the input of T3,
since T3 and T5 belong to a same path.

7. Experiments

We have performed a large number of experiments us-
ing randomly generated systems. Tasks mapping, event
models, core execution times and priorities were also as-
signed randomly. We have compared the results obtained
using our technique with the results obtained using the inter
event stream context blind analysis (i.e. without considering
timing-correlation between tasks) and the WCDO algorithm.

Additionaly, we show the results obtained using the clas-
sical WCDOPS+ algorithm, which only considers external
events as timing references when exploiting the precedence
relation between tasks, compared with the results obtained
using a modified WCDOPS+ algorithm which takes into ac-
count relative offset and jitter (due to space restriction, the
modified WCDOPS+ algorithm cannot not be presented in
this paper).

We also compared the results obtained using the classical
WCDOPS+ algorithm, which only considers external events
as timing references when exploiting the precedence rela-
tion between tasks, with the results obtained using a modi-
fied WCDOPS+ algorithm which takes into account relative
offset and jitter (due to space restriction, the modified WC-
DOPS+ algorithm cannot not be presented in this paper).

Figure 4. Response time average ratios
Figure 4 shows the response time average ratios as func-

tion of the system utilization. The results show that a

large improvement can be obtained when considering mul-
tiple timing-references: up to 75% compared to the inter
event stream context blind analysis, up to 64% compared to
the WCDO and up to 60% compared to the classical WC-
DOPS+. It is also interesting to note that a larger improve-
ment is obtained for large system utilization. This is due to
the fact that a large system utilization leads to higher calcu-
lated worst-case response times. This in turn leads to larger
task global jitters on which, the response times themselves
depend. When considering multiple timing-references, the
effect of global jitters on the response time calculation can
be reduced and thus, lower response-times are calculated.

8. Conclusion
In this paper we extended existing approaches capturing

timing-correlation between tasks in distributed systems by
considering multiple timing-references. We have seen that
considering the external events at the system inputs as unique
timing-reference could lead to pessimistic response times
calculation. Our solution consists in considering the most
recent timing-reference for each task to perform an exacter
calculation of its activation instant. We also developed an al-
gorithm that exploits this approach for the worst-case static
priority preemptive analysis. Our experiments show that our
technique allows to calculate considerably tighter bounds
compared to previous techniques. We consider that our ap-
proach is an important extension of the collection of analy-
sis techniques exploiting timing-correlation between tasks in
distributed systems.

References

[1] R. Henia and R. Ernst. Context-aware scheduling analysis of
distributed systems with tree-shaped task-dependencies. In
Proc. of Design, Automation and Test in Europe (DATE’05),
Munich, Germany, Mar. 2005.

[2] M. Jersak, R. Henia, and R. Ernst. Context-aware performance
analysis for efficient embedded system design. In Proc. of De-
sign, Automation and Test in Europe (DATE’04), Paris, France,
Mar. 2004.

[3] O.Redell. Analysis of tree-shaped transactions in distributed
real time systems. In Proc. of 16th Euromicro Conference on
Real-Time Systems, Catania, Italy, June 2004.

[4] J. C. Palencia and M. G. Harbour. Schedulablilty analysis for
tasks with static and dynamic offsets. In Proc. 19th IEEE Real-
Time Systems Symposium (RTSS98), 1998.

[5] J. C. Palencia and M. G. Harbour. Exploiting precedence re-
lations in the schedulablilty analysis of distributed real-time
systems. In Proc. 20th Real-Time Systems Symposium, 1999.

[6] J. C. Palencia and M. G. Harbour. Offset-based response
time analysis of distributed systems scheduled under edf. In
Proc of the 15th Euromicro Conference on Real-Time Systems
(ECRTS), July 2003.

[7] K. Richter and R. Ernst. Event model interfaces for hetero-
geneous system analysis. In Proc. of Design, Automation and
Test in Europe (DATE’02), Paris, France, Mar. 2002.

[8] K. W. Tindell. Adding time-offsets to schedulability analysis.
Technical Report YCS 221, Univ. of York, 1994.

[9] K. W. Tindell. An extendible approach for analysing fixed pri-
ority hard real-time systems. Journal of Real-Time Systems,
6(2):133–152, Mar 1994.


