
Multi-Dimensional Robustness Optimization in Heterogeneous
Distributed Embedded Systems
Arne Hamann, Razvan Racu, Rolf Ernst

Institute of Computer and Communication Network Engineering
Technical University of Braunschweig

{hamann|racu|ernst}@ida.ing.tu-bs.de

Abstract

Embedded system optimization typically considers objectives
such as cost, timing, buffer sizes, and power consumption. Ro-
bustness criteria, i.e. sensitivity of the system to property vari-
ations like execution and transmission delays, input data rates,
CPU clock rates, etc., has found less attention despite its practical
relevance.

In this paper we present an approach for optimizing multi-
dimensional robustness criteria in complex distributed embedded
systems. The key novelty of our approach is a scalable stochas-
tic multi-dimensional sensitivity analysis technique approximating
the sought-after sensitivity front from two sides, i.e. coming from
the space of working and from the space of non-working system
property combinations.

We utilize the proposed stochastic sensitivity analysis to de-
rive multi-dimensional robustness metrics, which are capable of
bounding the robustness of given system configurations with little
computational effort.

The proposed metrics can significantly speed up multi-
dimensional robustness optimization by quickly identifying promis-
ing system configurations, whose in-depth robustness evaluation
can be performed subsequently to the optimization process.

1. Introduction

Design robustness has always been a concern in embedded sys-
tem design. Robustness is needed to account for estimation errors
in early design phases, minor changes of specifications, bug fixes
or later extensions or updates of the design to name just a few of
the many situations where tolerance of hardware and run time sys-
tem to modifications is expected. Typically, designers add some
slack to the system parameters to reach robustness, e.g. a maxi-
mum load limitation for buses. While adding parameter slack used
to work reasonably in practice, this heuristic approach is loosing
effectiveness. With growing system size and complex networked
systems, the effects of modifications on load and timing are more
difficult to predict while at the same time, an increasing number
of independently developed applications is integrated on the same
system possibly leading to unknown coupling effects or limita-
tions. Examples are cars or aircrafts. Results are an increasing
design risk and non-extendable systems.

One approach to increase design robustness is parameter adap-
tation at run-time, such as in adaptive scheduling strategies [9].
Adaptation is very efficient but comes with run-time overhead and

makes it more difficult to determine the resulting design robust-
ness. So, adaptation potentially improves the system but does not
circumvent the need to determine system robustness.

To systematically determine robustness, we need sensitivity
analysis. Sensitivity analysis extends the idea of using a slack met-
ric. Rather than evaluating the slack as the permissible change of
a single component parameter until this component reaches 100%
utilization, sensitivity analysis takes a global approach and deter-
mines the maximum (or minimum) value of a parameter where
the whole system is still functional. So, sensitivity analysis takes
global effects into account. The sensitivity analyses approaches
presented in [10, 11], for instance, can capture the global effects
of single system property variations. They are capable of calcu-
lating the boundaries representing the transition between working
and non-working systems for a large variety of system properties,
including worst-case execution times, communication volumes,
input data rates, processor and communication link performance,
etc.

Once we have a sensitivity analysis available, we can take the
next step to include robustness as a regular design goal. For that
purpose we need formal robustness metrics that allow to quantify
robustness that is then used in system optimization. The approach
presented in [7] calculates the robustness to a single parameter
change using a one-dimensional sensitivity analysis that employs
binary search. The paper proposes robustness metrics for different
design scenarios.

However, since the underlying sensitivity analysis is one-
dimensional these robustness metrics ignore dependencies between
the considered system properties. For instance a small variation of
one system property might have drastic effects on the robustness
potential of another system property.

There are approaches [5, 1] that consider multi-dimensional ro-
bustness optimization problems. However, these approaches are
based on very simple application models facilitating the deter-
mination of the needed multi-dimensional robustness data. Con-
sequently, these approaches are not applicable to state-of-the-art
performance models [8, 3] for complex embedded distributed sys-
tems that are able to tightly determine various system performance
properties including timing, buffer sizes, and power consumption.

In this paper we present an approach to multi-dimensional ro-
bustness optimization, which can be efficiently utilized for robust-
ness optimization of complex embedded distributed systems using
state-of-the-art performance models [8, 3].

The key novelty of the presented approach is a stochastic tech-
nique approximating the sensitivity front from two sides, i.e. com-
ing from the space of working and coming from the space of non-
working system property combinations. Consequently, our ap-

proach can be utilized to define multi-dimensional robustness met-
rics estimating the lower and the upper robustness bounds of given
system configurations.

Additionally, the proposed metrics are parameterizable and al-
low to trade approximation quality versus computational effort.
This represents a huge advantage of the presented approach since
even for low approximation qualities, the lower and upper robust-
ness bounds are very good indicators to identify interesting system
configurations, whose detailed analysis can be postponed after ro-
bustness optimization.

The remainder of this paper is structured as follows. First,
we introduce the proposed stochastic multi-dimensional sensitiv-
ity analysis (Section 2). We then give a short survey over algo-
rithms for hypervolume calculation, which we utilize to define our
robustness metrics (Section 3). Afterwards, we formally define
parameterizable multi-dimensional robustness metrics as well as
their approximation quality (Section 4), and explain how they can
be utilized efficiently for robustness optimization (Section 5). Fi-
nally, we introduce a distributed embedded example systems to
evaluate the convergence behavior of our robustness metrics and
to demonstrate their applicability (Section 6).

2. Stochastic Multi-Dimensional Sensitivity
Analysis

In this section we present a stochastic approach for multi-
dimensional sensitivity analysis. It is based on the design space
exploration framework introduced in [6] using multi-dimensional
evolutionary search techniques [2, 14] and state-of-the-art compo-
sitional performance verification methods [3, 8].

We first give a short description of how we use the exploration
framework to perform multi-dimensional sensitivity analysis (Sec-
tion 2.1). We then give details on the search space encoding (Sec-
tion 2.2) and the creation of the initial population used as start-
ing point for exploration (Section 2.3). Afterwards, we discuss
the exploration strategy used during variation to bound the search
space, and thus improving analysis speed and approximation qual-
ity (Section 2.4). Finally, we explain in detail the exploration strat-
egy implemented by the variation operators (Sections 2.5 and 2.6).

2.1 Analysis Idea

Classical applications of exploration frameworks for complex
distributed systems assume variation of system parameters like
scheduling, mapping, etc. to optimize criteria including timing,
power consumption, and buffer sizes.

In this paper we utilize design space exploration in a different
way in order to cover multi-dimensional sensitivity analysis. In-
stead of modifying the system parameter configuration during ex-
ploration, we modify system properties subject to sensitivity anal-
ysis, i.e. worst-case core execution times, CPU clock rates, input
data rates, etc. Thereby, the optimization objectives are, depend-
ing on the considered system properties, either the maximization
or the minimization of the property values under the restriction
that the system must stay functional, i.e. all system constraints,
like e.g. end-to-end deadlines, must be satisfied.

For instance, in the case of a three-dimensional WCET sen-
sitivity analysis of three tasks, the search space consists of the
WCET assignment for those tasks and the optimization objec-
tives are the simultaneous maximization of the latter.

Note that the utilized exploration framework [6] performs Pareto-

optimization, and that the obtained Pareto-front corresponds to the
sought-after sensitivity front representing the boundary between
feasible and non-feasible system configurations. Furthermore, the
algorithms presented in the next sections are applicable to arbitrary
system properties, including those which are subject to maximiza-
tion (e.g. worst-case core execution times) and those which are
subject to minimization (e.g. input data rates).

It is important to mention, that the sensitivity front coverage
is controlled by problem independent selector algorithms [2]. We
currently use SPEA2 [14] as selector, which assures a diversified
approximation of the sensitivity front through Pareto-dominance-
based selection and density approximation.

2.2 Search Space Encoding

A system property value combination considered during stochas-
tic multi-dimensional sensitivity analysis is encoded as vector con-
taining one real number entry for each considered property. In the
following we refer to such a vector as individual.

For instance, in the case of a three-dimensional sensitivity anal-
ysis for the system properties P1, P2 and P3, an individual A is
represented as three dimensional vector, i.e. A = (a1, a2, a3).

2.3 Initial Population

Algorithm 1 describes the creation of the initial population. In
the first part (lines 1 to 3) it uses one-dimensional sensitivity anal-
ysis as described in [10] to calculate the available slack for each
considered system property.

The one-dimensional slack values represent the extreme points
of the sought-after sensitivity front, and thus describe the bound-
ing hypercube containing all valid system property assignments.
This information is used throughout the whole exploration to con-
siderably limit the generation of invalid individuals.

In the second part of the algorithm (lines 4 to 7) the rest of the
initial population is randomly generated. Thereby, the individuals
are uniformly distributed within the search space bounded by the
hypercube calculated in the first part of the algorithm.

Algorithm 1 Initial Population
INPUT: System properties P1, . . . ,Pn, Initial property values

Vinit
P1 , . . . ,Vinit

Pn
, Initial population size α > n

OUTPUT: Initial population I
1: for all i such that 1 ≤ i ≤ n do
2: Vext

Pi
= computeSlack(Pi)

3: add vector (Vinit
P1 , . . . ,Vext

Pi
, . . . ,Vinit

Pn
) to I

4: while (|I| < α) do
5: for all i such that 1 ≤ i ≤ n do
6: Choose random

Vrand
Pi

∈
ˆ
min

`
Vinit
Pi

,Vext
Pi

´
, max

`
Vinit
Pi

,Vext
Pi

´˜
7: add vector

`
Vrand
P1 , . . . ,Vrand

Pn

´
to I

2.4 Bounding the Search Space

In this section we give a description of the technique used by
our approach to efficiently bound the region containing the sought-
after sensitivity front during exploration. This information is used
by the variation operators presented in the following sections to
prevent exploration from generating and evaluating individuals not
improving approximation quality.

The algorithm used to bound the search space as described
above is based on the notion of Pareto-optimality.

Definition 1 (Pareto-optimal) Given a set V of n-dimensional
vectors in Rn, the vector v = (v1, . . . , vn) ∈ V dominates the
vector w = (w1, . . . , wn) ∈ V iff for all elements 1 ≤ i ≤ n we
have

1. minimization problem: vi ≤ wi and for at least one element
l we have vl < wl.

2. maximization problem: vi ≥ wi and for at least one element
l we have vl > wl.

A vector is called Pareto-optimal iff it is not dominated by any
other vector in V .

Given Definition 1 a simple algorithm can be derived checking
whether or not a given k-dimensional vector v is Pareto-optimal
with respect to a collection of reference vectors V . In the follow-
ing we refer to such an algorithm as dominatedBy(v, V, max),
where max ∈ {true, false} indicates if Pareto-optimality is
meant in the sense of a maximization or minimization problem.

In order to achieve an efficient bounding of the search space
containing the sensitivity front, our analysis maintains two sets of
individuals:

• the set of evaluated Pareto-optimal working individuals Fw

called bounding working Pareto-front. Note that for system
properties subject to maximization (minimization) Pareto-
optimality is meant in the sense of a maximization (mini-
mization) problem.

• the set of evaluated Pareto-optimal non-working individuals
Fnw called bounding non-working Pareto-front. Note that
for system properties subject to maximization (minimiza-
tion) Pareto-optimality is meant in the sense of a minimiza-
tion (maximization) problem.

In the following we refer to the region lying between the Pareto-
sets Fw and Fnw as relevant region.

It is easy to understand, that the sought-after sensitivity front
lies inside the relevant region. Consider for instance the relevant
region determined for two system properties subject to maximiza-
tion visualized in Figure 1.

An individual lying below the bounding working Pareto-front
cannot be part of the sensitivity front, since at least one individual
of the bounding working Pareto-front has higher, and thus better,
values for all considered system properties. Also, an individual
lying above the bounding non-working Pareto-front cannot be part
of the sensitivity front, since there exist at least one non-working
individual on the bounding non-working Pareto-front, which has
smaller values for all considered system properties. Consequently,
the individual in question is non-working as well.

Algorithm 2 verifies if a given vector v lies in the relevant re-
gion. By configuring the input variable max the algorithm can
be used for system properties subject to minimization (max =
false) and maximization (max = true).

Note that the sets Fw and Fnw are updated during exploration
directly after the evaluation of the offsprings generated during the
processing of each generation. More precisely, for each working
(non-working) individual i created during variation it is checked
whether i is Pareto-optimal with respect to the individuals con-
tained in Fw (Fnw). If this is the case, i is added to Fw (Fnw)
and all individuals dominated by i are removed.

Figure 1. Relevant region for two system
properties subject to maximization

Algorithm 2 isInRelevantRegion
INPUT: k-dimensional vector v, bounding working Pareto-front

Fw, bounding non-working Pareto-front Fnw, type of con-
sidered properties max ∈ {true, false}

OUTPUT: true: if v lies in the relevant region, false: otherwise
1: workingOK =!dominatedBy(v, Fw, max)
2: nonWorkingOK =!dominatedBy(v, Fnw, !max)
3: return workingOK && nonWorkingOK

It is not strictly necessary to remove dominated individuals
from the corresponding sets for our approach to work. However,
by doing so the maintained sets are kept small and the overall com-
putational effort for checking whether or not a given individual is
contained in the relevant region is reduced.

The variation operators guiding the exploration process, which
are presented in the following sections, utilize Algorithm 2 to highly
increase the generation of offsprings directly improving the ap-
proximation of the sought-after sensitivity front. This leads to de-
creased exploration time for the same quality of approximation.

2.5 Crossover Operator

The crossover operator described in Algorithm 3 implements a
heuristic strategy to converge towards the sensitivity front, i.e. the
boundary between working and non-working systems. Its main
function during exploration is to locally refine the approximation
of the sensitivity front. It takes as input two parent individuals
P1 and P2 and generates two offsprings O1 and O2 by using the
generalized mean function (Definition 2), which maps well to the
structure of the solution space.

Definition 2 (Generalized Mean) For the positive numbers
x1, . . . , xn the k-th mean is defined as follows:

Mk(x1, . . . , xn) = k

vuut 1

n

nX
i=1

xk
i

Special cases: k → −∞ : min (x1, . . . , xn); k = −1: harmonic
mean; k → 0: geometric mean; k = 1: arithmetic mean; k = 2:
quadratic mean; k →∞ : max (x1, . . . , xn).

For crossover the generalized mean is applied property wise on
the property vectors of the parent individuals (line 7). Figure 2
visualizes the behavior of the generalized mean function for the
2-dimensional case. A and B represent two points we want to
”crossover”. If k = 1 is chosen we obtain the arithmetic mean
between A and B. This corresponds to a linear characteristic of
the sensitivity front, which we observe for instance in the case of
load dependent system properties. For the case that the crossover
operator chooses k < 1 a convex characteristic of the sensitivity
front is approximated, whereas k > 1 leads to the approximation
of a concave characteristic.

Figure 2. Coordinate-wise generalized mean
between A and B for different k

For a better adaptation of the crossover operator to the solu-
tion space structure, we modify the values calculated according
to the generalized mean formula slightly (lines 8-10). The aim
of this modification is to obtain a n-dimensional curve connecting
the considered crossover points. Such a connecting curve can be
achieved, for instance, by mirroring the calculated general mean
values at the bisector defined by the according parent property val-
ues in case that the first parent has a higher property value than the
second parent. Figure 2 shows the curve we obtain by applying
this modification.

The crossover operator utilizes Algorithm 2 presented in Sec-
tion 2.4 to generate offsprings lying in the relevant region (line 11).
However, in some cases the algorithm might fail to find such off-
springs. Therefore, the maximum number of attempts is bounded
by the constant attemptsmax. One reason for the algorithm not
being able to find offsprings lying in the relevant region might be
that one of the selected parents for crossover dominates the other
one. However, such cases rarely occur during exploration, and are
therefore not distinguished in the crossover algorithm.

Note that the crossover operator automatically ensures, that all
generated offsprings lie within the bounding hypercube contain-
ing all valid system property combinations, which is determined
during the creation of the initial population (Section 2.3).

The crossover operator can be used for system properties sub-
ject to minimization (max = false) and maximization (max =
true) by configuring the input variable max.

2.6 Mutation Operator

The described crossover operator leads to the local convergence
of the obtained property values towards the sought-after sensitiv-
ity front. In other words, it approximates the sensitivity front ”be-

Algorithm 3 Crossover operator
INPUT: parents P1 = (p11, . . . , p1n) and P2 = (p21, . . . , p2n),

kmin and kmax with kmax ≥ kmin, type of considered prop-
erties max ∈ {true, false}, bounding working Pareto-front
Fw, bounding non-working Pareto-front Fnw, maximum
number of attempts to reach relevant region attemptsmax

OUTPUT: offsprings O1 = (o11, . . . , o1n) and O2 =
(o21, . . . , o2n)

1: for all i such that 1 ≤ i ≤ 2 do
2: Choose random k ∈ [kmin, kmax]
3: attempts = 0
4: repeat
5: attempts = attempts + 1
6: for all j such that 1 ≤ j ≤ n do
7: oij = Mk (p1j , p2j)
8: if (p1j > p2j) then
9: temp = min (p1j , p2j) +

|p1j−p2j |
2

10: oij = temp− (oij − temp)
11: until (isInRelevantRegion(Oi, Fw, Fnw, max) ||

attempts > attemptsmax)

tween” individuals considered by the evolutionary algorithm.
Of course, it is possible that the variety of the initial population

is insufficient to cover the whole sensitivity front by only using
the crossover operator. Additionally, the exploration may get stuck
in sub-regions of the front, without the possibility to reach other
parts. Therefore, we introduce a mutation operator, enabling the
evolutionary search to break out these sub-regions and to cover
unexplored parts of the sensitivity front.

The mutation operator is described in Algorithm 4. It takes
as input one parent individual from which it creates one offspring
by randomly increasing or decreasing each property value by ran-
dom percentages bounded by percentagemax. Additionally, the
mutation operator takes as input the minimum and the maximum
allowed values for each considered system property which are re-
spected during mutation. Note that these values correspond to
Vinit
Pi

and Vext
Pi

calculated during the creation of the initial pop-
ulation (Section 2.3).

Like the crossover operator, the mutation operator utilizes Al-
gorithm 2 described in Section 2.4 to generate offsprings lying
in the relevant region (line 11). However, the mutation operator
might fail finding such offsprings. The reason for this might be an
insufficient Euclidean range, given by percentmax, for individu-
als situated far from the relevant region. Therefore, the maximum
number of attempts is bounded by the constant attemptsmax.

Note that by configuring the input variable max the mutation
operator can be used for system properties subject to minimization
(max = false) and maximization (max = true).

3. Hypervolume Calculation

The stochastic multi-dimensional sensitivity analysis approach
presented in Section 2 will be utilized in Section 4 to derive expres-
sive robustness metrics for multiple dependent system properties.
Thereby, the key algorithm needed to extract robustness properties
from the results of the algorithms presented in Section 2 is hyper-
volume calculation.

Hypervolume is usually used as a measure to compare effi-
ciency and to ensure diversity in evolutionary multi-objective al-
gorithms. Especially for the second point it is required that the

Algorithm 4 Mutation operator
INPUT: parent A = (a1, . . . , an), minimum property values

amin
1 , . . . , amin

n , maximum property values amax
1 , . . . , amax

n ,
maximum property variation percentage percentmax < 1,
type of considered properties max ∈ {true, false} bound-
ing working Pareto-front Fw, bounding non-working Pareto-
front Fnw, maximum number of attempts to reach relevant
region attemptsmax

OUTPUT: offspring B = (b1, . . . , bn)
1: attempts = 0
2: repeat
3: attempts = attempts + 1
4: for all i such that 1 ≤ i ≤ n do
5: Choose random percentage p ∈]0, percentmax]
6: Choose random boolean bool
7: if (bool) then
8: bi = min (ai × (1 + p) , amax

i)
9: else

10: bi = max
`
ai × (1− p) , amin

i

´
11: until (isInRelevantRegion(B, Fw, Fnw, max) ||

attempts > attemptsmax)

Figure 3. Inner and outer hypervolume

hypervolume can be calculated efficiently. Therefore, several effi-
cient algorithms for hypervolume calculation were proposed in the
last years [4, 12, 13].

In this paper we distinguish two different notions of hypervol-
ume: the inner hypervolume λ− and the outer hypervolume λ+.

λ−(V) corresponds to the dominated space enclosed by a set of
given Pareto-optimal vectors V within the bounding hypercubeH.
Note that in the two-dimensional case λ−(V) corresponds to the
area covered by the lower step function connecting the points in
V . In this paper, we utilize the algorithm given in [13] to calculate
λ−(V).

λ+(V) is defined as the difference between the volume of the
bounding hypercube H and the space of vectors in H dominating
at least one vector in V . In the two-dimensional case λ+(V) cor-
responds to the area covered by the upper step function connecting
the points in V .

Given the algorithm for calculating the inner hypervolume
λ−(V), the outer hypervolume λ+(V) can be calculated according
to Algorithm 5.

First, the hypercube bounding V is calculated (lines 1−6). Af-
terwards, the origin of the vectors in V is translated to the extreme

Algorithm 5 λ+(V)

INPUT: Set of n dimensional Pareto-optimal vectors V
OUTPUT: Outer hypervolume λ+ of V
1: for all i such that 1 ≤ i ≤ n do
2: min[i] = ∞
3: max[i] = −∞
4: for all v ∈ V do
5: min[i] = min (min[i], v[i])
6: max[i] = max (max[i], v[i])
7: for all v ∈ V do
8: for all i such that 1 ≤ i ≤ n do
9: v[i] = max[i]− v[i]

10: λ+
tmp = 1

11: for all i such that 1 ≤ i ≤ n do
12: λ+

tmp = λ+
tmp × (max[i]−min[i])

13: λ+(V) = λ+
tmp − λ−(V)

point of the bounding hypercube (lines 7− 9). Note that the inner
hypervolume of the translated vector set corresponds to the space
containing all vectors dominating at least one vector of the initial
set V . Finally, λ+ is calculated by substracting the inner hyper-
volume of the translated vector set from the hypervolume of the
bounding hypercube (lines 10− 13).

Figure 3 visualizes an example Pareto-front as well as the inner
and outer hypervolumes of several points situated on the Pareto-
front.

4. Multi-dimensional Robustness Metrics

In this section we utilize the bounding working Pareto-front
Fw and the bounding non-working Pareto-front Fnw determined
during the stochastic multi-dimensional sensitivity analysis (Sec-
tion 2) to define the robustness of a given system configuration and
the approximation quality.

We introduce two different notions of robustness: the minimum
guaranteed robustness (Definition 3) and the maximum possible
robustness (Definition 4).

Definition 3 (Minimum Guaranteed Robustness R−) We con-
sider a system S with parameter configuration c and a set of sys-
tem properties P = {p1, . . . , pn}. Given the bounding working
Pareto-front Fw

P,c for the parameters in P the minimum guaran-
teed robustness is defined as follows:

R−(Fw
P,c) = λ−(Fw

P,c)

Definition 4 (Maximum Possible Robustness R+) We consider
a system S with parameter configuration c and a set of system
properties P = {p1, . . . , pn}. Given the bounding non-working
Pareto-front Fnw

P,c for the parameters in P the maximum possible
robustness is defined as follows:

R+(Fnw
P,c) = λ+(Fnw

P,c)

R− andR+ are taylored for the underlying stochastic approach
to multi-dimensional sensitivity analyis approximating the sensi-
tivity front from two sides, i.e. coming from the space of work-
ing and from the space of non-working system property combina-
tions. As we will see in Section 5 this property of our approach

enables its efficient integration into design space exploration for
multi-dimensional robustness optimization.

Note thatR− andR+ depend on the bounding frontsFw
P,c and

Fnw
P,c determined by the underlying stochastic multi-dimensional

sensitivity analysis, and thus do not represent the exact robustness
of a given system configuration. Consequently, different evalua-
tions of R− and R+ might yield different results. However, it is
guaranteed that the real robustness Rreal lies somewhere in the
interval defined by R− and R+:

R−(Fw
P,c) < Rreal < R+(Fnw

P,c)

It is important to mention that R− and R+ are always conser-
vative and do not converge toRreal even if we invest infinite com-
putational effort in the underlying stochastic multi-dimensional
sensitivity analysis. This is due to the nature of λ− and λ+.

Figure 3 visualizes λ− and λ+ for several points lying on the
sensitivity front. We observe that even if the bounding Pareto-
frontsFw andFnw completely converge during multi-dimensional
sensitivity analysis, and thus lie on the sought-after sensitivity
front, the robustness metrics R− and R+ are still imprecise.

Accordingly, we define the approximation imprecision of the
two defined robustness metrics, which is due to the utilized hyper-
volume functions λ− and λ+.

Definition 5 (Approximation Imprecisions IR− and IR+) We
consider a system S with parameter configuration c and a set of
system properties P = {p1, . . . , pn}. Given the bounding work-
ing Pareto-front Fw

P,c and the bounding non-working Pareto-front
Fnw
P,c for the parameters in P the approximation imprecision of

R−(Fw
P,c) and R+(Fnw

P,c) are defined as follows:

IR−(Fw
P,c) =

λ+(Fw
P,c)− λ−(Fw

P,c)

R−(Fw
P,c)

IR+(Fnw
P,c) =

λ+(Fnw
P,c)− λ−(Fnw

P,c)

R+(Fnw
P,c)

It is intuitive that the approximation imprecisions IR− and
IR+ decrease during stochastic multi-dimensional sensitivity anal-
ysis as the number of points on the bounding Pareto-fronts in-
creases.

However, IR− and IR+ are not related to the difference be-
tween the miniumum guaranteed robustness R− and the maxi-
mum possible robustnessR+. Consequently, they are rather an in-
dicator for the granularity and distribution of points on the bound-
ing Pareto-fronts than metrics for the approximation quality.

Based on the previous definitions, we therefore define the ap-
proximation quality of the minimum guaranteed robustness R−

and the maximum possible robustness R+ as follows:

Definition 6 (Approximation Quality Q) We consider a system
S with parameter configuration c and a set of system properties
P = {p1, . . . , pn}. Given the bounding working Pareto-front
Fw
P,c and the bounding non-working Pareto-front Fnw

P,c for the pa-
rameters in P the approximation quality of the robustness metrics
R− and R+ is defined as follows:

Q(Fw
P,c,Fnw

P,c) =
1

2

`
Q−(Fw

P,c,Fnw
P,c) +Q+(Fw

P,c,Fnw
P,c)

´

where

Q−(Fw
P,c,Fnw

P,c) =
R+(Fnw

P,c)−R−(Fw
P,c)

R−(Fw
P,c)

− IR−(Fw
P,c)

Q+(Fw
P,c,Fnw

P,c) =
R+(Fnw

P,c)−R−(Fw
P,c)

R+(Fnw
P,c)

− IR+(Fnw
P,c)

Consequently,

Q(Fw
P,c,Fnw

P,c) =
1

2

λ+(Fnw

P,c)− λ+(Fw
P,c)

λ−(Fw
P,c)

+
λ−(Fnw

P,c)− λ−(Fw
P,c)

λ+(Fnw
P,c)

!

Basically, Q− and Q+ are defined as the percentual share of
the difference between the maximum possible robustness R+ and
the minimum guaranteed robustness R− to R− and R+, respec-
tively.

Since the bounding Pareto-fronts are refined during multi-
dimensional sensitivity analysis the difference between R+ and
R− converges towards zero. However, due to the approximation
imprecision of the robustness metrics, zero is never reached even
for completely converged bounding Pareto-fronts. As explained
above, this is due to the utilized hypervolume functions λ− and
λ+.

In order to obtain a quality metric, which is independent of
effects due to the characteristics of the underlying hypervolume
functions, we subtract the approximation imprecisions IR− and
IR+ from Q− and Q+, respectively. By this means the resulting
quality metric Q reflects very well the real approximation quality
of the presented approach.

Note that lower values for Q correspond to higher approxima-
tion quality.

In Section 6.2 the approximation quality metricQwill be taken
as criterion for the convergence of the robustness metrics in the
two- and three-dimensional cases.

5. Using the Metrics for Robustness
Optimization

The robustness metrics proposed in Section 4 can easily be in-
tegrated into design space exploration to realize a multi-
dimensional robustness optimization approach.

During multi-dimensional robustness optimization of a system
properties set P , stochastic multi-dimensional sensitivity analysis
as described in Section 2 is performed for each considered sys-
tem configuration c. This analysis delivers the bounding work-
ing Pareto-front Fw

P,c and the bounding non-working Pareto-front
Fnw
P,c, which in turn are used to derive the minimum guaranteed ro-

bustness R−(Fw
P,c) and the maximum possible robustness

R+(Fnw
P,c).

In Section 4 we already discussed that R− and R+ depend
on the stochastically determined bounding Pareto-fronts, and are
thus not deterministic. Also, the approximation quality of the ro-
bustness metrics depends on the computational effort spent for the
underlying stochastic multi-dimensional sensitivity analysis.

However, independent of the reached approximation quality,
it is always guaranteed that the real robustness of the analyzed
system configuration is contained in the interval defined by R−

and R+.
Consequently, the precision of the approach can be safely scaled.

This represents a huge advantage of the presented approach since
even for low approximation qualities, the minimum guaranteed

and the maximum possible robustness metrics are very good in-
dicators for identifying interesting system worth to be analyzed in
detail.

We therefore propose to perform a two-dimensional Pareto-
optimization of the minimum guaranteed robustness R− and the
maximum possible robustness R+. In so doing, the multi-
dimensional robustness optimization yields on the one hand sys-
tem configurations with large guaranteed robustness and on the
other hand system configurations with possibly large robustness
potential, which needs to be confirmed or disapproved by further
analysis.

It is obvious that using this approach it is sufficient to invest
comparatively little computational effort in the robustness evalu-
ation during exploration to identify interesting system configura-
tions, and to postpone their detailed robustness analysis after opti-
mization.

6. Experiments

In this section we first introduce a complex distributed example
system (Section 6.1). In Section 6.2 we then perform several ex-
periments to determine the convergence behavior of the robustness
metrics presented in Section 4. Afterwards, we use these metrics
to evaluate the robustness of the initial configuration of the given
distributed example system (Section 6.3). Finally, we optimize its
robustness by integrating the robustness metrics into design space
exploration (Section 6.4).

6.1 Example System

We consider the example setup shown in Figure 4. It contains
four different computational units connected by a bus. Three appli-
cations are mapped on the architecture. A video application (solid
chain) gathers data from a camera controlled by the micro con-
troller uC, performs preprocessing on the DSP and post-processing
on the PPC core. The second application (dashed chain) reads data
from a sensor, which is first processed on the ARM core and then
forwarded to the PPC core, which, in turn, controls an actor. The
third application (dotted line) is a streaming application that runs
on the ARM processor core and uses the DSP for data processing.

All three applications have constrained end-to-end latencies
which need to be satisfied for the system to function correctly (Ta-
ble 1(c)).

The computational resources (PPC, uC, DSP , and ARM)
are all scheduled according to the static priority preemptive pol-
icy, and the interconnecting bus is arbitrated by the CAN protocol.
Core execution and core communication times as well as priori-
ties of all tasks and exchanged messages are given in Tables 1(a)
and 1(b), respectively. The periods of incoming data at the system
inputs (Cam, Sens, and Sin) are specified in Table 1(d).

6.2 Convergence of the Robustness Met-
rics

In this section we discuss the convergence behavior of the pro-
posed robustness metrics and their approximation quality. More
precisely, we investigate for how long we need to run the under-
lying stochastic multi-dimensional sensitivity analysis presented
in Section 2 to get sufficiently accurate results for the robustness
properties of the system configurations considered during robust-
ness optimization.

Figure 4. Example system

Channel CCT Priority
C0 [10.4, 12.4] 5
C1 [12, 14.4] 3
C2 [20, 26.4] 2
C3 [15.2, 22.4] 6
C4 [10.4, 14.4] 1
C5 [15.2, 26.4] 4

(a) Core Communication
Times

Task CET Priority
T5 [30.9, 43.1] 2
T2 [15.8, 27.4] 1
T3 [36.9, 46.3] 2
T0 [20.1, 48.5] 1
T4 [13, 86] 2
T7 [40.3, 44.5] 1
T1 [27.1, 154.9] 2
T6 [14.2, 63.6] 1
T8 [11.5, 291.2] 3

(b) Core Execution Times

Path Deadline
Sens → Act 850
Cam → Vout 1100
Sin → Sout 1000

(c) End-to-End Con-
straints

System Input Period P
Sens 500
Cam 100
Sin 1000

(d) Input Event Mod-
els

Table 1. System Parameters

A first impression of the increasing precision of the underlying
stochastic multi-dimensional sensitivity analysis is given in Fig-
ure 6.

We observe that the approximation quality of the bounding
Pareto-fronts is rather rough after 10 generations (Figure 6(a)).
The approximation quality is greatly improved after 20 genera-
tion (Figure 6(b)), and after 30 generations the bounding working
and non-working Pareto-fronts have nearly converged and approx-
imate the sought-after sensitivity front very precisely (Figure 6(c)).

Note that the run-time of the above performed stochastic two-
dimensional sensitivity analyses considering 10, 20, and 30 gen-
erations are 20, 40, and 60 seconds on a standard P4 at 2.4Ghz,
respectively.

Figure 5(a) and 5(b) visualize the average values for the min-
imum guaranteed robustness R−, the maximum possible robust-
ness R+, and the approximation quality Q obtained by 100 two-
and three-dimensional stochastic sensitivity analyses, respectively.
Thereby, the stochastic sensitivity analyses considering 30 and
150 generations of each 10 individual in the two- and three-
dimensional case, respectively.

We observe that R− and R+ converge with increasing gener-
ation count. Thereby, the convergence behavior is of logarithmic
characteristic. We also observe that the approximation quality in-

(a) Two-dimensional case: WCETs T1 and T8 (b) Three-dimensional case: WCETs C0, C3, and T1

Figure 5. Evolution of robustness metrics and approximation quality

(a) Result after 10 generations (100 Indi-
viduals)

(b) Result after 20 generations (200 Indi-
viduals)

(c) Result after 30 generations (300 Indi-
viduals)

Figure 6. Increasing approximation quality in the two-dimensional case: WCETs T1 and T8

creases with increasing generation count.
In the two-dimensional case (Figure 5(a)) the stochastic sensi-

tivity analysis achieves an average approximation quality of 11.4%
after 10 generations. As we can observe in Figure 6(a) this corre-
sponds to a rather rough approximation of the sought-after sen-
sitivity front. After 20 generations the approximation quality in-
creases to 6.8%, which corresponds to a quite precise approxima-
tion of the sensitivity front as can be seen in Figure 6(b). Finally,
after 30 generations, the stochastic two dimensional sensitivity
analysis reaches an approximation quality of 4.8%, which corre-
sponds to a very precise approximation of the sensitivity front as
visualized in Figure 6(c).

In the three-dimensional case the analysis time needed to reach
comparable approximation qualities as in the two-dimensional case
is approximately 3 times higher as can be observed in Figure 5(b).

The above results indicate that in the two-dimensional case
each system configuration should be evaluated by the underlying
stochastic sensitivity analysis using between 10 and 30 genera-
tion of 10 individuals each. In the three-dimensional case the ef-
fort spent for the stochastic sensitivity analysis should be 3 times
higher, and thus between 30 and 90 generations of 10 individuals.

Consequently, the evaluation time for a single system configu-
ration during robustness optimization lies between 20 and 60 sec-
onds in the two-dimensional case, and between 60 and 180 sec-
onds in the three-dimensional case.

6.3 Robustness of the Initial Configura-
tion

Scheduling analysis of the example system presented in Sec-

tion 6.1 with performance verification techniques [3, 8] reveals
that all end-to-end constraints are satisfied: Sens → Act 551.2,
Sin → Sout 882.6, and Cam → Vout852.2.

In the following we are interested in the two-dimensional ro-
bustness properties of the communication channels C1 and C3 as
well as the tasks T1 and T8 mapped on the ARM processor. Ad-
ditionally, we are interested in three-dimensional robustness prop-
erties of the three tasks mapped on the ARM processor T1, T6,
and T8 as well as of the task T1 in conjunction with the commu-
nication channels C0 and C3.

Figures 7(a) and 7(b) visualize the sensitivity fronts for the
two-dimensional cases. The sensitivity fronts were calculated us-
ing 50 generations of 10 individuals each, which took approxi-
mately 100 seconds on a standard P4 at 2.4Ghz. The determined
sensitivity fronts correspond to a robustness of 241 and 3141 for
C1-C3 and T1-T8, respectively.

The sensitivity fronts for the three-dimensional cases are visu-
alized in Figures 8(a) and 8(c). The sensitivity fronts were cal-
culated using 150 generations of 10 individuals each, which took
approximately 300 seconds on a standard P4 at 2.4Ghz. The de-
termined sensitivity fronts correspond to a robustness of 14942
and 64289 for T1− C3− C0 and T1− T6− T8, respectively.

6.4 Optimizing Robustness

In order to optimize the robustness of the given system we in-
clude the robustness metrics presented in Section 4 into design
space exploration as described in Section 5. Thereby, the search
space of the robustness optimization consists of the priority as-
signments on all processors and on the interconnecting bus.

(a) WCETs C1 and C3 (b) WCETs T1 and T8

Figure 7. Two-dimensional WCET sensitivity fronts for original and optimized system configurations

In all experiments we run the outer exploration optimization
loop, i.e. the loop modifying the priority assignments, for 10
generations consisting of 25 individuals. The underlying multi-
dimensional sensitivity analysis used to calculate the robustness
metrics considers 15 generation in the two-dimensional and 50
generations in the three-dimensional cases. Thereby, 10 individ-
uals are evaluated in each generation. Note that with this setup
a complete robustness optimization takes approximately 900 and
3000 seconds in the two- and three-dimensional cases, respec-
tively.

The two-dimensional robustness optimization of the communi-
cation channels C1 and C3 yielded the following optimal priority
assignment: C4 > C5 > C2 > C0 > C1 > C3 (CAN),
T7 > T4 (DSP), T3 > T0 (uC), T2 > T5 (PPC), and
T6 > T1 > T8 (ARM). The evaluated minimum guaranteed
and maximum possible robustness of this configuration are 551.77
and 625.4, respectively. A more detailed analysis determined the
real robustness of this system configuration to be 583.2. Com-
pared to the original system configuration this corresponds to a
robustness increase of more than 140%. The corresponding sensi-
tivity front is visualized in Figure 7(a).

The priority assignment with optimal two-dimensional robust-
ness properties for the tasks T1 and T8 determined during robust-
ness optimization is the following: C4 > C5 > C0 > C2 >
C1 > C3 (CAN), T7 > T4 (DSP), T0 > T3 (uC), T2 > T5
(PPC), and T6 > T1 > T8 (ARM). The minimum guaranteed
and the maximum possible robustness calculated during optimiza-
tion for this configuration are 7854.34 and 9032.3, respectively.
A detailed analysis revealed that the robustness of the optimized
system configuration is equal to 8236.2, which corresponds to an
robustness increase of more than 160% compared to the original
configuration. The corresponding sensitivity front is visualized in
Figure 7(b).

The three-dimensional robustness optimization of T1, C3, and
C0 yielded the same optimal priority assignment as the two-
dimensional case considering the communication channels C1 and
C3. Robustness optimization determined a minimum guaranteed
robustness of 31520.31 and maximum possible robustness of
44371.32 for this configuration. The real robustness of the system
configuration is equal to 37006.52, which corresponds to a robust-
ness increase of more than 145% compared to the original system
configuration. The corresponding sensitivity front is visualized in
Figure 8(b).

The optimal priority assignment for the three-dimensional ro-

bustness of the tasks T1, T6, and T8 is the same as in the two-
dimensional case considering only T1 and T8. Thereby, the deter-
mined values for the minimum guaranteed and the maximum pos-
sible robustness are 243392.81 and 418181.17, respectively. The
robustness subsequently determined by detailed robustness evalu-
ation is equal to 294862.49, representing a robustness increase of
more than 350% compared to the original system configuration.
The corresponding sensitivity front is visualized in Figure 8(d).

7. Conclusion

In this paper we presented an efficient approach to multi-
dimensional robustness optimization in complex distributed em-
bedded systems. Our approach is based on a scaleable stochastic
multi-dimensional sensitivity analysis, which we utilized to derive
upper and lower robustness bounds for given system configura-
tions with reasonable computational effort.

We have shown by means of extensive experiments that the ap-
plication of the presented techniques to robustness optimization
allows the detection of promising system configurations without
performing computationally expensive in-depth robustness evalu-
ations.

8. References

[1] S. Ali, A.A. Maciejewski, H.J. Siegel, and J. Kim.
Measuring the robustness of a resource allocation. IEEE
Transactions on Parallel and Distributed Systems,
15(7):630–641, July 2004.

[2] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA —
a platform and programming language independent
interface for search algorithms.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in
platform-based embedded system designs. In Proc. of the
IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), Munich, Germany, 2003.

[4] M. Fleischer. The measure of pareto optima: Applications to
multi-objective metaheuristics. Lecture Notes in Computer
Science, 2632:519–533, 2003.

[5] D. Gu, F. Drews, and L. Welch. Robust task allocation for
dynamic distributed real-time systems subject to multiple

(a) WCETs T1, C3, and C0 (original configura-
tion)

(b) WCETs T1, C3, and C0 (optimized configu-
ration)

(c) WCETs T1, T6, and T8 (original configura-
tion)

(d) WCETs T1, T6, and T8 (optimized configu-
ration)

Figure 8. Three-dimensional WCET sensitivity fronts for original and optimized system configuration

environmental parameters. In Proc. of the 25th IEEE
International Conference on Distributed Computing
Systems (ICDCS), Columbus, Ohio, USA, June 2005.

[6] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A
framework for modular analysis and exploration of
heterogeneous embedded systems. Real-Time Systems
Journal, 33(1-3):101–137, July 2006.

[7] A. Hamann, R. Racu, and R. Ernst. A formal approach to
robustness maximization of complex heterogeneous
embedded systems. In Proc. of the IEEE/ACM/IFIP
International Conference on HW/SW Codesign and System
Synthesis (CODES-ISSS), Seoul, South Korea, 2006.

[8] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the SymTA/S
approach. IEE Proceedings Computers and Digital
Techniques, 152(2):148–166, March 2005.

[9] C. Lu, J.A. Stankovic, S.H. Son, and G. Tao. Feedback
control real-time scheduling: framework, modeling, and
algorithms. Real-Time Systems Journal, 23(1-2):85–126,

2002.
[10] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity

analysis in real-time distributed systems. In Proc. of the
11th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), San Francisco, California,
March 2005.

[11] Steve Vestal. Fixed-priority sensitivity analysis for linear
compute time models. IEEE Transactions on Software
Engineering, 20(4), april 1994.

[12] L. While, P. Hingston, L. Barone, and S. Huband. A faster
algorithm for calculating hypervolume. IEEE Transactions
on Evolutionary Computation, 10(1):29–38, February 2006.

[13] E. Zitzler. Hypervolume metric calculation:.
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c, 2001.

[14] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for
multiobjective optimization. In Proc. Evolutionary Methods
for Design, Optimisation, and Control, pages 95–100,
Barcelona, Spain, 2002.

