
A Formal Approach to Robustness Maximization of
Complex Heterogeneous Embedded Systems

Arne Hamann, Razvan Racu, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig, Germany
{hamann|racu|ernst}@ida.ing.tu-bs.de

ABSTRACT
Embedded system optimization typically considers objectives such
as cost, timing, buffer sizes and power consumption. Robustness
criteria, i.e. sensitivity of the system to variations of properties
like execution and transmission delays, input data rates, CPU clock
rates, etc., has found less attention despite its practical relevance.

In this paper we introduce robustness metrics and propose an al-
gorithm considering these metrics in design space exploration and
system optimization. The algorithm can optimize for static and for
dynamic robustness, the latter including system or designer reac-
tions to property variations. We explain several applications rang-
ing from platform optimization to critical component identification.

By means of extensive experiments we show that design space
exploration pursuing classical design goals does not necessarily
yield robust systems, and that our method leads to systems with
significantly higher design robustness.

Categories and Subject Descriptors
C.3 [Special-Purpose and application-based systems]: Real-time
and embedded systems; C.4 [Performance of systems]: Model-
ing techniques; Performance attributes; Reliability, availability, and
serviceability

General Terms
Algorithms, Design, Performance, Reliability, Verification

1. INTRODUCTION
Design robustness is a general concern that grows with system

complexity. For instance, it is known that small task core execution
time modifications in systems with complex performance depen-
dencies can have drastic non-intuitive effects on the overall system
performance, and might lead to constraint violations. Since a major
change of the system in reaction to such performance degradation
effects might not be possible at late design phases or in the field,
it is important to early choose a system parameter configuration
offering sufficient robustness with respect to system properties pre-
sumably subject to later modifications. Scenarios under which such
system property variation can occur include late feature requests,
product variants, software updates, and bug-fixes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

Robustness evaluation using simulation is a tedious if not prac-
tically impossible task as simulation models do not support many
of the possible property changes, including increased process exe-
cution times or modified communication volumes. Formal perfor-
mance models are more appropriate, such as introduced in recent
frameworks [8, 3] that are able to tightly determine various system
performance properties including timing, buffer sizes, and power
consumption.

In this paper we address the application of formal models to ro-
bustness optimization. We introduce and motivate two different
robustness metrics that capture system robustness under different
assumptions, and present a method explicitly taking these metrics
into account during design space exploration. The results of the ap-
proach allow the designer to early choose a balanced system config-
uration offering large robustness for critical components. This way,
system stability and maintainability can be significantly increased.

The remainder of the paper is structured as follows. We will
first precisely formulate the problem we address in this paper (sec-
tion 2). Afterwards we will give a short survey of related work
(section 3). We then present our approaches for system robust-
ness optimization, i.e. on the one hand appropriate cost functions
(section 4.1) reflecting desired system robustness properties and on
the other hand efficient design space exploration strategies (sec-
tion 4.2). We then discuss a small but realistic case study and max-
imize its robustness using our approaches (section 5). Finally, we
use large synthetic example systems to compare the efficiency of
the presented approaches, i.e. quality of achieved results in relation
to run-time (section 6).

2. PROBLEM FORMULATION
In this section we first briefly introduce the application model

used in this paper (section 2.1). We then outline the robustness
problem arising during the design of complex embedded systems
due to system property variations (sections 2.2 and 2.3).

2.1 Application model
Generally, a system consists of an execution platform including

computation and communication resources, and a set of tasks that
run on this platform communicating either directly, e.g. over shared
memory, or through logic communication links. Thereby, the tasks
and communication links are mapped on the computation and com-
munication resources, respectively.

The example system in figure 1 contains, for instance, the com-
putation resource DSP with the mapped tasks upd, f ltr, and ctrl,
as well as the communication resource BUS with the logic commu-
nication links c1, c2, c3, c4, and c5.

All tasks are activated due to an activating event. Activating
events can be generated in a multitude of ways, including expi-
ration of a time trigger, external or internal interrupts, and event
chains starting with an external event. Each task is assumed to

Figure 1: System on chip example
have one input FIFO, from where its activating data is read. At the
end of its execution, the task writes data into the input FIFO of a
dependent task or sends the data over a communication link.

In the formalism underlying this paper we use so called stan-
dard event models to describe the possible timing of activating
events. They are described using several parameters. For exam-
ple, a strictly periodic event model has one parameter P and states
that each event exactly arrives periodically every P time units. This
simple model can be extended with the notion of jitter, leading to a
periodic with jitter event model. Such an event model is described
by two parameters (P ,J). It states that the events generally occur
periodically, but can jitter around the exact position within a jitter
interval J . If the jitter is larger than the period, then two or more
events can occur at the same time, leading to bursts. To describe a
bursty event model, the periodic with jitter event model can be ex-
tended with the d− parameter that captures the minimum distance
between two events within the burst.

Furthermore, each task is associated with a best-case and a worst-
case core execution time (CET), i.e. its minimum and maximum ex-
ecution time assuming no interrupts by tasks mapped on the same
computation resource. Accordingly, each communication link is
associated with a best-case and worst-case core communication
time (CCT), i.e. the minimum and maximum transmission time for
one communication request assuming no concurrent requests on
the same communication resource. Note that in the example SoC
shown in figure 1 the core execution and communication times are
given as intervals.

For the case that multiple tasks or communication links share the
same resource, it may be claimed by more than one task or commu-
nication link at the same time. We need scheduling to arbitrate such
conflicts. Therfore, a resource is associated with a scheduler select-
ing one task or communication link to which it grants the resource
according to some scheduling policy.

Scheduling analysis calculates the worst-case response time, i.e.
the time between activation and completion, for all tasks and com-
munication links sharing a resource under the control of such a
scheduler.

A more detailed discussion about the application model, stan-
dard event models and scheduling analysis of complex heteroge-
neous embedded systems can be found in [8].

2.2 System property variations
System properties variations put at risk the functioning and per-

formance of a system since they invalidate the assumption under
which it was originally dimensioned and configured.

Basically, there are two different kinds of system property vari-
ations: variations influencing the system load, and variations influ-
encing the system service capacity.

Reasons for system load variations are mainly changes of soft-
ware execution path lengths, communication volumes, and input
data rates. Scenarios under which such load variations can occur

during design time or even in the field include late feature requests,
product variants, software updates, and bug-fixes.

That even small changes of a single load influencing system
property can have drastic effect on the overall system performance,
shall be shown by the example system given in figure 2(a). CPU1
and CPU2 are both scheduled with the static priority preemptive
policy.

Figure 2(b) shows the impact of increasing WCET of T2 on the
path latency S3 → T4. We observe that increasing the WCET of T2
from 4 to 4.1 (= 2.5%) time units leads to an increase of the path
latency S3 → T4 from 25 to 47.4 (= 89.6%) time units. A further
increase of the WCET of T2 to 4.7 (= 17.5%) lengthens the path
latency S3 → T4 to 79.2 (= 216.8%) time units.

(a) Example system 1 (b) Latency S3 → T4 depen-
dant on the WCET of T2

Figure 2: Effect of WCET variation
System service capacity variations are caused by modifications

of the execution platform, e.g. processor or communication link
performance changes. Such variations rarely occur in the field.
However, they they are of particular interest during early design
space exploration, where load requirements are still subject to changes,
and where different alternative system components and architec-
tures need to be evaluated.

The possible impact of changes to a resource’s service capacity
shall be demonstrated by the simple example given in figure 3(a).
CPU1 and CPU2 are both scheduled with a static priority preemp-
tive policy. The given worst-case execution times correspond to
nominal CPU clock rate.

Figure 3(b) shows the impact of changes to the speed of CPU1 on
the path latencies S1 → T3 and S2 → T2. We observe, that both path
latencies increase as we slow down CPU1, which is not surprising.
However, even speeding up CPU1 leads to a deterioration of system
performance. A clock rate speed-up of 20% leads to an increase of
the path latency S2 → T2 from 40 to 140 time units (= 250%), and
to an increase of the path latency S1 → T3 from 155 to 170 time
units (= 9.68%).

(a) Example system 2 (b) Latencies dependant on
the speed of CPU1

Figure 3: Effect of resource speed variation

2.3 Robustness to property variations
The example systems in figures 2(a) and 3(a) show that both load

and service capacity influencing property variations can have non-
intuitive effects on the system performance. Also, small but prac-
tical industrial case studies [9] have proven that the influences of

unpredicted property variations on the system performance is an
important issue during the design of complex embedded systems.

Therefore, we present in this paper methods helping the designer
finding system parameter configurations, including the assignment
of free system parameters like scheduling (priorities, time slots,
etc.), leading to systems with high robustness (low sensitivity) to
property variations. In other words, the system shall meet its tim-
ing constraints even under considerable changes of system prop-
erties, including worst-case execution and communication times,
CPU clock rates, input data rates, etc. Note that we focus in this
paper on hard real-time constraints.

3. RELATED WORK
In [4] a method for robustness maximization of embedded real-

time systems is presented. More precisely, the authors address the
allocation problem for tasks with environment-dependant workload
requirements. Accordingly, the work aims at finding task alloca-
tions, which are robust to environmental changes. The authors’ sys-
tem model assumes homogeneous multiprocessor systems with rate
monotonic scheduling and independent strictly periodic tasks with
deadlines equal to the periods. Due to this simple system model,
the results are of limited use for the robustness maximization of
realistic embedded systems.

In [1] an approach measuring the robustness of resource allo-
cations with respect to perturbations in system and environmental
conditions is presented. One robustness metric derived in the paper
measures the robustness of a system that allocates a set of indepen-
dent tasks to a set of machines with static non-preemptive schedul-
ing. The overall completion time for the entire set of tasks is re-
quired to be robust against errors in execution time estimates. The
authors define the system robustness as the minimal euclidian dis-
tance between the original system configuration and the hyperplane
separating system configurations satisfying certain robustness re-
quirements from the systems with insufficient robustness. This def-
inition of robustness is very intuitive. However, in the case of real-
istic application models with complex dependencies and more so-
phisticated scheduling strategies, the required hyperplane can only
be determined with extremely large computational effort if several
tasks are considered. Therefore, the approach seems not applicable
for the robustness maximization of realistic embedded systems.

Adaptive scheduling strategies [6] can be utilized to improve sys-
tem robustness to property variations. One possibility is to take the
past system behavior into account for future scheduling decisions.
However, often application specific knowledge needs to be inte-
grated into such adaptive scheduling strategies to achieve good re-
sults, which requires additional engineering effort. Also, the target
platform needs to support the customization of the scheduling pol-
icy for such adaptive approaches to be applicable, which is rarely
the case in industrial practice. Therefore, we do not include the
choice of the scheduling policy in the robustness maximization ap-
proach presented in this paper.

Sensitivity analyses [7, 10] can capture the global effects of sin-
gle system property variations. They are capable of calculating
the boundaries representing the transition between conforming and
non-conforming systems for a large variety of system properties,
including worst-case execution times, communication volumes, in-
put data rates, processor and communication link performance, etc.

These sensitivity analyses, however, only report the reaction of a
system in response to a single design parameter variation. In order
to optimize the robustness of a system, we need more comprehen-
sive metrics. Such robustness metrics are defined in the following
section 4.1 and used to maximize system robustness in section 4.2.

4. MAXIMIZING SYSTEM ROBUSTNESS
In order to optimize robustness we need on the one hand appro-

priate cost functions (section 4.1) reflecting the desired robustness
properties and on the other hand an efficient design space explo-
ration strategy (section 4.2).

4.1 System robustness metrics
The robustness metrics presented in this section are based on the

notion of slack. The slack of a system property describes its ”head
room” for a specific parameter configuration, i.e. the percentage
by which its value may be increased (resp. decreased) without vio-
lating any system constraint. Depending on the considered system
property higher values (e.g. worst-case core execution times) or
lower values (e.g. resource speeds) correspond to more slack.

Definition 1 (Slack) We consider a constrained system S with pa-
rameter configuration c and a system property p ∈ S with the orig-
inal value v(p).

Given v+
c (p), denoting the extreme system property value for p

not leading to constraint violations in S configured according to c,
the slack of p is defined as follows:

slackp;c =
v+

c (p)− v(p)
v(p)

×100

Note that v+
c (p) can be calculated by sensitivity analysis algo-

rithms as described in section 3.

4.1.1 Static Design Robustness
The static design robustness (SDR) metric expresses the robust-

ness of a fixed parameter configuration for a given constrained sys-
tem with respect to a set of critical system properties. The SDR
metric is relevant for the design scenario where parameters are de-
fined and fixed early at design time and cannot be modified later to
reach compatibility for variants, bug-fixes, and updates.

Note that the SDR metric is only defined for working parameter
configurations, i.e. configurations satisfying all system constraints.

Definition 2 (Static Design Robustness) We consider a constrained
system S with parameter configuration c and a set of system prop-
erties P = {p1, . . . , pn}.

Given the slacks slackp1;c . . .slackpn;c for the properties in P , a
set of weights w1, . . . ,wn with ∀iwi > 0 and w = ∑

n
i=1 wi, and a real

number k, the static design robustness (SDR) of the configuration c
with respect to P is defined as follows:

SDRP ;c =

w
√

∏
n
i=1 | slackwi

pi;c | , k = 0

k

√
1
w ×∑

n
i=1

(
wi× | slackk

pi;c |
)

, otherwise

The SDR metric can be parameterized in two ways.
First of all, the SDR metric allows to weight the influence of the

included system properties. This enables the designer to account
for different levels of relevance linked to each of the considered
system properties. Criteria for her to assign these weights include
the estimated probability of future changes and the impact on the
overall system performance.

Secondly, the SDR metric can be configured to advantage system
properties with either low or high slacks by modifying k.

Figure 4 visualizes the impact of k on the SDR metric for two
hypothetical system properties p1 and p2 (both weighted 1) for dif-
ferent slack values.

We observe that decreasing and increasing values for k increase
the impact of the lower or the higher slack value on the SDR metric,
respectively.

Figure 4: Behavior of the SDR metric for different k

In particular, choosing low values for k weakens the SDR metric
value for system configurations with unbalanced robustness prop-
erties, i.e. buying extremely high slack for a single property with
low slacks for the other properties.

4.1.2 Dynamic Design Robustness
While static design robustness assumes a static system with fixed

parameter configuration, dynamic design robustness (DDR) includes
potential designer or system counteractions in reaction to system
property variations. In other words, DDR describes the robustness
potential of a given system with respect to the variation of a specific
property, which can be achieved by system reconfiguration, i.e. for
instance scheduling parameter adaptation. Consequently, the DDR
metric is relevant for a design scenario where parameters can be
modified during product life time or in the field.

Definition 3 (Dynamic Design Robustness) We consider a con-
strained system S and a system property p ∈ S .

Given possible parameter configurations C = {c1,cn, . . . ,cn} of
S and the corresponding slack vector V =

(
slackp;c1 , . . . ,slackp;cn

)
,

the dynamic design robustness (DDR) of S with respect to p is de-
fined as the L∞ norm of V :

DDRp;C = ‖V ‖∞ = max
c∈C

|slackp;c|

The dynamic design robustness depends on the set of possible
configurations C . As an example, it can be possible to react to prop-
erty changes by adaptation of scheduling parameters or by remap-
ping parts of the application.

DDR can obviously be used to evaluate dynamic systems, but
it can more generally be used for the evaluation of the design risk
connected to specific components in a given system. More pre-
cisely, already early in the design flow the DDR metric allows the
designer to determine boundaries for properties of specific com-
ponents, allowing their integration into the system. This informa-
tion effectively facilitates feasibility and requirements analysis and
greatly assists the designer in pointing out critical system compo-
nents requiring special focus during specification and implementa-
tion.

Another usage scenario for the DDR metric concerns reconfig-
urable systems. In such a scenario the designer can use the DDR
metric to determine the theoretical robustness head room of crucial
system components with respect to future changes of their proper-
ties. By early choosing a system architecture offering high DDR
values for these crucial components the designer can significantly
increase system stability and maintainability.

4.2 Exploration control
In this section we present two different approaches for robust-

ness maximization. The first approach (section 4.2.1) is heuristic
in nature. It is based on the assumption that large slack for timing
properties leads to high system robustness with respect to variations

of properties influencing these timing properties. Consequently, the
achieved system robustness corresponds to that obtained by classi-
cal optimization approaches without explicit consideration of ro-
bustness criteria.

In section 6 the first approach is taken as baseline for the evalua-
tion of the second approach (section 4.2.2), which directly uses the
robustness metrics presented in section 4.1 to control the optimiza-
tion.

Note that both approaches utilize a framework for multi-dimensional
design space exploration [5], which is based on evolutionary search
techniques [2], and sensitivity analysis algorithms [7].

4.2.1 Separated approach
Figure 5(a) visualizes the separated robustness optimization ap-

proach.
It divides the robustness optimization problem into two steps.

The first step is system optimization with respect to its constrained
timing properties. Depending on the system this might be the min-
imization of the lateness, i.e. the difference between latency and
deadline, for each constrained end-to-end path in the system, the
minimization of jitter constraints, etc.

In the second step, sensitivity properties are determined for sys-
tem parameter configuration obtained in the first step. These are
then evaluated, and the optimal system parameter configurations
with respect to the chosen robustness metrics are returned to the
user.

4.2.2 Integrated approach
Figure 5(b) visualizes the integrated robustness optimization ap-

proach.
In contrast to the separated robustness optimization approach

presented in the previous section, i.e. optimization of the system
regarding its timing properties and subsequent robustness evalua-
tion, the integrated robustness optimization approach uses robust-
ness evaluation as a function of design space exploration to guide
the search towards systems parameter configurations possessing
desired robustness properties. This means that exploration is not
guided heuristically on the basis of timing properties but directly
by robustness properties as primary optimization goal.

(a) Separated Approach (b) Integrated Approach

Figure 5: Robustness Optimization Approaches

5. CASE STUDY
In this section we use the SoC example given in figure 1 as case

study to compare both robustness optimization approaches with
respect to quality of achieved results. Note that, experiments us-
ing large synthetical example systems to compare the average effi-
ciency, i.e. quality of achieved results in relation to run-time, can
be found in section 6.

The system in figure 1 represents a SoC consisting of a micro-
controller (uC), a digital signal processor (DSP) and dedicated hard-
ware (HW), all connected via an on-chip bus (BUS). The HW acts
as an interface to a physical system. It runs one task (sys if) which

issues actuator commands to the physical system and collects sen-
sor readings. sys if is controlled by controller task ctrl, which eval-
uates the sensor data and calculates the necessary actuator com-
mands. ctrl is activated by a periodic timer (tmr) and by the arrival
of new sensor data (AND-activation in a cycle).

The physical system is additionally monitored by 3 smart sensors
(sens1 - sens3), which produce data sporadically as a reaction to ir-
regular system events. This data is registered by an OR-activated
monitor task (mon) on the uC, which decides how to update the
control algorithm. This information is sent to task upd on the DSP,
which writes the updated controller parameters into shared mem-
ory.

The DSP additionally executes a signal-processing task (fltr),
which filters a stream of data arriving at input sig in, and sends
the processed data via output sig out. All communication (with the
exception of shared-memory on the DSP) is carried out by commu-
nication tasks c1 - c5 over the on-chip BUS.

In order to function correctly, the system has to satisfy maximum
latency constraints for the following paths: sensi → upd (denoted
Tl1) 70 time units, sig in→ sig out (denoted Tl2) 60 time units, and
ctrl → ctrl (denoted Tl3) 140 time units. Additionally, the jitter at
the system output sig out (denoted Jout) must not exceed 25 time
units. In the following we assume that the DSP as well as the BUS
are scheduled according to a static priority preemptive policy.

5.1 Separated approach
We now optimize the design robustness of the SoC example with

the separated approach described above. We assume that the de-
signer is mainly interested in robustness properties for the tasks
ctrl and mon as well as for the communication channels c2 and c5.

We perform several experiments.
First, we want to find system configurations with high static de-

sign robustness. Therefore, we perform several optimization runs
each focusing the SDR metric on one of the considered tasks or
communication channels. More precisely, we choose the weights
for the SDR metric in such a way that the task or communication
channel we focus on has exactly as much influence on the metric as
all others together. Consequently, the focused task or communica-
tion channel is weighted 3, whereas all others are weighted 1. Note
that for these experiments the SDR metric is configured with k = 1.

Secondly, we are interested in the dynamic design robustness
properties of the system with respect to each of the considered tasks
and communication channels. Here, the priority assignments on the
resources DSP and BUS are taken as dynamic parameters that can
be changed later in the design process or, in case of dynamic system
control, dynamically at run time.

Table 1 lists the pareto-optimal system configurations with re-
spect to timing properties obtained in the first step of the separated
robustness optimization approach.

Priorities Timing properties
BUS tasks DSP tasks Tl1 Tl2 Tl3 Jout

1 c3>c4>c5>c2>c1 upd>fltr>ctrl 55 42 120 18
2 c4>c3>c5>c1>c2 upd>fltr>ctrl 59 42 112 18
3 c4>c2>c5>c3>c1 upd>fltr>ctrl 59 46 108 22
4 c5>c3>c4>c1>c2 upd>fltr>ctrl 63 42 96 18
5 c5>c2>c4>c3>c1 upd>fltr>ctrl 63 46 92 22
6 c2>c3>c5>c4>c1 fltr>upd>ctrl 64 39 140 15
7 c3>c4>c5>c2>c1 fltr>upd>ctrl 70 27 120 3

Table 1: Pareto-optimal system configurations

Figure 6(a) shows the static design robustness of the obtained
system configurations for the different experiments. The maximum
reached values are annotated and emphasized. We observe that sys-
tem configuration 2 possesses the highest static design robustness
regardless on which task or communication channel the SDR met-
ric is focused on.

Figure 6(b) shows the dynamic design robustness properties of
the system determined with the separated approach. The deter-
mined DDR values for each of the considered tasks and commu-
nication channels are annotated and emphasized. We observe that
system configuration 2 yields the highest robustness for the com-
munication channels c2 and c5, whereas configurations 2 and 3 of-
fer more robustness for the tasks ctrl and mon, respectively.

5.2 Integrated approach
We now perform the same set of experiments as in the previous

section pursuing the integrated robustness optimization approach.
Table 2 lists additionally obtained system configuration not consid-
ered by the separated approach.

Priorities Timing properties
BUS tasks DSP tasks Tl1 Tl2 Tl3 Jout

8 c4>c5>c3>c2>c1 upd>fltr>ctrl 63 42 126 18
9 c4>c5>c2>c3>c1 upd>fltr>ctrl 63 46 122 22
10 c3>c5>c4>c2>c1 upd>fltr>ctrl 55 42 134 18
11 c2>c4>c5>c1>c3 fltr>upd>ctrl 70 31 120 7
12 c3>c1>c5>c4>c2 fltr>upd>ctrl 70 43 123 19

Table 2: Additional system configurations considered by the
integrated approach

Figure 6(c) shows the static design robustness for the different
experiments determined by the integrated approach. We observe
that two of the newly discovered system configurations possess im-
proved static design robustness properties. System configuration
9 improves the static design robustness focused on the communi-
cation channel c2 by more than 47% compared to the best value
reached with the separated approach. Also for the tasks ctrl and
mon new system configurations could be found with improved SDR
values. No improvement could be achieved for the static design
robustness focused on communication channel c5, the previously
obtained system configuration 2 was already optimal.

Figure 6(d) shows the dynamic design robustness properties of
the system determined with the integrated approach. Compared to
the dynamic design robustness properties determined with the step-
wise optimization approach we discovered that the actual dynamic
design robustness of the system is higher for the communication
channels c2 and c5 as well as for the task ctrl. For the commu-
nication channel c2 the underestimation was nearly 95%. Also for
the communication channel c2 and the task ctrl the dynamic design
robustness was underestimated by 4.7% and 30.8%, respectively.

6. EXPERIMENTS
In this section we compare the separated and the integrated ro-

bustness optimization approaches with respect to the quality of achieved
results and runtime. Therefore, we randomly generated complex
systems with 20 tasks and communication channels and optimized
randomly chosen static and dynamic robustness properties.

Figure 7(a) shows the average performance of the separated ap-
proach. The results where obtained by performing 1000 explo-
ration runs for 10 randomly generated systems. Thereby, each ex-
ploration run considered a maximum of 500 different system con-
figurations.

We observe that in 64.79% of the exploration runs we found a
system configuration with optimal robustness properties, whereas
in 35.12% of the cases only sub-optimal results could be achieved.
Note that optimal in this case means maximum robustness reach-
able with the separated approach, and that these optimal values
were determined separately by exhaustive search for each consid-
ered system.

Figure 7(b) shows the performance of the integrated robustness
optimization approach in comparison to the optimal results which
can be achieved by the separated approach. The results were ob-

(a) Sep. Approach - SDR (b) Sep. Approach - DDR (c) Int. Approach - SDR (d) Int. Approach - DDR

Figure 6: Robustness Optimization Results - Separated and Integrated Approach

tained considering the same systems and performing the same num-
ber and type of exploration runs as in the previous experiment.

We observe that in 88.75% of the exploration runs the integrated
approach yielded better or equal results compared to the optimum
attainable with the separated approach. In nearly 50% of the cases
even better results were achieved, and only in 11.25% of all experi-
ments inferior results were obtained in comparison to the optimum
of the separated approach.

(a) Performance of the separated approach

(b) Performance of the integrated approach com-
pared to the optimal result of the separated approach

Figure 7: Performance evaluation of the approaches
The runtime of both approaches for one exploration run per-

formed in the context of the above conducted experiments is com-
pared in figure 8. For both approaches the runtime increases with
the number of system properties which are included into the calcu-
lated robustness metrics. However, the runtime of the integrated ap-
proach increases faster. This is due to the fact that the integrated ap-
proach calculates the slack of each considered system property for
every system configuration tested during exploration. This trans-
lates in a runtime which is 2.5 times longer for a single considered
system property and approximately 5 times longer for 10 consid-
ered system properties.

Figure 8: Runtime comparison of the two approaches

7. CONCLUSION
In this paper we have demonstrated that small system property

variations in complex embedded systems can have drastic unintu-
itive effects on system performance. In extreme cases small varia-
tions of a single system property can significantly decrease system

performance. Since property variation can occur during all design
stages and even in the field, it is crucial to consider robustness cri-
teria as early as possible.

A case study and experiments with synthetical examples showed
that designing complex embedded systems with focus on classical
design goals, e.g. timing properties, is not sufficient to cover ro-
bustness requirements.

We therefore presented robustness metrics and proposed an ap-
proach to consider these metrics during design space exploration.
Experiments showed that our approach can significantly improve
static and dynamic design robustness.

8. REFERENCES
[1] S. Ali, A.A. Maciejewski, H.J. Siegel, and J. Kim. Measuring

the robustness of a resource allocation. IEEE Transactions on
Parallel and Distributed Systems, 15(7):630–641, July 2004.

[2] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA — a
platform and programming language independent interface for
search algorithms. http://www.tik.ee.ethz.ch/pisa/.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in platform-based
embedded system designs. In Proc. of the IEEE/ACM Design,
Automation and Test in Europe Conference (DATE), Munich,
Germany, March 2003.

[4] D. Gu, F. Drews, and L. Welch. Robust task allocation for
dynamic distributed real-time systems subject to multiple
environmental parameters. In Proc. of the 25th IEEE
International Conference on Distributed Computing Systems
(ICDCS), Columbus, Ohio, USA, June 2005.

[5] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A framework
for modular analysis and exploration of heterogeneous
embedded systems. Real-Time Systems Journal,
33(1-3):101–137, July 2006.

[6] C. Lu, J.A. Stankovic, S.H. Son, and G. Tao. Feedback control
real-time scheduling: framework, modeling, and algorithms.
Real-Time Systems, 23(1-2):85-126, 2002.

[7] R. Racu, A. Hamann, and R. Ernst. A Formal Approach to
Multi-Dimensional Sensitivity Analysis of Embedded
Real-Time Systems. In Proc. of the 18th Euromicro
Conference on Real-Time Systems (ECRTS), Dresden,
Germany, July 2006.

[8] K. Richter. Compositional Performance Analysis. PhD thesis,
Technical University of Braunschweig, 2004.

[9] M. Verhoef, E. Wandeler, L. Thiele, and P. Lieverse. System
architecture evaluation using modular performance analysis -
a case study. In Proc. of the 1st IEEE/ACM International
Symposium on Leveraging Applications of Formal Methods
(ISOLA), Pafos, Cyprus, Oct 2004.

[10] Steve Vestal. Fixed-priority sensitivity analysis for linear
compute time models. IEEE Transactions on Software
Engineering, 20(4), april 1994.

