
1

Real-time Property Verification in Organic
Computing Systems

Steffen Stein, Arne Hamann, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig / Germany

{stein | hamann | ernst}@ida.ing.tu-bs.de

Abstract— Integrating new functionality into complex embed-
ded hard real-time systems requires considerable engineering
effort. Emerging formal analysis methodologies and tools from
real-time research assist system engineers solving this integration
problem. For future organic computer systems, however, it is
desirable to integrate these approaches into running systems,
enabling them to autonomously perform e.g. online acceptance
tests and self-optimization in case of system or environmental
changes. This results in high system robustness and extensibility
without explicit engineering effort.

In this paper, we present an approach adapting formal
compositional analysis techniques to realize self-awareness and
self-adaptation in embedded systems with respect to real-time
properties such as latency constraints, buffer sizes, etc.

We introduce a framework for distributed online performance
analysis running on embedded real-time systems. Based on this
framework we implement an acceptance test for the integration
of new functionality into an existing embedded real-time system.
Furthermore, we present an online optimization algorithm based
on the same framework. In a case study, we demonstrate the
applicability of the approach and show that online optimization
can increase the acceptance rate with reasonable computational
effort.

I. INTRODUCTION

Organic Computing [10] has recently emerged as a new
challenge in computer engineering. As ubiquitous and em-
bedded computing systems become increasingly powerful, the
development paradigms shift from implementing the techni-
cally possible to building robust and easily usable systems.
Organic computing systems tackle this challenge by introduc-
ing self-adaption, learning and self-configuration into future
computer systems. Initiatives as IBMs Autonomic Computing
Initiative [8] or Intels Proactive Computing [15] show that
introducing self-configuration in complex computer systems
is not only an academic endeavour.

Approaches to increase system robustness include the mi-
gration of tasks in a system, once a processing unit fails [14].
The approach presented uses shadow tasks and checkpointing,
so that the shadow tasks can take over functionality if a
primary task stops to execute. This introduces a high overhead
and robustness is guaranteed by redundancy. Organic com-
puting systems however should not only be able to resort to
redundancy, but to autonomously reconfigure themselves and
adapt to new environmental conditions as could be imposed
by i.e. subsystem failures.

This paper will focus on the real-time properties of organic
computing systems. In many applications, simple process

deadlines are insufficient. Rather, end-to-end deadlines, jitter,
and transient load requirements are needed for high qual-
ity media or control engineering. Furthermore, a networked
system will integrate many functions on the same system
platform, many of them with emergent behavior. The organic
computing system will have to control the system emergence
induced by self-configuration and -adaptation in such a way
that these complex timing constraints are met at all times.
Here, we can identify three challenges. The system must be
aware of the current architecture and the current set of appli-
cations on the organic computing system, it must anticipate
the effect of a planned reconfiguration and, finally, there must
be an online mechanism to control emergence.

Many online algorithms for real-time analysis have been
proposed [1], [4] because they are often needed for dy-
namic scheduling strategies. However, these techniques have
not found their way into industrial applications, since the
underlying application models are quite simple and do not
reflect the complex timing behaviour of realistic heterogeneous
distributed embedded systems. Therefore, complex timing con-
straints for embedded systems are usually verified by offline
simulation or prototyping. Those techniques, however, are not
applicable in organic computing systems.

In the last couple of years, offline analysis algorithms [13],
[3] have been proposed that can analyze complicated systems
and constraints requiring access to the global system state.
They have been used in system sensitivity analysis [12], [2]
and system optimization [6]. In this paper, we propose a first
step to extending such analysis to an online analysis and
optimization system for organic computing systems.

The remainder of the paper is organized as follows. Sec-
tion II introduces the basic concepts of offline performance
analysis used as basis for our online analysis approach. After-
wards, in Section III, the underlying ideas of our distributed
performance analysis are presented. In Sections IV and V we
then introduce algorithms needed to perform an acceptance
test and self-adaptation for integrating new functionalities into
a system. In Section VI we demonstrate the applicability of
the approach and show that self-adaptation can increase the
acceptance rate.

II. OFFLINE COMPOSITIONAL SYSTEM-LEVEL
PERFORMANCE ANALYSIS

In this section we give a brief overview over the com-
positional performance verification methodology proposed by

2

Richter et al. [13], [7], called SymTA/S, which we extend in
this paper to realize a decentralized distributed online analy-
sis and self-adaptation for complex heterogeneous embedded
systems. We give a short summary of the utilized application
model and outline the SymTA/S analysis methodology.

In SymTA/S, systems are modeled as (cyclic) task graphs
which are mapped on computational and communication re-
sources. A task is activated due to activating events. These
can be generated in a multitude of ways, including expiration
of a timer, external or internal interrupt, and task chaining.
Each task is assumed to have one input FIFO. A task reads
its activating data from its input FIFO and writes data into
the input FIFO of a dependent task. A task may read its input
data at any time during one execution. The data is therefore
assumed to be available at the input during the whole execution
of the task. SymTA/S also assumes that input data is removed
from the input FIFO at the end of one execution.

A task needs to be mapped on a computation or commu-
nication resource to execute. If multiple tasks share the same
resource, then two or more tasks may request the resource at
the same time. In order to arbitrate request conflicts, a resource
is associated with a scheduler which selects a task to which it
grants the resource out of the set of active tasks according to
some scheduling policy. Scheduling analysis calculates worst-
case (sometimes also best-case) task response times, i.e. the
time between task activation and task completion, for all tasks
sharing a resource under the control of a scheduler. Scheduling
analysis guarantees that all observable response times will fall
into the calculated [best-case, worst-case] interval. Scheduling
analysis is therefore conservative. A task is assumed to write
its output data at the end of one execution. This assumption
is standard in scheduling analysis.

SymTA/S solves the global system-level scheduling analysis
problem by alternating (classical) local scheduling analyses
and event model propagation along event streams connecting
functionally dependant tasks.

Event models describe the possible I/O timing of tasks.
Input event models capture event patterns leading to task
activations. Based on input event models for all tasks mapped
on a resource, local scheduling analysis can be performed and
output event models can be derived. These output event models
are propagated to connected resources, where they are used,
in turn, as input event models for local scheduling analysis.

A popular event model is the so-called standard event
model. For example, a periodic event model has one parameter
P and states that each event exactly arrives periodically every
P time units. This simple model can be extended with the
notion of jitter, leading to a periodic with jitter event model.
Such an event model is described by two parameters (P,J). It
generally occurs periodically, but it can jitter around its exact
position within a jitter interval J . If the jitter is larger than
the period, then two or more events can occur at the same
time, leading to bursts. To describe a bursty event model, the
periodic with jitter event model can be extended with a d−

parameter that captures the minimum distance between events
within a burst.

More details about the compositional system-level perfor-
mance analysis can be found in [13], [7].

Event models only capture key integration aspects such

as send/receive message jitters, etc., and ignore details of
the concrete computation or communication resources. They
therefore represent a suitable abstraction for the realization
of a light-weight distributed online system-level performance
analysis, which will be discussed in the following sections.

III. DISTRIBUTED ONLINE PERFORMANCE ANALYSIS

In this section, we first introduce an example system that
acts as a motivating example for our algorithms presented
in the following sections. Afterwards, we will present our
approach to distributedly model an applications running on an
embedded system. Last, we introduce our strategy to analyse
this distributed model.

A. Motivating Example

Consider the example setup shown in Figure 1. It contains
four different computational units connected by a bus. Two
applications are already mapped on the architecture. A video
application (solid chain) gathers data from a camera controlled
by the micro controller uC, performs preprocessing on the
DSP and post-processing on the PPC core. The second appli-
cation (dashed chain) reads data from a sensor, which is first
processed on the ARM core and then forwarded to the PPC
core, which, in turn, controls an actor. Both applications have
constrained end-to-end latencies (Table I(c)).

Suppose the ARM processor as well as the DSP are not fully
loaded with these applications, leaving room for integrating a
third application into the system. We propose the integration
of a second streaming application that runs on the ARM
processor core and also uses the DSP for processing. In
Figure 1, the task chain is shown under the block diagram,
the white arrows indicate the desired mapping of the tasks on
the system architecture. This application also has a constrained
end-to-end latency (Table I(c)).

The computational resources (PPC, uC, DSP , and ARM)
are all scheduled according to the static priority preemptive
policy, and the interconnecting bus is arbitrated by the CAN
protocol. Core execution and core communication times as
well as priorities of all tasks and exchanged messages are given
in Tables I(a) and I(b), respectively. The periods of incoming
data at the system inputs (Cam, Sens, and Sin) are specified
in Table I(d).

Channel CCT Priority
C0 [10.4, 12.4] 4
C1 [12, 14.4] 2
C2 [20, 26.4] 1
C3 [15.2, 22.4] 3
C4 [10.4, 14.4] 5
C5 [15.2, 26.4] 6

(a) Core Communication Times

Task CET Priority
T5 [30.9, 43.1] 1
T2 [15.8, 27.4] 2
T3 [36.9, 46.3] 1
T0 [20.1, 48.5] 2
T4 [13, 86] 1
T7 [40.3, 44.5] 2
T1 [27.1, 154.9] 1
T6 [14.2, 63.6] 2
T8 [11.5, 291.2] 3

(b) Core Execution Times

Path Deadline
Sens→ Act 850
Cam→ Vout 1100
Sin → Sout 1000

(c) End-to-End Constraints

System Input Period P
Sens 500
Cam 100
Sin 1000

(d) Input Event Models

TABLE I - SYSTEM PARAMETERS

3

Fig. 1 - EXAMPLE SYSTEM ARCHITECTURE

The key challenge is to successfully integrate the new
functionality into the system without violating the timing
constraints of the already mapped applications. Offline per-
formance analysis as introduced in the previous section offers
techniques to verify timing behavior prior to integration.
Currently, these methodologies are only integrated in offline
analysis tools (e.g. SymTA/S [5]), thus new functionality can
only be safely integrated after modeling, testing, and possibly
adaptation of the remaining system by an engineer.

In order to enable integration of new functionality by
non-experts, we suggest to integrate performance analysis
methodologies on the embedded system itself. Our approach to
online distributed performance analysis suggests, that on every
computational resource in the system, a performance analysis
application instance is running. Each of these instances has
knowledge of part of the global model corresponding to the
application running on the system.

In Figure 1 these analysis instances are depicted using white
boxes labeled “SymTA/S”. The boxes next to them show the
parts of the global model to be analyzed that are known to the
respective instances. Notice that each instance has a model of
the tasks running on the same processing unit as itself. As the
bus has no computational power that can be used for analysis,
one instance has to take over its analysis - in this case the
instance on the ARM core.

A distributed online performance analysis using the in-
stances running on the embedded system, yields runtime
performance data that can be used to implement an online
acceptance test for the integration of new functionality into

an embedded system. The same data can also be used to
implement distributed optimization algorithms automatically
adapting system parameters to changing system requirements
and extended functionalities.

In the following sections we describe our approach to
distributed online performance analysis and outline an ac-
ceptance test algorithm (Section IV) as well as an online
optimization algorithm (Section V). These algorithms will
be used in Section VI to successfully integrate the filtering
application presented in Figure 1(b) into the system described
in Figure 1(a).

B. Distributed system modeling
For distributed online analysis, distributed models of the

application running on the embedded system as well as its
architecture are needed for the analysis instances running on
the computational resources. Basically, it is desirable that the
analysis instances themselves are capable of generating these
models using data obtainable from the system or additional
information associated with the tasks running on the system
such as best and worst case execution times and communica-
tion partners. This way, the designer effort for changing the
system specification or integrating new functionalities into a
running system would be minimized.

However, an automatic generation of these models from
measured data in an embedded system is a complex problem
and not in the scope of this paper. Therefore, we assume
in the remainder of this paper, that there exists a complete
distributed model of the architecture of the embedded system

4

and the application running on it. Additionally, we assume that
new functionalities, which are integrated into the system come
along with an appropriate model.

The basic compositional performance verification model,
as used in the SymTA/S tool suite [13], [7], [5], needs to
be extended to support distributed descriptions of a real-time
system. We introduce the concept of Remote Resources to
model remote parts of the model that are connected to the
local instance. Remote Resources are containers that represent
remote parts of the model specified in other instances of the
analysis framework.

Since two partial models may be connected by multiple
event streams, each Remote Resource may contain multiple
External Sinks and External Sources. An External Sink-Source
pair acts as a tunnel for analysis information (i.e. event models)
being passed along the connected event streams. Note that
the actual exchange of event model data is achieved over
communication resources of the underlying architecture. In the
case of the example system in Figure 1 the CAN-bus is used to
exchange the necessary input event models (IEMs) and output
event models (OEMs).

C. Analysis strategy
As described in Section II, our proposed analysis method-

ology alternates local scheduling analysis on resources and
event model propagation along event streams. The order in
which resources are analyzed can be chosen arbitrarily. During
offline analysis the order is determined based on topological
information to minimize computational effort.

For a distributed system, we suggest to analyze each re-
source as soon as new input event model data is available for
at least one task mapped on the resource. This approach does
not require any topological knowledge or central coordination
of the analysis. In the remainder of the paper we refer to
this approach as “live analysis”. Not taking into account
topological information for determining analysis order leads
to an increase in required local analysis runs. This will be
discussed in more detail in section VI.

A problem that arises from this “live” distributed setup is to
determine analysis convergence. As new functionality can be
added at random points of time, successive analysis iterations
may be caused by an ongoing analysis or the integration of
new functionality at a remote part of the system. Thus, it is
hard to determine when analysis has converged, and supplies
valid performance data for the current system setup.

However, in existing systems an analysis run converges
significantly faster compared to the average time interval
between system changes. For instance, the software of a car
may be updated every few months, whereas an analysis run
converges in seconds. Consequently, it is safe to assume that
analysis has converged if no resource in the local instance had
to be analyzed within a reasonable timeout interval.

Concurrently analysing a distributed system using the re-
sources of the system itself introduces some computational and
communication overhead into the system. The load imposed by
live analysis will however be transient as it is only triggered by
system model modifications. Furthermore, we aim to minimize
interference by using idle times of the processors and buses
for online analysis.

IV. ACCEPTANCE TEST FOR NEW FUNCTIONALITY

Acceptance tests are a vital tool for real-time system in-
tegration. A new function can be accepted to be integrated
into a real-time system if its integration does not overload the
system, does not cause constraint violations for applications
already running on the system, and meets its own constraints.

Implementing an acceptance test on embedded devices
themselves adds self-protection properties to these systems,
as they can deny modifications compromising their current
functionality.

For the purpose of implementing an acceptance test using
the performance analysis methodologies described above, we
need to be able to specify constraints for distributed applica-
tions that affect multiple analysis instances. Similarly, it must
be possible to determine global end-to-end latencies for these
distributed applications.

In this section, we introduce techniques to distribute con-
straints throughout the system and collect global information
about, for instance latencies or aggregated buffer sizes along
paths. For simplicity, we outline the algorithms for constrained
path latencies. Note that the same algorithms are also appli-
cable for other performance data.

For distributing constraints inside the system, we assume
that there exists a broadcast mechanism to send messages
to all analysis instances currently present in the system.
Techniques to establish communication paths and broadcasting
mechanisms in unknown multihop communication topologies
have been discussed in great detail in the field of wireless ad
hoc networks (i.e. [11], [9]). These approaches can be adapted
to establish the communication mechanisms claimed above.

Constraints are specified as three-tuples {P, TP , CP}, where
P specifies the unique name of the path, TP = t0, . . . , tn is
the ordered set of tasks contained in P , and CP specifies the
constraint for P . These tuples are broadcasted to all analysis
instances, which store paths and constraints relevant to them.
Once, TP is known in the system, constraints may be updated
using the tuple {P, CP} to reduce communication overhead.

To be able to detect violations of path latency constraints,
each analysis instance must be able to compute the total la-
tency along a given path. We propose the following algorithm
to compute this latency.

Whenever an analysis instance needs to compute the latency
along a specific path, it sends a request for path latency
calculation along P towards t0 ∈ TP . From this source, a
path latency discoverer is sent along the path towards its
sink. This discoverer accumulates latencies along the path.
Once, the discoverer reaches the end of the path, the latency
calculation ends and the total path latency is stored in the
discoverer. This information is then sent back along the path
towards the source. This way, all analysis instances alongside
the path get updated latency information. Algorithm 1 shows
the pseudo-code for the algorithm applied to non-end tasks in
the path. To avoid duplicate latency calculations, t0 drops any
calculation request between starting a discoverer and receiving
the corresponding result.

Using the mechanisms described above, an acceptance test
can be implemented. If new functionality is to be integrated
into a system, its timing properties, i.e. core execution times,
sizes of exchanged messages, etc., and constraints must a priori

5

Algorithm 1 Calculate Path Latency
INPUT: Name of path P

Task ti ∈ TP , i > 0 ∧ i < n for current latency accumulation.
State s ∈ {REQUEST, DISCOV ER, BC RESULT}
Current latency l
if s == REQUEST then

forward request to ti−1
else if s == DISCOV ER then

l← l+ latency imposed by ti

forward discoverer to ti+1
else

store l as current latency of P
forward result to ti−1

be specified in a format convertible to a SymTA/S compliant
model. This description is integrated into the existing dis-
tributed model of the running system. After convergence of
the online analysis, the new functionality can be accepted if
(a) no resource is overloaded and (b) no path constraints are
violated.

We propose that similar to the concept of “live analysis”, an
acceptance test is executed every time convergence of analysis
has been detected. Each analysis instance runs the accep-
tance test by checking all contained resources for overload
situations and querying the relevant paths for their metrics
and comparing them to given constraints. In case a resource
is overloaded or a constraint is violated, a NOK (not OK)-
message is broadcasted throughout the system to indicate that
the current configuration cannot be accepted.

These messages can be used to trigger self-protecting or
self-adapting algorithms to resolve the detected problems.
These algorithms can range from denying a proposed update
over graceful degradation to self-optimization as described
below.

V. HEURISTIC ONLINE OPTIMIZATION

In this section we present a heuristic online optimization al-
gorithm which can be used in conjunction with the acceptance
test introduced in Section IV to increase the acceptance rate
for the integration of new functionality into a given organic
system. In Section VI this algorithm is used to successfully
integrate new functionality into the example system given in
Figure 1.

Note that the presented algorithm is tailored for optimizing
the priority assignment of tasks or messages mapped on
priority scheduled resources, i.e. static priority preemptive
scheduled CPUs and CAN arbitrated buses. However, we
are currently working on extending it to various additional
scheduling strategies, including time-slice based schedulers
(e.g. TDMA, Round Robin), and automotive RTOSes (e.g.
ERCOSEK).

Algorithm 2 optimizes the priorities of tasks running on a
single priority scheduled resource. In order to realize a system-
level priority optimization, each resource needs to run its own
instance of the optimization algorithm.

During run-time of the organic system, the system can be
set into the self-adaptation modus (Figure 2) by broadcasting
a message through the system.

In self-adaptation modus the SymTA/S instances running on
the resources in the system react to NOK-messages of the ac-
ceptance test (Section IV) by triggering an online optimization

Fig. 2 - SELF-ADAPTATION MODUS

step. Note that the necessary input data for Algorithm 2, i.e.
path latencies etc., can be collected during the execution of
the acceptance test.

During an online optimization step model parameters (i.e.
task and message priorities) are modified, which, in turn, leads
to the triggering of the live analysis. Once the live analysis has
converged, a new acceptance test is performed. For the case
that the system still violates constraints, it broadcasts a NOK-
message, which again triggers an online optimization step.
This analysis-optimization loop is repeated until a working
system configuration is found, i.e. no NOK message occurs
for a sufficiently long amount of time (time out), or until a
certain number of unsuccessful optimization steps have been
performed.

Algorithm 2 k-th Online Resource Optimization Step
INPUT: CPU C, tasks t1 . . . tn mapped on C with response times r1 . . . rn, con-

strained paths P1 . . .Pm with deadlines D1 . . .Dm and end-to-end response
times R1 . . .Rm,
histories H1 = {H1

1, . . . ,Hk−1
1 }, . . . ,Hn = {H1

n, . . . ,Hk−1
n },

where Hj
i

= {[plsj

i,x1
i

, rplj
x1

i

], . . . , [plsj

i,x
si
i

, rplj
x

si
i

]}

history depth hdepth

OUTPUT: Priority assignment for t1 . . . tn
1: for (i = 1 to m) do
2: rplki =

Ri−Di
Di

3: for (j = 1 to n) do
4: if (tj ∈ Pi) then
5: plsk

j,i =
rj
Ri

6: add [plsk
j,i, rplki] to Hk

j

7: for (i = 1 to n) do
8: relevancei = 1
9: for (j = k downto k − hdepth + 1) do

10: for (q = 1 to si) do
11: relevancei = relevancei × (1 + plsj

i,x
q
i

)× (1 + rplj
x

q
i

)

12: assign highest priority to process with highest relevance, etc.

Algorithm 2 heuristically determines the ”importance” of
each task on the considered resource and distributes the
priorities accordingly.

The algorithm iterates over all global paths known by the
SymTA/S instance running on the optimized resource.

For each path the algorithm calculates the relative path late-
ness (rpl), denoting the percentual lateness, i.e. the percentage
by which the path deadline is violated (line 2). Note that
negative lateness means that the response time of the path is
inferior to its deadline. Afterwards, the algorithm determines
for each tasks contained in the current path the process latency
share (pls), denoting its response time share in the overall path
latency (lines 3−6). Note that the tuples (pls,rpl) for each path-
task pair are stored in the history of the current optimization
step (line 6).

Afterwards, the relevances for the tasks mapped on the
considered resource are determined (lines 7 − 11). For this

6

purpose, the algorithm considers the history data of the last
hdepth optimization steps, if existent. We observe, that both
high rpl and high pls values lead to a task relevance increase.
Note that negative rpl values for a path, i.e. the path holds its
deadline, decrease the task relevance.

Finally, the algorithm assigns the priorities in a relevance
monotonic fashion, i.e. the process with the highest relevance
is assigned the highest priority, etc.

VI. CASE STUDY

In this section we take the example system shown in
Figure 1 as case study to demonstrate the algorithms proposed
in the previous sections.

Suppose the filtering application consisting of the path
Sin → Sout shown in figure 1(b) is to be integrated into the
system. In order to not compromise any timing properties of
the applications already running on the system, the tasks of the
application are assigned the lowest priorities on the respective
resources. This is already reflected in Table I.

Integration of the additional functionality into the model
triggers online analysis as previously described. In this case,
online analysis starts on the processors, on which new func-
tionality is integrated - the ARM and DSP processor. Changed
timing behaviour on these resources triggers renewed analysis
on the CAN bus, which in turn triggers an analysis on all
connected Processors that read data from the bus. This loop
will continue until convergence of analysis. Note that the
CAN bus analysis can be triggered each time an attached
processor has been analysed. A topological sort of the system
architecture shows however, that it would be sufficient to first
analyse all processors connected to the bus and then analyse
the CAN bus once. In a worst case scenario, this could result
in the CAN bus being analysed four times, when only one
analysis run is needed. This topological information is being
exploited during offline analysis, our distributed framework
however does not yet gather any topological information and
thus has an overhead in analysis runs as described before.
Experiments show, that “live analysis” analyses the CAN bus
about twice as often as offline analysis for the setup shown in
figure 1.

Once live analysis has converged, an acceptance test is
triggered on each resource, detecting that timing constraints
of the new application as well as a constraint of the old
application are violated (see Table II(b)), hence the acceptance
test fails and broadcasts a NOK-message through the system.
In this case, all analysis instances will broadcast a NOK
message, since all contain at least one task that is part of
a path whose constraint is violated.

If the system is in self-adaptation mode, this triggers an on-
line optimization step, which may find a different configuration
of the system for which no path constraints are violated. In this
case, optimization yielded the following priority assignment
leading to a working system after 3 optimization steps. CAN:
C5 > C4 > C0 > C1 > C2 > C3, ARM: T8 > T6 > T1,
DSP: T7 > T4, PPC: T2 > T5, µC: T0 > T3.

VII. CONCLUSION

In this paper we presented a new methodology introducing
self-awareness and self-adaptation with respect to real-time

Path wc lat. OK

Sens→ Act 707.4
√

Cam→ Vout 392.8
√

Sin → Sout n.a. n.a.
(a) latencies before integration

Path wc lat. OK
Sens→ Act 861.9 X
Cam→ Vout 484.7

√

Sin → Sout 2639.9 X
(b) latencies before optimization

Path wc lat. OK
Sens→ Act 795.8

√

Cam→ Vout 1067.7
√

Sin → Sout 509.1
√

(c) latencies after optimization

TABLE II - LATENCIES BEFORE AND AFTER INTEGRATION AND

OPTIMIZATION

constraints into complex distributed embedded systems. The
ambition of our approach is to increase system robustness,
flexibility, and extensibility without explicit engineering effort.
We motivated our approach by means of a small but realistic
case study and demonstrated that online performance analysis
coupled with online optimization can increase the acceptance
rate for software updates in embedded systems. Similarly, a
greater robustness to subsystem failures can be achieved.

REFERENCES

[1] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic scheduling:
The hyperbolic bound. IEEE Transactions on Computers, 52(7):933–
942, July 2003.

[2] E. Bini, M. Di Natale, and G. C. Buttazzo. Sensitivity analysis for
fixed-priority real-time systems. In Proc. of the Euromicro Conference
on Real-Time Systems (ECRTS), Dresden, Germany, July 2006.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In Proc. of the IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), Munich, Germany, 2003.

[4] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on uniform
multiprocessors. In Proc. of the 22nd IEEE Real-Time Systems Sympo-
sium (RTSS), London, UK, 2001.

[5] A. Hamann, R. Henia, M. Jersak, R. Racu, K. Richter, and
R. Ernst. SymTA/S - Symbolic Timing Analysis for Systems.
http://www.symta.org/.

[6] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A framework for
modular analysis and exploration of heterogeneous embedded systems.
Real-Time Systems Journal, 33(1-3):101–137, July 2006.

[7] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System level performance analysis - the SymTA/S approach. IEE
Proceedings Computers and Digital Techniques, 152(2):148–166, March
2005.

[8] Paul Horn. Autonomic computing: Ibm’s per-
spective on the state of information technology.
http://www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf,
October 2001.

[9] David B Johnson and David A Maltz. Dynamic source routing in ad
hoc wireless networks. Mobile Computing, 353, 1996.

[10] Christian Mueller-Schloer. Organic computing - on the feasibility of
controlled emergence. In IEEE/ACM/IFIP International Conference on
Hardware/Software Codesing and System Synthesis (CODES + ISSS
2004), 2004.

[11] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.

[12] R. Racu, A. Hamann, and R. Ernst. A formal approach to multi-
dimensional sensitivity analysis of embedded real-time systems. In Proc.
of the Euromicro Conference on Real-Time Systems (ECRTS), Dresden,
Germany, July 2006.

[13] K. Richter. Compositional Performance Analysis. PhD thesis, Technical
University of Braunschweig, 2004.

[14] Thilo Streichert, Dirk Koch, Christian Haubelt, and Jrgen Teich. Mod-
eling and design of fault-tolerant and self-adaptive reconfigurable net-
worked embedded systems. EURASIP Journal on Embedded Systems,
Special Issue on Field-Programmable Gate Arrays in Embedded Sys-
tems., 2006.

[15] David Tennenhouse. Proactive computing. Commun. ACM, 43(5):43–50,
2000.

