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Abstract: Integrating new functionality into complex embedded hard real-time sys-
tems requires considerable engineering effort. Emerging formal analysis methodolo-
gies and tools from real-time research assist system engineers solving this integra-
tion problem. For future organic computer systems, however, it is desirable to inte-
grate these approaches into running systems, enabling them to autonomously perform
e.g. online acceptance tests and self-optimization in case of system or environmen-
tal changes. This results in high system robustness and extensibility without explicit
engineering effort.

In this paper, we present an approach adapting formal compositional analysis tech-
niques to realize self-awareness and self-adaptation in embedded systems with respect
to real-time properties such as latency constraints, buffer sizes, etc.

We introduce a framework for distributed online performance analysis running on
embedded real-time systems. Based on this framework we implement an acceptance
test for the integration of new functionality into an existing embedded real-time sys-
tem. Furthermore, we present an online optimization algorithm based on the same
framework. In a case study, we demonstrate the applicability of the approach and
show that online optimization can increase the acceptance rate with reasonable com-
putational effort.

1 Introduction

Organic computing systems show emergent system behavior and architecture. With grow-
ing system complexity the benefits of emergence, such as self learning, self healing, ro-
bustness etc., let organic computing become interesting even for applications with real-
time or safety requirements. Such applications require controlled emergence, i.e. the
system must comply with fundamental constraints, such as deadlines or minimum de-
pendability.

This paper will focus on the real-time properties of organic computing systems. In many
applications, simple process deadlines are insufficient. Rather, end-to-end deadlines, jitter,
and transient load requirements are needed for high quality media or control engineering.
Furthermore, a networked system will integrate many functions on the same system plat-
form, many of them with emergent behavior. The organic computing system will have to
control the system emergence in such a way that these complex timing constraints are met
at all times. Here, we can identify three challenges. The system must be aware of the
current architecture and the current set of applications on the organic computing system,
it must anticipate the effect of a planned emergence and, finally, there must be an online
mechanism to control emergence.

Many online algorithms for real-time analysis have been proposed [FGBO1] because they
are often needed for dynamic scheduling strategies. However, complex timing constraints
for embedded systems are usually verified by simulation or prototyping since current ap-
proaches to online timing analysis do not cover heterogeneous networked systems. Those
techniques, however, are not applicable in organic computing systems.

In the last couple of years, offline analysis algorithms [Ric04, CKT03] have been proposed



that can analyze such complicated systems and constraints requiring access to the global
system state. They have been used in system sensitivity analysis [RHE06, BNB06] and
system optimization [HIREOQ6]. In this paper, we propose a first step to extending such
analysis to an online analysis and optimization system for organic computing systems.
The remainder of the paper is organized as follows. Section 2 introduces the basic concepts
of offline performance analysis used as basis for our online analysis approach. Afterwards,
in Section 3, the underlying ideas of our distributed performance analysis are presented.
In Sections 4 and 5 we then introduce algorithms needed to perform an acceptance test
and self-adaptation for integrating new functionalities into a system. In Section 6 we
demonstrate the applicability of the approach and show that self-adaptation can increase
the acceptance rate.

2 Offline Compositional System-level Performance Analysis

The compositional performance verification methodology proposed by Richter et al. [Ric04,
HHJ105], called SymTA/S, solves the global system-level performance verification prob-
lem by alternating (classical) local scheduling analysis and event model propagation along
event streams connecting functional dependant tasks.

Event models describe the possible I/O timing of tasks. Input event models capture event
patterns leading to task activations. Based on input event models for all tasks mapped on
a resource, local scheduling analyses can derive response times, i.e. the time between task
activation and task completion, and output event models for each task. These output event
models are propagated to connected resources, where they are used, in turn, as input event
models for local scheduling analysis.

A popular event model is the so-called standard event model. For example, a periodic
event model has one parameter P and states that each event exactly arrives periodically
every P time units. This simple model can be extended with the notion of jitter, leading
to a periodic with jitter event model. Such an event model is described by two parameters
(P, J). It generally occurs periodically, but it can jitter around its exact position within a
jitter interval 7. If the jitter is larger than the period, then two or more events can occur at
the same time, leading to bursts. To describe a bursty event model, the periodic with jitter
event model can be extended with a d~ parameter that captures the minimum distance
between events within a burst.

More details about the compositional system-level performance analysis can be found
in [Ric04, HHI*05].

Event models only capture key integration aspects such as send/receive message jitters,
etc., and ignore details of the concrete computation or communication resources. They
therefore represent a suitable abstraction for the realization of a light-weight distributed
online system-level performance analysis, which will be discussed in the following sec-
tions.

3 Distributed Online Performance Analysis
3.1 Motivating Example

Consider the example setup shown in Figure 1. It contains four different computational
units connected by a bus. Two applications are already mapped on the architecture. A
video application (solid chain) gathers data from a camera controlled by the micro con-
troller uC, performs preprocessing on the DSP and post-processing on the PPC core. The
second application (dashed chain) reads data from a sensor, which is first processed on the
ARM core and then forwarded to the PPC core, which, in turn, controls an actor. Both
applications have constrained end-to-end latencies (Table 1(c)).

Suppose the ARM processor as well as the DSP are not fully loaded with these appli-
cations, leaving room for integrating a third application into the system. We propose the



integration of a second streaming application that runs on the ARM processor core and also
uses the DSP for processing. In Figure 1, the task chain is shown under the block diagram,
the white arrows indicate the desired mapping of the tasks on the system architecture. This
application also has a constrained end-to-end latency (Table 1(c)).

The computational resources (PPC, uC, DSP, and ARM) are all scheduled according
to the static priority preemptive policy, and the interconnecting bus is arbitrated by the
CAN protocol. Core execution and core communication times as well as priorities of all
tasks and exchanged messages are given in Tables 1(a) and 1(b), respectively. The periods
of incoming data at the system inputs (C'am, Sens, and S;,,) are specified in Table 1(d).

b) Filtering application
to be integrated

Figure 1: Example system architecture
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Table 1: System Parameters
The key challenge is to successfully integrate the new functionality into the system without
violating the timing constraints of the already mapped applications. Offline performance
analysis as introduced in the previous section offers techniques to verify timing behavior
prior to integration. Currently, these methodologies are only integrated in offline analysis



tools (e.g. SymTA/S [HHI™]), thus new functionality can only be safely integrated after
modeling, testing, and possibly adaptation of the remaining system by an engineer.

In order to enable integration of new functionality by non-experts, we suggest to integrate
performance analysis methodologies on the embedded system itself. Our approach to
online distributed performance analysis suggests, that on every computational resource in
the system, a performance analysis application instance is running. Each of these instances
has knowledge of part of the global model corresponding to the application running on the
system.

In Figure 1 these analysis instances are depicted using white boxes labeled “SymTA/S”.
The boxes next to them show the parts of the global model to be analyzed that are known
to the respective instances. Notice that each instance has a model of the tasks running on
the same processing unit as itself. As the bus has no computational power that can be used
for analysis, one instance has to take over its analysis - in this case the instance on the
ARM core. Similarly, online analysis could also be performed if only a few nodes contain
instances of the analysis framework.

A distributed online performance analysis using the instances running on the embedded
system, yields runtime performance data that can be used to implement an online accep-
tance test for the integration of new functionality into an embedded system. The same data
can also be used to implement distributed optimization algorithms automatically adapting
system parameters to changing system requirements and extended functionalities.

In the following sections we describe our approach to distributed online performance anal-
ysis and outline an acceptance test algorithm (Section 4) as well as an online optimization
algorithm (Section 5). These algorithm will be used in Section 6 to successfully integrate
the filtering application presented in Figure 1(b) into the system described in Figure 1(a).

3.2 Distributed system modeling

For distributed online analysis, distributed models of the application running on the em-
bedded system as well as its architecture are needed for the analysis instances running on
the computational resources. Basically, it is desirable that the analysis instances them-
selves are capable of generating these models using data obtainable from the system like
measured execution times and observed communication paths or task dependencies. This
way, the designer effort for changing system specifications or integrating new functionali-
ties into a running system would be minimized.

However, an automatic generation of these models from measured data in an embedded
system is a complex problem and not in the scope of this paper. Therefore, we assume
in the remainder of this paper, that there exists a complete distributed model of the ar-
chitecture of the embedded system and the application running on it. Additionally, we
assume that new functionalities which are integrated into the system come along with an
appropriate model.

3.3 Distributed analysis

The basic compositional performance verification model, as used in the SymTA/S tool
suite [RicO4, HHJ*05, HHJT], needs to be extended to support distributed descriptions of
a real-time system. We introduce the concept of Remote Resources to model remote parts
of the model that are connected to the local instance. Remote Resources are containers that
represent remote parts of the model specified in other instances of the analysis framework.
Since two partial models may be connected by multiple event streams, each Remote Re-
source may contain multiple External Sinks and External Sources. An External Sink-
Source pair acts as a tunnel for analysis information (i.e. event models) being passed
along the connected event streams. Note that the actual exchange of event model data is
achieved over communication resources of the underlying architecture. In the case of the
example system in Figure 1 the CAN-bus is used to exchange the necessary input event



models (IEMs) and output event models (OEMs).
3.4 Analysis strategy

As described in Section 2, our proposed analysis methodology alternates local scheduling
analysis on resources and event model propagation along event streams. The order in
which resources are analyzed can be chosen arbitrarily. During offline analysis the order
is determined based on topological information to minimize computational effort.

For a distributed system, we suggest to analyze each resource as soon as new input event
model data is available for at least one task mapped on the resource. This approach does
not require any topological knowledge or central coordination of the analysis. In the re-
mainder of the paper we refer to this approach as “live analysis”.

A problem that arises from this “live” distributed setup is to determine analysis conver-
gence. As new functionality can be added at random points of time, successive analysis
iterations may be caused by an ongoing analysis or the integration of new functionality at
a remote part of the system. Thus, it is hard to determine when analysis has converged,
and thus supplies valid performance data for the current system setup.

However, in existing systems an analysis run converges significantly faster compared to the
average time interval between system changes. For instance, the software of a car may be
updated every few months, whereas an analysis run converges in seconds. Consequently,
it is safe to assume that analysis has converged if no resource in the local instance had to
be analyzed within a reasonable timeout interval.

4 Acceptance Test for new Functionality

Acceptance tests are a vital tool for real-time system integration. A new function can
be accepted to be integrated into a real-time system if its integration does not overload
the system, does not cause constraint violations for applications already mapped on the
system, and meets its own constraints.

Implementing an acceptance test on embedded devices themselves adds self-protection
properties to these systems, as they can deny modifications compromising their current
functionality.

For the purpose of implementing an acceptance test using the performance analysis method-
ologies described above, we need to be able to specify end-to-end latency constraints for
distributed applications that affect multiple analysis instances. Similarly, it must be possi-
ble to determine global end-to-end latencies for these distributed applications.

In this section, we introduce techniques to distribute constraints throughout the system and
collect global information about, for instance latencies or aggregated buffer sizes along
paths. For simplicity, we outline the algorithms for constrained path latencies. Note that
the same algorithms are also applicable for other performance data.

For distributing constraints inside the system, we assume that there exists a broadcast
mechanism to send messages to all analysis instances currently present in the system.
Constraints are specified as three-tuples {P, 7p,Cp }, where P specifies the unique name
of the path, 7p = ty,...,t, is the ordered set of tasks contained in P, and Cp specifies
the constraint for P. These tuples are broadcasted to all analysis instances, which store
paths and constraints relevant to them. Once, 75 is known in the system, constraints may
be updated using the tuple {P,Cp} to reduce communication overhead.

To be able to detect violations of path latency constraints, each analysis instance must be
able to compute the total latency along a given path. We propose the following algorithm
to compute this latency.

Whenever an analysis instance needs to compute the latency along a specific path, it sends
a request for path latency calculation along P towards ty € 7p. From this source, a path
latency discoverer is sent along the path towards its sink. This discoverer accumulates
latencies along the path. Once, the discoverer reaches the end of the path, the latency



calculation ends and the total path latency is stored in the discoverer. This information is
then sent back along the path towards the source. This way, all analysis instances along-
side the path get updated latency information. Algorithm 1 shows the pseudo-code for the
algorithm applied to non-end tasks in the path. To avoid duplicate latency calculations, %,
drops any calculation request between starting a discoverer and receiving the correspond-
ing result.

Algorithm 1 Calculate Path Latency

INPUT: Name of path P
Task t; € Tp,1 > 0 A i < n for current latency accumulation.
State s € {REQUEST, DISCOVER,BC_RESULT}
Current latency [
if s == REQUEST then
forward request to t; _1
elseif s == DISCOV ER then
| «+— I+ latency imposed by t;
forward discoverer to £ ;41
else
store [ as current latency of P
forward result to ¢; 1

Using the mechanisms described above, an acceptance test can be implemented. If new
functionality is to be integrated into a system, its timing properties, i.e. core execution
times, sizes of exchanged messages, etc., and constraints must a priori be specified in a
format convertible to a SymTA/S compliant model. This description is integrated into
the existing distributed model of the running system. After convergence of the online
analysis, the new functionality can be accepted if (a) no resource is overloaded and (b) no
path constraints are violated.

We propose that similar to the concept of “live analysis”, an acceptance test is executed
every time convergence of analysis has been detected. Each analysis instance runs the
acceptance test by checking all contained resources for overload situations and querying
the relevant paths for their metrics and comparing them to given constraints. In case a
resource is overloaded or a constraint is violated, a NOK (not OK)-message is broadcasted
throughout the system to indicate that the current configuration cannot be accepted.
These messages can be used to trigger self-protecting or self-adapting algorithms to re-
solve the detected problems. These algorithms can range from denying a proposed update
over graceful degradation to self-optimization as described below.

S Heuristic Online Optimization

In this section we present a heuristic online optimization algorithm which can be used in
conjunction with the acceptance test introduced in Section 4 to increase the acceptance
rate for the integration of new functionality into a given organic system. In Section 6 this
algorithm is used to successfully integrate new functionality into the example system given
in Figure 1.
Note that the presented algorithm is tailored for optimizing the priority assignment of tasks
or messages mapped on priority scheduled resources, i.e. static priority preemptive sched-
uled CPUs and CAN arbitrated buses. However, we are currently working on extending
it to various additional scheduling strategies, including time-slice based schedulers (e.g.
TDMA, Round Robin), and automotive RTOSes (e.g. ERCOSFX).
Algorithm 2 optimizes the priorities of tasks running on a single priority scheduled re-
source. In order to realize a system-level priority optimization, each resource needs to run
its own instance of the optimization algorithm.

During run-time of the organic system, the

system can be set into the self-adaptation
modus (Figure 5) by broadcasting a mes-

Model change convergence

Optimizatio NOK

Figure 2: Self-adaptation modus




sage through the system.

In self-adaptation modus the SymTA/S in-

stances running on the resources in the

system react to NOK-messages of the ac-

ceptance test (Section 4) by triggering an

online optimization step. Note that the
necessary input data for Algorithm 2, i.e. path latencies etc., can be collected during
the execution of the acceptance test.
During an online optimization step model parameters (i.e. task and message priorities)
are modified, which, in turn, leads to the triggering of the live analysis. Once the live
analysis has converged, a new acceptance test is performed. For the case that the system
still violates constraints, it broadcasts a NOK-message, which again triggers an online
optimization step. This analysis-optimization loop is repeated until a working system
configuration is found, i.e. no NOK message occurs for a sufficiently long amount of
time (time out), or until a certain number of unsuccessful optimization steps have been
performed.

Algorithm 2 k-th Online Resource Optimization Step

INPUT: CPU C, tasks t; .. .t, mapped on C with response times ry . .. r,, constrained paths Py ... P,, with deadlines
D; ...D,, and end-to-end response times R1 ... R,
histories Hy = {H1,..., HF ™'}, Hy = {HE, ..., HETY,
where ] = {[pls? . rpl” ], [pls’ o ,rpl ]}
’ 7'in zi 7Tl7' mil

history depth hgeptn
OUTPUT: Priority assignment forty . . . t,
1: for (i = 1tom)do
2 rpliC = RlD;f%
3 for (j = 1ton)do
4 if (t; € P;) then
5 pls;‘"i = %
6: add [pls ;, rpl] to H%
7. for (i = 1ton)do
8 relevance; = 1
9 for (j = k downto k — hgeper, + 1) do
0 for (¢ = 1to s;)do
1 relevance; = relevance; x (1 + plsf Tq) x (1+ rpliq)

10:
l .

12: assign highest priority to process with highest relevance, etc.

Algorithm 2 heuristically determines the “importance” of each task on the considered re-
source and distributes the priorities accordingly. Important values included into the im-
portance evaluation are the process latency share (pls), denoting the share of the process
response time on the overall path latency, and relative path lateness (rpl), denoting the
percentual lateness of a path, i.e. the percentage by which a path misses its deadline (neg-
ative lateness means the response time of the path is inferior to its deadline). Additionally,
Algorithm 2 uses a history to “average” the task importance over several iterations of the
optimization.

At first glance Algorithm 2 seems like a heuristic divide-and-conquer algorithm determin-
ing local optima and combining these with the hope to achieve a globally good solution.
However, this is not fully true. Algorithm 2 heuristically evaluates the local impact of
tasks and resources on global timing properties. Therefore, it rather represents a heuristic
global optimization algorithm, which can easily be distributed to multiple resources.

6 Case study

In this section we take the example system shown in Figure 1 as case study to demonstrate
the algorithms proposed in the previous sections.



[ Path [ welat. [ OK | l Path [ welar. T OK ] | Path [ welar. T OK ]

Sens — Act 707.4 v Sens — Act 861.9 X Sens — Act 795.8 v/
Cam — Vout 392.8 v Cam — Vout 484.7 v/ Cam — Vout 1067.7 V4
Sin — Sout n.a. n.a. Sin — Sout 2639.9 X Sin — Sout 509.1 v
(a) latencies before integration (b) latencies before optimization (c) latencies after optimization

Table 2: Latencies before and after integration and optimization

Suppose the filtering application consisting of the path S;,, — S, shown at the bottom
of Figure 1 is to be integrated into the system. In order to not compromise any timing
properties of the applications already running on the system, the tasks of the application
are assigned the lowest priorites on the respective resources. This is already reflected in
Table 1.

Integration of the additional functionality into the model triggers online analysis and an
acceptance test as previously described. Online analysis detects that timing constraints of
the new application as well as a constraint of the old application are violated (see Table 2),
hence the acceptance test fails and broadcasts a NOK-message through the system.

If the system is in self-adaptation mode, this triggers an online optimization step, which
may find a different configuration of the system for which no path constraints are violated.
In this case, optimization yielded the following priority assigment leading to a working
system after 3 optmization steps. CAN: C5 > Cy > Cy > C; > Cy > C3, ARM:
Ts > Tg > T1, DSP: T > Ty, PPC: T5 > T5, [J,CZ To > Ts.

7 Conclusion

In this paper we presented a new methodology introducing self-awareness and self-adaptation
with respect to real-time constraints into complex distributed embedded systems. The am-
bition of our approach is to increase system robustness, flexibility, and extensibility with-
out explicit engineering effort. We motivated and demonstrated our approach by means of

a small but realistic case study.
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