
A Formal Approach to Multi-Dimensional Sensitivity Analysis of
Embedded Real-Time Systems

Razvan Racu, Arne Hamann, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig, Germany

{racu|hamann|ernst}@ida.ing.tu-bs.de

Abstract

System robustness is a major concern in the design of
efficient and reliable state-of-the-art heterogenous embed-
ded real-time systems. Due to complex component in-
teractions, resource sharing and functional dependencies,
one-dimensional sensitivity analysis cannot cover all effects
that modifications of one system property may have on sys-
tem performance. One reason is that the variation of one
property can also affect the values of other system proper-
ties requiring new approaches to keep track of simultaneous
parameter changes. In this paper we present a heuristic
and a stochastic approach suited for the multi-dimensional
sensitivity analysis of large heterogenous embedded systems
with complex timing constraints.

1 Introduction

The robustness of an architecture to changes is a major

concern in embedded system design. Robustness is impor-

tant in early design stages to identify if and in how far a sys-

tem can accommodate later changes or updates or whether

it can be reused in a next generation product. In this paper

we determine robustness as a ”performance reserve”, the

slack in performance before a system fails to meet timing

requirements. This is measured as design sensitivity.

First sensitivity analysis approaches known from liter-

ature are restricted to very simple example systems, like

single-processor systems with purely periodic tasks and

deadlines smaller than period. This is not a limitation of

these approaches, but, at the time they came out, this was

the level of technology in the area of real-time systems.

Meanwhile, the uni-processor system architectures were

replaced by heterogeneous multi-processor platforms with

large numbers of parameters and properties, and very com-

plex dependencies and timing constraints. Therefore, the

formal methods presented in [7, 3] could not be adopted for

such systems.

Instead, new approaches were proposed, based on dif-

ferent performance analysis methods aware of system level

dependencies and requirements [5, 6]. In spite of their

high feasibility and adaptability, these approaches can only

consider variations of only one system property at a time.

Therefore, they have applicability only for totally indepen-

dent system components, as an aid to reduce the design

space, or when investigating components leading to perfor-

mance bottlenecks.

In this paper we describe two alternative approaches for

the multi-dimensional sensitivity analysis of different pa-

rameters of large distributed heterogeneous real-time sys-

tems. First, we motivate the importance of the multi-

dimensional sensitivity analysis for the design process of

state-of-the-art real-time systems. Afterwards, in Sec-

tions 3.1 and 3.2 we describe two methods for multi-

dimensional sensitivity analysis. In Section 4 we present

a set of experiments carried out on an embedded real-time

system example. Finally, we compare the two methods and

we draw the conclusions.

2 System design challenges

Due to complex system dependencies and global tim-

ing constraints, design sensitivity is quite unpredictable, es-

pecially in an environment with suppliers and integrators,

where design data are often not fully available. The sys-

tem designer can easily miss the system bottlenecks, and

finding conforming system configurations might be a hard-

to-accomplish task.

The system presented in Figure 1 contains two indepen-

dent subsystems integrated via a network (BUS). The signal

processor (DSP) periodically executes a filter task (T3) that

sends data at completion over channel C3 on the bus to the

IP1 component. The sensor Sens sporadically communi-

cates via the same bus with the control task (T1) mapped

on CPU. On CPU is additionally executed a periodic task

MDSP

DSP IP1MIPIP2

HW
MCPU

CPUSens

C3BUS C2C1

T2T1

T3

Figure 1. Multi-processor embedded system

(T2) that sends data over channel C2 to the hardware com-

ponent HW. On both, CPU and BUS is assumed a static

priority preemptive arbitration policy. For each functional

path is constrained a maximum end-to-end delay that the

system has to satisfy in order to assure the proper function-

ality. Obviously, the interference of the logical communica-

tion channels C1, C2, C3 on BUS and of the tasks T1, T2 on

CPU leads to complex timing dependencies between the el-

ements of different communication paths. These dependen-

cies must be captured by the system-level analysis model.

Starting from an architecture description, the applica-

tion is mapped to components and communication links,

thereby deriving first system timing properties. These in-

clude task execution times, communication times, models

describing the execution requests of the single tasks, etc.

These parameters together with other asserted specifications

as for resource sharing, memory management, communica-

tion strategies, are used to build up the first performance

model of the proposed system.

The heterogeneity of the scheduling environments, the

complex hardware and software interactions, the large set

of constraints, made system-level performance verification

to become one of the major issues in the design of embed-

ded systems. Since we assumed that the initial system con-

figuration is not entirely or finally specified, variations of

system properties may occur at any step during the design

process. Therefore, the designer must be supplied with ad-

ditional information concerning the robustness of different

system configurations.

In this context, some issues need to be investigated in or-

der to guarantee high system flexibility. At first, one must

identify the system properties that may change during later

design steps. These are usually task execution times, the

parameters characterizing the activation models, communi-

cation volumes, the operational speed of the processing ele-

ments, the bandwidth of the communication resources, etc.

For these parameters it is necessary to determine the max-

imum variation of their values that is permitted by the set

of constraints. The sensitivity of a system property is in-

versely proportional to the available slack of that property,

the smaller the available slack, the higher the sensitivity.

The flexibility of a property is defined as the inverse func-

tion of its sensitivity. In [5] we presented a sensitivity anal-

ysis framework for different system parameters assuming

different performance metrics.

In that paper we introduced an analysis approach that

combines a set of formal equations with a binary search

technique, in order to determine the variation limits of dif-

ferent system properties. We described the algorithms for

task execution times, processor speeds, bus throughputs and

input data rates. However, the proposed technique can only

consider variations of only one parameter at a time. Such in-

formation is of major importance when looking for the per-

formance bottlenecks of the system, or when dealing with

totally independent system parameters, like activation mod-

els at system inputs, isolated tasks, or protected IP compo-

nents.

However, in most cases, the system parameters share

common properties such that modifications of one param-

eter typically imply variations of other parameters, as well.

For example, consider the system presented in Figure 1: as-

sume that the amount of data sent by sensor Sens increases.

This leads to a larger communication time of channel C1,

but, as a consequence results in a larger processing time of

task T1. Therefore, considering only the variation of the

communication time of C1, without taking into account the

resulting variation of the execution time of T1, may lead

to constraint violations, and thus, to faulty system config-

urations. Similar examples are the dependencies between

the computation tasks T2 and T3, and the communication

channels C2 and C3, respectively.

Since the dependency is often not explicitly formulated

or not known in detail, it is helpful to see the influence of

one system parameter on the sensitivity of another, possi-

bly dependent parameter. Figure 2(a) shows the variation of

the available slack of the execution demand of T1 (Y-axis)

under different discrete values of the worst-case communi-

cation time of C1 (X-axis). We observe that for values of

WCETC1 (worst-case execution/communication time) be-

tween 17.5 and 40.0, the available slack of the execution

time of T1 is constant. For values of WCETC1 larger than

40, the flexibility of WCETC1 decreases piecewise linearly

with the slope sC1−T1 ≈ −1.2.

A second type of dependencies are between system com-

ponents sharing common resources, like tasks T1 and T2 on

CPU, or channels C1, C2 and C3 on BUS. Obviously, be-

tween the execution or communication times of these tasks,

there exist a load dependency as a result of the shared uti-

lization of the hardware resources. Figure 2(b) shows the re-

lation between the worst-case execution demand of task T2

and the available slack of the execution time of T1. As it can

be observed, for values of WCETT2 between 10.0 and 24.0,

the flexibility of WCETT1 linearly decreases with the slope

(a) WCETC1
− WCETT1

(b) WCETT2
− WCETT1

Figure 2. System parameters with functional and non-functional dependencies

sT2−T1 ≈ −1.0. This effect is explained by the limited ser-

vice capability of CPU. If WCETT2 exceeds 24.0, then the

flexibility of WCETT1 drastically decreases with the slope

s′T2−T1
≈ −5.0. This characteristic is given by a predefined

constrained delay along the path T2 − C2 − HW.

The information provided by these charts help the de-

signer to keep the system within the required performance

bounds, while modifying the initial specification. In this

paper we focus on two algorithms to compute the flexibil-

ity of various system parameters assuming the simultaneous

variation of other system parameters.

3 Multi-dimensional sensitivity analysis

In this section we introduce two multi-dimensional anal-

ysis techniques to compute the system robustness assum-

ing simultaneous variations of a set of system properties.

Section 3.1 describes a heuristic algorithm that combines a

user-controled search algorithm with a binary search tech-

nique. The method is optimized for the analysis of simulta-

neous variations of two system parameters. For the analysis

of simultaneous variations of more than two system parame-

ters, we present a stochastic approach based on evolutionary

algorithms.

3.1 Search-based analysis

The main idea of Algorithm 1 is a systematic selection of

a set of values for the base parameter, Px. For each selected

value of Px is calculated the available slack of the target pa-

rameter Py, using the algorithms presented in [5]. The val-

ues of the base parameter (VPx) are searched within a closed

interval defined by its initial value (Vinit
Px) and the max-

imum/minimum value allowed for that parameter (Vext
Px).

The latter is determined by applying the one-dimensional

sensitivity analysis (line 2)[5]. Lines 3 and 4 return the

available slacks of the target parameter corresponding to the

extreme values of the base parameter. The bounding pairs

and all other pairs of type (VPx,SPy) computed during anal-

ysis, are added to map MPx,Py.

Function computeSlack(Py,VPx) calculates the flexi-

bility of Py considering the system configuration with VPx

defined as value for Px. The main function of the algorithm

is depthSearch called at line 7, explained in detail in the

next section.

Algorithm 1 analyzeParameterPair

INPUT: (Px, Py), the parameters to be analyzed.

OUTPUT: MPx,Py, a set of points of type (VPx,SPy).

1: get Vinit
Px , the current value of Px;

2: compute Vext
Px , the largest variation of Px value;

3: Sinit
Py = computeSlack(Py,Vinit

Px);

4: Sext
Py = computeSlack(Py,Vext

Px);

5: add (Vinit
Px ,Sinit

Py) to MPx,Py;

6: add (Vext
Px ,Sext

Py) to MPx,Py;

7: depthSearch(1,Vinit
Px ,Vext

Px ,MPx,Py);

8: return MPx,Py;

3.1.1 Depth search

The function depthSearch described in Algorithm 2 di-

vides the search interval in half, and computes the flexibility

of the target parameter for the system configuration assum-

ing the middle value of the interval assigned to the base

parameter. The pair determined by this value and the corre-

sponding slack of the target parameter is added to MPx,Py.

Function depthSearch is recursively applied to the left-

half and right-half intervals. The recursion terminates if at

least one abort condition defined in function abortCheck()
holds. The abort conditions are thoroughly presented in

Section 3.1.2.

Algorithm 2 depthSearch

INPUT: depth, the current search depth; V left
Px and Vright

Px ,

the bounds of the search interval; MPx,Py the set of an-

alyzed points.

1: if abortCheck(depth,V left
Px ,Vright

Px ,Sleft
Py ,Sright

Py)

then
2: stop search;

3: Vmid
Px = (V left

Px + Vright
Px)/2;

4: Smid
Py = computeSlack(Py,Vmid

Px);

5: add (Vmid
Px ,Smid

Py) to MPx,Py;

6: depthSearch(depth + 1,V left
Px ,Vmid

Px ,MPx,Py);

7: depthSearch(depth + 1,Vmid
Px ,Vright

Px ,MPx,Py);

3.1.2 Smart step

The abort conditions consist of two user controlled tests and

one abort test determined by the type of the analyzed pa-

rameters and their behavior. The user can define the max-

imum depth of the search algorithm (depthmax) that repre-

sents the largest number of halving-levels performed by the

depthSearch function. If depthmax is met, the search is

aborted (lines 1 and 2 in Algorithm 3). For a depth equal

to depthmax the maximum number of analyzed points is

2depthmax .

Algorithm 3 abortCheck

INPUT: depth, the current search depth; depthmax, the

maximum depth; V left
Px and Vright

Px , the bounds of the

search interval; Sleft
Py and Sright

Py , the available slack of

Py corresponding to V left
Px and Vright

Px ; resolution, the

minimum size of the search interval.

OUTPUT: a boolean value

1: if (depth > depthmax) then
2: return true;

3: else if
∣∣∣V left

Px − Vright
Px

∣∣∣ < resolution then
4: return true;

5: else if (Sleft
Py = Sright

Py) then
6: return true;

7: else
8: return false;

A second parameter controlling the search algorithm is

the minimum size of the search interval. If the resolution of

the search domain becomes smaller than resolution, no fur-

ther points are investigated (lines 3 and 4 in Algorithm 3).

This test dominates the previous condition such that, for

initially small search domains the number of investigated

points can be significantly reduced.

The third abort condition is considered only if the rela-

tion between the analyzed parameters is monotonic in the

complete analyzed domain. In such a case, if the slacks

of the target parameter corresponding to the values of the

investigated interval bounds are equal, no further search is

required in that interval.

This condition can be safely applied for the sensitivity

analysis of task execution times or channel communication

times, as proved by Lemma 1. In [5, 4], we proved the

monotonic relation between the execution time interval of a

task and the available system slack.

Lemma 1 Consider the execution times of two tasks, Px
and Py, as the base and the target parameters of the two-
dimensional sensitivity analysis. The initial execution time
of the base task is [BCETPx; WCETPx]. Assume that for
two values of WCETPx, V left

Px and Vright
Px , the target pa-

rameter has the values Sleft
Py and Sright

Py , such that

Sleft
Py = Sright

Py (1)

Then, for an arbitrary value Vin
Px within interval

[V left
Px ;Vright

Px], the following equation is valid:

Sin
Py = Sleft

Py = Sright
Py (2)

Proof Assume that

Sin
Py > Sleft

Py and Sin
Py > Sright

Py (3)

Since the algorithm presented in Section 3.1 investigates

only the upper bound of the execution time interval of Px,

i.e. the WCETPx values, by computing the slack Sin
Py cor-

responding to Vin
Px , it is guaranteed that Sin

Py is valid for all

values VPx within the interval [BCETPx;Vin
Px].

Because [BCETPx;V left
Px] ⊂ [BCETPx;Vin

Px], Equa-

tion 3 says that there is at least one value in interval

[BCETPx;Vin
Px] that determines a slack SPy smaller than the

minimum slack computed for that interval. Hence, Equa-

tion 3 is never valid.

A similar proof can be carried out for the case

Sin
Py < Sleft

Py and Sin
Py < Sright

Py (4)

Since [BCETPx;Vin
Px] ⊂ [BCETPx;Vright

Px], results

that there is at least one value in [BCETPx;Vright
Px] that

leads to a slack SPy smaller than the lowest slack calculated

for that interval. Therefore, Equation 4 could not be valid.

Hence, if Equation 1 is valid, all values between V left
Px

and Vright
Px determine a slack for Py equal to Sleft

Py and

Sright
Py .

Thus, if Equation 1 holds for two values of the base pa-

rameter, then no further search is required within the inter-

val determined by these values. Such a scenario can be ob-

served in Figure 2(a) for values of WCETC1 between 17.5

and 40.5.

However, not all analyzed parameters have a mono-

tonic relation. For instance, changing processor speeds or

bus throughputs may lead to anomalous behavior. Such

a scenario can be observed in Figure 3, showing the two-

dimensional sensitivity analysis of CPU’s speed and the

throughput of BUS. In that case all intermediate points have

to be considered, even though there exists two values for the

base parameter for which the corresponding slacks of the

target parameter satisfy Equation 1.

Figure 3. Resource speed anomaly

3.2 Stochastic analysis

In this section we present a stochastic approach for

multi-dimensional sensitivity analysis. It is based on a pre-

viously published design space exploration framework [2],

which uses multi-dimensional evolutionary search tech-

niques [1, 8].

We first give a short description of how we use the explo-

ration framework to perform multi-dimensional sensitivity

analysis (Section 3.2.1). We then give details on several im-

portant aspects: search space encoding (Section 3.2.2), the

creation of an initial population used as starting point for

the exploration (Section 3.2.3), and the variation operators

used to guide the exploration (Sections 3.2.4 and 3.2.5).

3.2.1 Analysis idea

Classical applications of exploration frameworks for com-

plex distributed systems assume a variation of system pa-

rameters like scheduling, mapping, etc. to optimize criteria

including timing, power consumption and buffer sizes.

In this paper we utilize design space exploration in a dif-

ferent way in order to cover multi-dimensional sensitivity

analysis. Instead of modifying the system parameter con-

figuration during exploration we modify system properties

subject to sensitivity analysis, i.e. worst-case core execu-

tion times, CPU clock rates, input data rates, etc. Thereby,

the optimization objectives are, depending on the consid-

ered system properties, either the maximization or the min-

imization of the property values under the restriction that

the system must stay functional, i.e. the configuration re-

sults in a feasible solution.

For instance, in the case of a three-dimensional WCET
sensitivity analysis of three tasks, the search space consists

of the WCET assignment for those tasks and the optimiza-

tion objectives are the maximization of the latter.

Note that our exploration framework performs a pareto-

optimization and that the obtained pareto-front corresponds

to the sought-after sensitivity front representing the bound-

ary between feasible and non-feasible system configura-

tions.

3.2.2 Search space encoding

A system property value combination considered during the

stochastic multi-dimensional sensitivity analysis is directly

encoded as vector containing one real number entry for each

considered property. In the following we refer to such a

vector as individual.
For instance, in the case of a three dimensional sensi-

tivity analysis for the system properties P1, P2 and P3, an

individual A is represented as three dimensional vector, i.e.

A = (a1, a2, a3).

3.2.3 Initial population

Algorithm 4 describes the creation of the initial population.

In the first part (lines 1 to 3) it uses one-dimensional sen-

sitivity analysis [5] to calculate the available slack for each

considered system property. These information is used to

generate individuals for the initial population representing

extreme points of the sought-after sensitivity front.

In the second part of the algorithm (lines 4 to 7) the rest

of the initial population is randomly generated. Thereby,

the individuals are uniformly distributed within the search

space determined by the initial and the extreme property

values.

3.2.4 Crossover operator

The crossover operator described in Algorithm 5 imple-

ments a heuristic strategy to converge towards the sensi-

tivity front, i.e. the boundary between working and non-

working systems. It takes as input two parent individuals A
and B and generates two offsprings C and D by using the

generalized mean function described in Definition 1.

Algorithm 4 Initial Population

INPUT:
System properties P1, . . . ,Pn

Initial property values Vinit
P1

, . . . ,Vinit
Pn

Initial population size α > n
OUTPUT: Initial population I

1: for (i = 1; i <= n; i = i + 1) do
2: Vext

Pi
= computeSlack(Pi)

3: add vector (Vinit
P1

, . . . ,Vext
Pi

, . . . ,Vinit
Pn

) to I
4: while (|I| < α) do
5: for (i = 1; i <= n; i = i + 1) do
6: Choose random

Vrand
Pi

∈ [
min

(Vinit
Pi

,Vext
Pi

)
, max

(Vinit
Pi

,Vext
Pi

)]

7: add vector
(Vrand

P1
, . . . ,Vrand

Pn

)
to I

Definition 1 (Generalized Mean) For positive numbers
x1, . . . , xn the k-th mean is defined as follows:

Mk(x1, . . . , xn) = k

√√√√ 1
n

n∑
i=1

xk
i

Special cases: k → −∞ : min (x1, . . . , xn); k = −1:
harmonic mean; k → 0: geometric mean; k = 1:
arithmetic mean; k = 2: quadratic mean; k → ∞ :
max (x1, . . . , xn).

Figure 4 shows the behavior of the generalized mean

function for the 2-dimensional case. A and B represent two

points we want to ”crossover”. If k = 1 is chosen we obtain

the arithmetic mean between A and B. This corresponds

to a linear characteristic of the sensitivity front, which we

observe for instance in the case of load dependent system

properties (see Figure 2(b)). For the case that the crossover

operator chooses k < 1 a convex characteristic of the sen-

sitivity front is approximated, whereas k > 1 leads to the

approximation of a concave characteristic.

Note that the crossover operator automatically ensures

that the extreme values Vinit
Pi

and Vext
Pi

determined during

the creation of the initial population (Section 3.2.3) for each

considered system property Pi are not violated. This im-

proves the exploration process since the number of gener-

ated invalid system property assignments, i.e. due to re-

source overload or constraint violation, is reduced.

3.2.5 Mutation operator

The described crossover operator leads to the local conver-

gence of the obtained property values towards the sought-

after sensitivity front. In other words, it approximates the

sensitivity front ”between” individuals considered by the

evolutionary algorithm.

Figure 4. Generalized mean between A and B
for different k

Algorithm 5 Crossover operator

INPUT: A = (a1, . . . , an) and B = (b1, . . . , bn)
kmin and kmax with kmax ≥ kmin

OUTPUT: C = (c1, . . . , cn) and D = (d1, . . . , dn)

1: Choose random k1 ∈ [kmin, kmax]

2: Choose random k2 ∈ [kmin, kmax]

3: for (i = 1; i <= n; i = i + 1) do
4: if (k1 = 0) then
5: ci =

√
ai × bi

6: else
7: ci = Mk1 (ai, bi)

8: if (k2 = 0) then
9: di =

√
ai × bi

10: else
11: di = Mk2 (ai, bi)

Of course, it is possible that the variety of the initial pop-

ulation is insufficient to cover the whole sensitivity front by

only using the crossover operator. Additionally, the explo-

ration may get stuck in sub-regions of the front, without the

possibility to reach other parts. Therefore, we introduce a

mutation operator, enabling the evolutionary search to break

out these sub-regions and to cover unexplored parts of the

sensitivity front.

The mutation operator is described by Algorithm 6. It

takes as input one parent individual, from which it cre-

ates one offspring by randomly increasing or decreas-

ing each property value by a bounded random percentage

percentmax. Additionally, the mutation operator takes as

input the minimum and the maximum allowed values for

each considered system property which are respected dur-

ing mutation. Note that these values correspond to Vinit
Pi

and Vext
Pi

calculated during the creation of the initial popu-

lation (Section 3.2.3).

Algorithm 6 Mutation operator

INPUT:

A = (a1, . . . , an)
minimum values amin

1 , . . . , amin
n

maximum values amax
1 , . . . , amax

n

percentmax < 1
OUTPUT: B = (b1, . . . , bn)

1: for (i = 1; i <= n; i = i + 1) do
2: Choose random percentage p ∈]0, percentmax]

3: Choose random boolean bool

4: if (bool) then
5: bi = min (ai × (1 + p) , amax

i)

6: else
7: bi = max

(
ai × (1 − p) , amin

i

)

4 Example

We presented two algorithms for the multi-dimensional

sensitivity analysis of different system parameters. In this

section we introduce and discuss a set of experiments on

the embedded real-time system presented in Figure 5. In

Section 4.2 and 4.3 we show the results obtained using the

heuristic and the stochastic methods, respectively. In Sec-

tion 4.4 we compare the two approaches and we present a

set of numbers showing the complexity of these algorithms.

MDSP

DSP
IP1MIPIP2

HW
MCPU

CPU

C3BUS C2C1

T2T1

T3

fmax=1,7kHz, s=8kB

f=140kHz, s=1kB

8kB 32 (256 + 6) byte

1kB 1 (1024 + 6) byte

3kB 24 (128 + 6) byte

f=20kHz, s=3kBSens

Figure 5. The initial system configuration

4.1 Set-Up

The actuators There are three actuators: the sensor spo-

radically sends data blocks of 8kB size to T1, with a max-

imum sending frequency of 1.66kHz, which corresponds

to a sporadic event model with a minimum sporadic pe-

riod of 1/1.66kHz = 600μs. Process T2 is periodically

activated by the RTOS (real-time operating system) on the

CPU with a period of 1/20kHz = 50μs and sends 3kB of

data at completion. The signal processing application T3 on

DSP has a sampling frequency of 10kHz, corresponding to

a sampling period of 10μs. T3 sends 1kB of data at the end

of each execution.

The network Instead of sending the complete data block,

the data packets are fragmented to avoid too long block-

ing times. Each 8kB data block from Sens is split into

32 packets of 262byte each, 256bytes plus 6bytes protocol

overhead–address, length, and CRC. The 3kB blocks from

T2 are split into 24 packets of (128+6) = 134bytes. Chan-

nel C2 has a higher priority than channel C1. The highest-

priority channel C3 does not split the DSP data packets, but

only adds the 6byte protocol information. The initial net-

work speed is 480MB/s.

The overall average network load LBUS is:
LBUS = LSens−CPU + LCPU−HW + LDSP−IP1

= 14MB/s + 62.4MB/s + 103.2MB/s
= 179.6MB/s

Execution and communication times The initial execu-

tion and communication times of the tasks on CPU and of

the channels on BUS are assumed constant. The DSP ap-

plication T3 has a variable execution time depending on the

data to be processed. The execution and communication

times are listed in Table 1.

task execution time channel communication time

T1 250 C1 17.50

T2 10 C2 6.50

T3 [2;4] C3 2.15

Table 1. Execution and communication times

Resource scheduling The CPU and BUS are both sched-

uled according to a static priority preemptive policy. Chan-

nels C3 and C1 have on BUS the highest and the lowest pri-

ority, respectively. On CPU, task T1 has a priority higher

than T2. Due to the non-preemptive packet communication

on the network and the fragmentation of the data blocks,

blocking times are calculated for the higher priority chan-

nels.

Real-time constraints The real-time behavior of the ap-

plication is given by a set of hard real-time constraints de-

fined for the three functional paths of the system presented

in Figure 5. The constraints are listed in Table 2.

functional path max delay

Sens − C1 − T1 400μs
T2 − C2 − HW 300μs
T3 − C3 − IP1 10μs

Table 2. Real-time constraints

4.2 Search-based analysis

We grouped the task pairs in three groups depending on

the dependencies between them. The first group are the

tasks with functional dependencies, i.e, the tasks belong-

ing to the same dependency path. The obtained results are

shown in Figure 6. The increase of the worst-case execution

time of C3 leads to a higher jitter at the input of C3 that may

generate transient overload on the communication resource.

Therefore, the communication time of C3 must be adapted

accordingly. That is why the slack of C3 decreases linearly

with the increase of WCETT3.

The second group of task pairs are the tasks with load

dependencies, i.e. tasks or channels mapped on the same

resource. Figure 7 shows the results obtained for different

pairs of communication channels mapped on BUS. Obvi-

ously, when increasing the communication volume of one

channel, the load on the network increases too. Thus, the

available slack of all other channels is reduced.

The last group are the tasks with no direct dependency,

i.e tasks that are mapped on different resources and with-

out any functional dependency between them. Figure 8

shows the two-dimensional sensitivity results obtained for

the worst-case execution times of different pairs of inde-

pendent tasks. As it can be observed in Figure 8(b), since

tasks T3 and T1 are totally independent, variations of the

worst-case execution time of T3 does not affect the avail-

able slack of T1. Quite similar are the results obtained for

the task-pair T2 − C3. However, since both tasks T2 and C3

have a functional and a load dependency with C2, they are

not totally independent. Therefore, variations of WCETT2

lead to slight variations of the available slack of C3.

The second type of investigated parameters are the speed

of the processing and communication elements. Figure 9

shows the two-dimensional sensitivity analysis of the re-

source speed factors. Since the DSP and the CPU does

not share common application paths, the flexibility of the

DSP’s speed is independent of the speed of CPU, as shown

in Figure 9(a). Largely, are also the speeds of DSP and

BUS (Figure 9(b)). A stronger correlation exists between

the speed of CPU and the speed of BUS as shown in Fig-

ure 3 at page 5. This is due to the two application paths

traversing these resources.

4.3 Stochastic analysis

Figures 10(a) and 10(b) show the three-dimensional sen-

sitivity analysis results obtained using the stochastic ap-

proach presented in Section 3.2. Note that for both analyses

our exploration framework generated 100 generations with

each 200 individuals, taking approximately 5 minutes on a

2.00GHz Athlon64 standard PC.

In both figures we observe that the two-dimensional pro-

jection of the sensitivity front on the T2 − C3 plan accu-

rately approximates the curve in Figure 8(a) obtained using

the heuristic approach.

4.4 Accuracy and complexity

Figure 11 shows a comparison of the results obtained us-

ing the proposed approaches. In the legend, the numbers

assigned to the stochastic algorithm are the number of gen-

erations and the number of considered individuals per gen-

eration. For the search-based algorithm we used a search

depth equal to 5.

Figure 11. Comparison of the two approaches

Table 3 shows the run-times (in ms) of the search-based

and stochastic algorithms. The search-based algorithm was

applied on two set of properties, one with monotonic re-

lation (w/s step) and the other one with non-monotonic

relation (w/os step). The experiments were carried out

on a 2.00GHz Athlon64 standard PC. The complexity of

the search-based algorithm is defined by the search-depth,

while the complexity of the stochastic algorithm is deter-

mined by the number of generations and the number of in-

dividuals per generation.

search-based stochastic

depth w/ s step w/o s step (#gen;#ind) WCET

3 1469 1526 (10;50) 16806

5 4334 4580 (30;50) 50327

7 15906 17924 (50;50) 85141

Table 3. The run-times of the algorithms (ms)

5 Conclusion

Design robustness, measured as sensitivity to design pa-

rameter variations, is a key concern in embedded system

design. In this paper we presented a full-search and a

stochastic approach for multi-dimensional sensitivity anal-

ysis. The full search approach provides better performance

for 2 dimensions than the stochastic approach, but is limited

to monotonous functions and cannot be easily extended to

more than two dimensions.

(a) WCETT3
− WCETC3

(b) WCETT2
− WCETC2

Figure 6. Tasks with functional dependencies

(a) WCETC1
− WCETC2

(b) WCETC3
− WCETC1

Figure 7. Tasks with load dependencies

(a) WCETT2
− WCETC3

(b) WCETT3
− WCETT1

Figure 8. Tasks with no direct dependency

(a) SpeedDSP − SpeedCPU (b) SpeedDSP − SpeedBUS

Figure 9. Resource speed factors

(a) WCETC3 − WCETT2 − WCETC1 (b) WCETC3 − WCETT2 − WCETT1

Figure 10. Three-dimensional WCET sensitivity

References

[1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA —

a platform and programming language independent interface

for search algorithms. http://www.tik.ee.ethz.ch/pisa/.
[2] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design

space exploration and system optimization with SymTA/S -

Symbolic Timing Analysis for Systems. In Proc. 25th Inter-
national Real-Time Systems Symposium (RTSS’04), Lisbon,

Portugal, Dec. 2004.

[3] S. Punnekkat, R. Davis, and A. Burns. Sensitivity analysis of

real-time task sets. ASIAN, pages 72–82, 1997.

[4] R. Racu and R. Ernst. Scheduling anomaly detection and op-

timization for distributed systems with preemptive task-sets.

In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), San Jose,

CA, USA, 2006. Accepted for publication.

[5] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analy-

sis in real-time distributed systems. In Proceedings of the 11th

IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), San Francisco, CA, USA, 2005.

[6] J. Regehr. Scheduling tasks with mixed preemption relations

for robustness to timing faults. In Proceedings of the 23rd
IEEE Real-Time Systems Symposium (RTSS), Austin,Texas,

December 2002.
[7] S. Vestal. Fixed-priority sensitivity analysis for linear com-

pute time models. IEEE Transactions on Software Engineer-
ing, 20(4), april 1994.

[8] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving

the Strength Pareto Evolutionary Algorithm for multiobjec-

tive optimization. In Proc. Evolutionary Methods for Design,
Optimisation, and Control, pages 95–100, Barcelona, Spain,

2002.

