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Abstract

Data caches significantly reduce the average memory
access time and are necessary for an efficient design. Due
to its direct dependency on input data is is difficult to predict
the worst case timing behavior, which is crucial for a reli-
able system. While simulation is too time-consuming, cur-
rent worst case execution time approaches focus on instruc-
tion caches only. Current approaches to data cache analysis
restrict cache behavior to predictable data accesses or clas-
sify input dependent memory accesses as non-cacheable.

In this paper we propose a worst case timing analysis
for direct mapped data caches that classifies memory ac-
cesses as predictable or unpredictable. For unpredictable
memory accesses, a novel analysis framework is proposed
that tightly bounds the impact on the existing cache con-
tents as well as cache behavior of unpredictable memory
accesses themselves. For predictable memory accesses, we
use a local cache simulation and data flow techniques. Fur-
thermore, we describe an implementation of the analysis
framework. Several experiments demonstrate its applica-
bility. The approach targets real-time software verification
but is also useful for design space exploration.

1 Introduction

While processor speed is steadily increasing, back-

ground memory access time remains slow. Caches can sig-

nificantly reduce the average memory access time, leading

to a total shorter execution time. Timing behavior is becom-

ing a serious problem in many embedded systems. In soft

and hard real-time systems, timing guarantees are necessary

to verify the functional behavior as well as to efficiently use

hardware resources.

Current practice is cache simulation to determine the

typical timing behavior, which is unsafe because not all pro-

gram paths can be covered. A full coverage would require

an exponential number of test data and would be too time

consuming. Therefore, only a subset of all program paths is

tested. An alternative approach is static timing analysis that

delivers safe bounds of the worst case execution time. In the

last decade, many techniques have been proposed for tasks

running on a single processor architecture with a complex

design, including pipelines [19], caches [14], and branch

predictors [2].

There are several approaches to make caches more pre-

dictable and efficient. One approach is to partition the cache

sets and to reserve these partitions for individual tasks [12].

The advantage is that cache lines do not have to be reloaded

after interrupts and between consecutive executions of the

same task. Also, cache behavior becomes (partly) orthog-

onal for tasks and therefore more predictable. Task layout

techniques are suggested in [4], which aim at minimizing

the inter-task interference in the instruction cache. Another

approach is to lock frequently used cache blocks. Such

techniques have been investigated in [9] [3] [17]. These

approaches increase area and power cost as they require

larger caches and background memory to become effec-

tive. Therefore, heterogeneous memory architectures with

caches and scratch-pad SRAM have been introduced, like

TriCore, where the scratch-pad can hold frequently used

cache blocks. Compiler techniques for such architectures

have been proposed by [16]. While cache partition and

lock strategies are certainly a very useful add-on to improve

cache predictability and efficiency, they do not solve the

general cache analysis problem in which all tasks share the

entire cache.

For a single task execution, the timing behavior for in-

struction caches has been extensively studied [14] [24].

However, data cache behavior has often been restricted in

static worst case timing analysis. Previous approaches have

focused on predictable memory access pattern, for exam-

ple [6] [21] [18], or have simplified the timing behavior for

input dependent memory accesses [13] [5].

The contribution of this paper is a worst case timing anal-

ysis for data caches that classifies memory accesses as pre-

dictable and unpredictable. For unpredictable memory ac-

cesses we propose a novel timing analysis framework that

tightly bounds the impact on the existing cache contents as
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well as the number of cache misses for unpredictable mem-

ory accesses itself. For predictable memory accesses, we

propose a local cache simulation and data-flow techniques.

As a second contribution, we describe an implementation

of the analysis framework. Finally, we compare the new

approach with a previous approach and cache simulation.

The key benefit of the proposed approach is a re-

targetable analysis framework to verify the timing behav-

ior of data caches that considers input dependent memory

accesses. The framework can be used for design space ex-

ploration as well as system level optimization.

1.1 Related Work

In early work by [8] a heuristic argument of the pigeon-
principle is proposed for direct mapped data caches. We

explain the principle by an example where a memory ac-

cess to an array occurs in a loop with a maximum of 100

iterations. Supposing that the array has ten elements, it can

be concluded that 10 cache misses and 90 cache hits will oc-

cur given the following assumptions: 1.) the entire array fits

in the cache, 2.) the cache is direct mapped and 3.) none of

the array elements are replaced during program execution.

Because none of the array elements are replaced there can

be at most 10 (compulsory) cache misses all other have to

be cache hits.

An integer linear problem (ILP) formulation was pro-

posed by [11] for direct mapped data caches. A cache con-

flict graph is constructed in which each memory address

corresponds to a variable in the equation system. Because

the complexity scales with the data size of arrays, is is un-

clear how efficient this approach will be for larger arrays.

The dependency of index variables and array ranges are as-

sumed to be given. This restricts the application domain to

fully predictable array accesses. Unfortunately, no results

from experiments are presented.

Abstract interpretation is used to predict data cache be-

havior in [5]. A persistence analysis determines the maxi-

mum number of cache blocks that remain in cache. This is

used to calculate a lower bound on cache hits. Value analy-

sis is used to calculate the possible range of array accesses.

For an unpredictable array access, it is assumed that all

cache blocks of an array are accessed, which replace many

other cache blocks. This means, that a single access to an

unpredictable array is modeled as if all elements of the array

would have been accessed. However, only one cache block

can be replaced. The method is only described in theory

without providing experimental results.

Data flow analysis techniques have been applied to data

cache analysis by [22]. The address range of data references

is performed on low-level representation after code genera-

tion and all optimizations. Unknown data references are not

considered and array ranges would have to be annotated by

the user.

A symbolic simulation technique is proposed by [13] to

detect predictable and unpredictable memory accesses. Un-

predictable data structures are tagged as non-cacheable and

consequently always require a cache miss. The main draw-

back is that input dependent memory accesses are classified

as non-cacheable and are treated as always cache miss.

A different approach is to use cache miss equa-

tions(CME). Introduced by [6] and developed by [21], these

CME compute re-use vectors to calculate cache accesses

within loops. It is assumed that all array accesses are affine

functions of loop induction variables and that loops are per-

fectly nested. In [18] the CME-framework is extended to

consider scalar variables and to allow more sophisticated

loop structures. However, the CME frameworks always as-

sume that array index variables do not depend on input data.

1.2 Principle of analysis

The main open problem in data cache analysis is the

timing behavior of unpredictable memory accesses. Trace-

based simulations would be too time-consuming to cover

the worst case. Existing data-cache frameworks exclude in-

put dependency, such as the CME frameworks [6][21][18],

or classify input dependent memory accesses as non-

cacheable [13]. In [5] the impact of unknown data accesses

on the cache contents is simplified by assuming that all el-

ements of an array are loaded to the cache for each array

access. However, only one array element will be loaded to

the cache.

To reduce this overestimation, we classify array accesses

as predictable and unpredictable memory accesses, if the

index expression can be statically computed or not. Each

scalar variable is predictable, because the memory location

is fixed. An unpredictable memory access has two influ-

ences on cache behavior. First, it has an impact on the cur-

rent cache contents by possibly replacing some other cache

block. Secondly, the access itself requires an additional

cache miss, if the element is not in the cache.

For the first impact, a cache miss counter Cm is defined

for each unpredictable memory access. The counter rep-

resents possible replacements of some cache blocks. We

refine this idea, by incrementing Cm only if a useful cache

block can be replaced by some element of the array. A use-

ful cache block is a cache block that contains a data variable

that is used a second time after the unpredictable access oc-

curred. Only these cache blocks will require an additional

cache miss in the future execution.

For the second impact, we bound the number of cache

misses by comparing the array size and the execution counts

as suggested in [8]. The key difference in this approach is

the computation of the set of persistent cache blocks. In [8]

no memory blocks are allowed to be replaced. We apply the
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pigeon-hole principle to those arrays whose elements are all

persistent (e.g. are never replaced by other memory blocks).

For all predictable memory accesses we use local cache

simulation and global data flow analysis. Finally, we set up

an integer linear problem (ILP) to consider predictable and

unpredictable memory accesses. Additional constraints for

the pigeon-hole principle are added to the ILP formulation.

1.3 Framework overview

The analysis framework is shown schematically in fig-

ure 1. The analysis is based on the source code of an ap-

Abstract syntax 
tree generation

Data dependency 
analysis

Memory Mapping
- instructions
- unknown arrays
- single data seq.

Unpredictable
cache accesses 

Predictable
cache accesses

Timing analysis with 
pigeon-hole principle

Source code level

Binary code level

Compiler/Linker

Source code

Map file
Symbol table

ARM
Simulator

Memory
trace

CFG construction 
with single data seq.

Stimuli data

Loop bounds

annotated CFG (mixed representation)

Figure 1. Overview of analysis framework.

plication. An intermediate representation, the abstract syn-

tax tree, is generated from the source code. Based on this

representation, data dependency analysis identifies single

data sequences and a control flow graph is constructed (sec-

tion 2). In a second step, the actual memory addresses are

extracted using the linked object code and are mapped to

the control flow graph (section 3). Then follows a cache

behavior analysis for predictable and unpredictable data ac-

cesses (section 4) and, finally, the timing analysis computes

the worst case program execution path (section 5).

Experimental results are provided in section 6. and sec-

tion 7 concludes the paper.

2 Data dependency analysis

Data cache behavior has been simplified in worst case

timing analysis because of unpredictable data accesses. A

single instruction might access different memory locations

during the execution of a program. In such cases, it is al-

ready difficult to predict which memory locations are ac-

cessed, and it becomes very complicated to decide whether

such accesses are cache hits or misses. However, sometimes

memory locations, for example array elements, are accessed

in a predictable order. Two conditions are necessary: first,

an input data independent control flow and, secondly, input

data independent memory accesses.

We say that a program segment contains a single data
sequence (SDS) if it contains only input independent con-

trol structures and input independent memory accesses. A

program segment is a sequence of basic blocks, in which

basic blocks are the smallest entity of a program [1]. An

example source code is shown in figure 2. The for-loop

in lines 11-12 contains such a SDS, because the condition

i < 100 does not depend on input (or global data) and the

index variable of b[i] does not depend on input data. On the

other hand, the program segment in lines 6-10 do not con-

tain a SDS, because the condition a < 2 depends on global

variable a. Also, the array access in line 9 depends on the

global variable a.

1 int a; // global variable
2 int b[100]; // global array
3 int main(){
4 int i;
5 int k;
6 if (a<2){
7 k = 10;
8 } else {
9 b[a] = 0; // input dependent access

10 }
11 for (i=0;i<100;i++){
12 b[i] = i; // input independet access
13 }
14 return 0;
15 }

Figure 2. Source code example.

In this section we present a methodology to identify SD-

Ses. First, we discuss the proper analysis level in sec-

tion 2.1. Then, we describe how to identify input dependent

control structures in section 2.2 and input dependent mem-

ory accesses in section 2.3. Finally, we construct a control

flow graph with SDS in section 2.4.

2.1 Analysis abstraction level

Single data sequences require input independent control

structures and memory accesses. These properties can be

computed by data dependency analysis which could be per-

formed either on source code or on object code level. A

source code level analysis would be based on a control flow

graph, where nodes contain assignment statements in high

level language. The drawback is that actual memory ad-

dresses cannot be derived because instruction set of the

assembly language, linking information, compiler options

and memory layout are not available. The exact memory

mapping has to be derived in a second step from the ac-

tual binary by disassembling the object code. For a cor-

rect source code correspondence, optimizations beyond ba-
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sic block level are not allowed. An approach to analyze

input-dependency for high level programming language has

been proposed by [7].

As an alternative, data dependency analysis could be ex-

ecuted on object code level where the actual memory layout

information is available. From the object code a control

flow graph can be generated, as suggested in [5][22][11].

However, data dependence analysis is difficult, because of

indirect register addressing and the dependence on the in-

struction set. For example the ARM instruction set contains

conditional instructions, which makes value analysis com-

plicated. Secondly, such an analysis is limited to the ana-

lyzed instruction set only, for every new processor a new

data dependency module would be necessary.

We chose the first alternative, in which the data depen-

dency analysis is done on source code level because it is

hardware independent and value analysis is simpler than on

object code level. The lack of actual memory addresses

is resolved by annotating the control flow graph with the

memory addresses using cache simulation in a second step

(section 3.
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Figure 3. Abstract syntax tree.

For data dependency analysis, an abstract syntax tree

(AST) [1] is generated from the source code program. The

abstract syntax tree is used because it keeps direct corre-

spondence between program segments and the control flow

hierarchy [24]. An AST contains hierarchical nodes rep-

resenting statements and edges that represent the hierarchy

of statements. For a part of the source code of figure 2 a

simplified abstract syntax tree is shown in figure 3. Edges

connect a node with a lower-hierarchy node, for example,

to a then, an else expression, or connect a node to the

next node (n) on same hierarchy level. The for statement

has edges to the init-, condition-, body-, update and next-

expression. An assignment expression contains a left value

(lv), operator (op) and a right value (rv). An array ex-

pression (arExp) has two sub-expressions: the name of the

array (b) and the index expression (i).

2.2 Program path classification

The execution path of a program depends on input data

which makes it difficult to predict precise worst case timing

bounds. But often a program contains only a single feasible

program path. An example is a fast Fourier transformation

(FFT) or a FIR filter algorithm. In such structures the con-

trol flow only depends on the internal state, but not on input

data. For example, a loop with several if-then-else
statements that only depend on the loop iteration variable.

In this case we can use trace-based simulation. In previous

work we have presented a methodology to identify single

feasible paths (SFP)[23] and proposed a timing analysis for

instruction caches [24].

A SFP is determined by analyzing the conditions of each

control structure in the abstract syntax tree. A control struc-

ture that does not contain other hierarchical control struc-

tures is called a SFP, if the condition does not depend on

input data, otherwise it is called a multiple feasible path

(MFP). A control structure with an input independent con-

dition that contains substructures with MFPs is also classi-

fied as a MFP.

The input dependency of conditions is determined by a

symbolic simulation algorithm on the abstract syntax tree.

Each variable is either classified as input dependent or in-

put independent. As the algorithm traverses the tree, the

left value of an assignment is classified as input dependent

if at least one variable on the right value is input depen-

dent. A symbol table stores the classification of each vari-

able. If a node has several predecessors like a then or a

else branch, a variable is also classified as unpredictable

if it contains different values in the symbol tables of the

predecessor nodes. Loops are analyzed twice to propagate

assignment-statements to higher level hierarchic nodes.

if(a<2)

i<100

b[a]=0k=10

i++

i=0

k=b[i] …

…

if(a<2)

b[a]=0k=10

i<100;k=b[i];i++

i=0

…

CFG with program 
path classification

CFG with single data 
sequence

b 1

b 0

CFG with memory 
access classification

1

32

4

5

Figure 4. CFG in different analysis steps.

A control structure is input dependent if it contains at

least one input dependent variable in the condition, other-
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wise it is classified as input independent, and therefore a

SFP. Figure 4 shows a control flow graph (CFG) on the left

side, where the loop nodes are a SFP, because the loop con-

dition does not depend on input data.

2.3 Memory access classification

The prediction of memory accesses for a data cache is

more difficult than for instruction cache behavior because

a single instruction may access a range of memory loca-

tions. To detect single data sequences, data cache mem-

ory accesses are classified as predictable and unpredictable.

Memory accesses by scalar variables and predefined array

accesses are classified as predictable. Otherwise, accesses

are classified as unpredictable.

In section 2.2 we described a symbolic simulation al-

gorithm on the abstract syntax tree to determine the input

dependency of control structures. A similar algorithm can

be used to determine the input dependency of memory ac-

cesses.

Initially, all scalar variables are classified as predictable,

because the memory address is constant. Then the analysis

proceeds as described above, propagating the input classifi-

cation of each variable in the abstract syntax tree.

Instead of using the condition expression, the index ex-

pression of the array access expression determines if the

memory location is input dependent or not. We define a

memory access by an array as predictable if all variables of

the index expression are input independent, otherwise it is

classified as not predictable.

For example, the array expression in line 9 is unpre-

dictable, but the one in line 12 is predictable. The output

of the data dependency analysis is a CFG constructed from

AST which is shown in figure 4 (middle). For each array

variable a boolean variable signals the data dependency. For

example, the assignment b[a]=0 is data dependent (b 1)

but the assignment k=b[i] is not.

For each node a tree traversal algorithm on the AST iden-

tifies whether an array access is predictable or not. Further-

more, the c-lines of each expression are annotated.

2.4 Single data sequence construction

A single data sequence (SDS) is defined by the program

path classification (section 2.2) and memory access classi-

fication (section 2.3): A single feasible path that contains

only predictable data structures is a SDS. An example of a

SDS is shown in figure 4 (right).

At the end of this analysis step, a control flow graph

is available where nodes contain single data sequences or

unpredictable array accesses. In each node it is specified

whether an array access is predictable or not. Our imple-

mented algorithm stores the c-lines as well, but for a better

understanding of the methodology we omitted the c-lines in

this presentation.

3 Memory address mapping

In section 2, single data sequences have been constructed

based on source code. The actual memory addresses are

necessary for a data cache analysis. In this section, we de-

scribe how memory addresses are computed.

The methodology consists of three steps. First, instruc-

tion addresses are mapped to the CFG (section 3.1). Sec-

ond, the memory access trace of instruction and data ad-

dresses is generated by a processor simulator (section 3.2).

And finally, the data accesses of the memory trace are

mapped to the nodes of the CFG (section 3.3).

3.1 Instruction address mapping

In the first step, instruction addresses are mapped to the

control flow graph. A map-file is constructed that contains

a table of memory addresses of assembly instructions and

the corresponding c-lines. This table assumes that compiler

optimizations beyond basic block boundaries are switched

off. With a debugging tool, e.g. addr2line1, the corre-

spondence of memory addresses to c-lines can be computed.

Then, instruction addresses are mapped those nodes in the

control flow graph which have the same c-line. Figure 5

shows a part of the map file for the example source code.

address c-line address c-line
80a8 9 80e8 11
80ac 9 80ec 12
80b0 9 80f0 12
80b4 9 80f4 13
80b8 10 ...
...

Figure 5. Memory map file.

3.2 Memory trace generation

Trace generation is used to collect the addresses of the

predictable data accesses. Because the addresses are con-

stant, profiling with branch coverage is sufficient. The

memory trace of a software program is computed by an off-

the-shelf processor simulator. For this study, we use the Re-

alView Developer Suite2, which is a cycle accurate proces-

sor simulator. In general, it suffices to use a functional sim-

ulator that outputs the memory trace. The simulator comes

with the option to trace instruction and data addresses.

1Binutils tool suite http://www.gnu.org/software/binutils/
2http://www.arm.com/support/ARMulator.html
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IT 000080A8 e59f0050 LDR r0,0x8100
MNR4____ 00008100 00008414
IT 000080AC e5900000 LDR r0,[r0,#0]
MNR4____ 00008414 00000000
IT 000080B0 e3500002 CMP r0,#2
IS 000080B4 aa000001 bge 0x80c0
IT 000080B8 e3a0200a MOV r2,#0xa
...
IT 000080EC e59f0010 LDR r0,0x8104
MNR4____ 00008104 00008418
IT 000080F0 e7801101 STR r1,[r0,r1,LSL #2]
MNW4____ 00008418 00000000
...
IT 000080EC e59f0010 LDR r0,0x8104
MNR4____ 00008104 00008418
IT 000080F0 e7801101 STR r1,[r0,r1,LSL #2]
MNW4____ 0000841C 00000001
...

Figure 6. Memory access trace.

An example of a memory access trace is shown in fig-

ure 6. The first letters denote the memory access type:

IT/IS denotes instruction taken/skipped, MNR4 denotes a

memory access read (4 byte) and MNW4 denotes a memory

access write (4byte). The second column states the address

fetched, the third the hex code and the rest of the line is the

mnemonic assembly instruction.

Sufficient test patterns for a complete branch coverage

are necessary. Branch coverage of a program means that

each branch is executed taken and not-taken. The number

of test patterns of a full branch coverage scales linearly with

the number of branches while a full path coverage requires

exponential number of test data.

3.3 Data address mapping

The objective is to map data accesses to control flow

nodes. The instruction addresses were mapped to the nodes

and can be used as identifiers. If one or more data addresses

follow an instruction address di in the memory trace, then

these data addresses are mapped to the nodes that contains

di. We assume an in-order execution model of the proces-

sor. Otherwise, it would be more difficult to identify the

instruction requesting a data address. For predictable data

structures, especially in single data sequences, all data ac-

cesses are mapped to the corresponding nodes.

For unpredictable memory addresses this is not possible

because a different test pattern would result in a different ac-

cess pattern. Therefore, we have to assume that all memory

locations are possible. The symbol table of the disassem-

bled binary contains the start address and the size of each

variable, for example the array b[] has the start address

8418 and a size of 0x190h. This information is used to

compute the range of possible memory accesses for unpre-

dictable data accesses and is mapped to the corresponding

nodes.

Table 1 summarizes the address mapping of instruction

as well as data accesses for two nodes. The last column

states whether the node is a single data sequence(SDS) or

not. Note that the unpredictable array access in B3 is anno-

tated by its start address and its size. For the SDS in B5, the

exact simulation trace is used. Because of space restrictions,

only a small part is shown and the array access is annotated

with the actual sequence of data addresses.

Table 1. Memory address mapping summary
Bid c−line I-address D-address SDS

3 9 80a8, 80ac 8100 8414 no

80b0 80b4 8418/0x190
5 11,12 80EC 80F0 8104 8418 yes

· · · 80EC 80F0 · · · 8104 841C

4 Cache behavior analysis

The key idea of our approach is the observation that an

access to an unknown data structure can remove at most one

cache block. While the previous approach by [5] assumes

that all cache blocks of an unknown data structure are as-

sumed to be loaded to cache, we present a novel method to

overcome this pessimism.

It consists of three steps. First, the analysis of the impact

of unpredictable data accesses on existing cache content

(section 4.1), second, the analysis of data cache behavior

of unpredictable memory accesses themselves (section 4.2),

and finally, the analysis of predictable cache accesses (sec-

tion 4.3).

4.1 Cache miss counter

In this section, we describe the influence of an unpre-

dictable data access on existing cache content. Assuming

that an array has the size of ten cache blocks, any of these

ten cache blocks might be requested by an access to this ar-

ray. Which cache blocks of the current cache contents could

be possibly replaced? The approach by [5] assumes conser-

vatively that all ten cache blocks are loaded to the cache

and (possibly) replace ten existing cache blocks. However,

at most one cache block is actually removed, but we cannot

statically predict which one.

To overcome such overestimation, a miss counter Cm(Bi)
is defined at node Bi. Initially, the miss counter is zero.

Whenever a cache access to an unknown data structure oc-

curs, the miss counter is incremented by one. This miss

counter represents the number of additional cache misses

for (possibly) replaced cache blocks. Note that this miss

counter does not represent the number of cache misses for
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unpredictable data accesses themselves. This will be de-

scribed in section 4.2.

We give two algorithms to compute the cache miss

counter. First, we could simply assume that each access

to an unknown data address replaces a cache block. This is

formalized in equation 1.

Cm(Bi) = |{d| ∀d ∈ Data(Bi)}| (1)

In other words, it is the cardinality of the set of unpre-

dictable data accesses of node Bi. The set of data accesses is

given by Data(Bi) for basic block Bi. However, this would

be too conservative. An additional cache miss is only re-

quired if a useful cache block is replaced. Useful cache

blocks has been used by [10] [15] [20] to calculate the

cache related preemption delay for fixed priority preemp-

tive scheduling. A cache block is called useful if it may be

available in basic block Bi (e.g. reaches this node) and may

be accessed a second time via some outgoing path of B (e.g.

is a live cache block). Two data flow analysis algorithms are

set up, one to compute the reaching cache blocks RCB(Bi)
and one to compute the live cache blocks LCB(Bi) at node

Bi. The intersection of these sets is the set of useful cache

blocks UCB(Bi). The concept of data flow algorithms are

further explained in section 4.2.

We refine the calculation of additional cache misses by

incrementing the miss counter Cm(Bi) only if there exists at

least one useful cache block in the range of an unpredictable

data access. This is shown in Equation 2:

Cm(Bi) = |{d|UCB(Bi)∩ range(d) �= /0∀d ∈ Data(Bi)}|
(2)

where range(d) is defined as the set of addresses of array d:

{address(d), · · · ,address(d)+ size(d)−1}.

4.2 Persistence analysis of unpredictable
data accesses

In case memory access are input dependent, heuristic ar-

guments can be applied in a safe way. With the pigeon-hole
principle, as described by [8], we can reduce the number

of cache misses even though very little is known about data

cache accesses. However the three assumptions are very re-

strictive. In our novel analysis framework we also assume

that the cache is direct mapped and that the entire array fits

in the cache. These restrictions seem feasible. But the third

assumption is too restrictive.

We will statically analyze for which array addresses are

never replaced by a persistence analysis. This persistence

analysis checks that all elements of an array are still in the

cache for all possible execution traces. The number of per-

sistent cache blocks has been calculated in the approach by

[5] with the conservative assumption that all cache blocks of

unpredictable data structure are loaded to the cache. We use

a similar technique, but with the goal to apply the pigeon-

hole principle in section 5.2.

Persistent cache blocks can be computed by data flow al-

gorithms [1]. These data flow algorithms have been used in

preemption delay analysis by [10] [15] [20]. Given a con-

trol flow graph, and some property P, a data flow algorithm

propagates the property P to all nodes.

For persistence analysis, as described in [5], we define P
as the set of reaching cache blocks. An iterative algorithm

is used to solve the following equations:

Pin[Bi] =
\

P∈pred(Bi)

Pout [P]) (3)

Pout [Bi] = {r�gen[Bi]|r ∈ Pin[Bi]} (4)

c� c′ =
{

c′ i f c′ �= /0
c otherwise (5)

The quantities Pin[Bi] and Pout [Bi] are computed for each

basic block Bi. Initially, Pin[Bi] = /0 and Pout [Bi] = gen[Bi].
The set gen[Bi] is defined by the set of cache blocks that

are loaded during the execution of basic block Bi by pre-

dictable and unpredictable memory accesses. For unpre-

dictable memory accesses we assume that all cache blocks

are accessed. We define P for the entire cache by consid-

ering each cache set separately. The � operator replaces

a cache block if gen[Bi] is not empty, otherwise the cache

block from some incoming path Pin[Bi] is taken. We set

P[Bi] = Pout [Bi] when the fixed point is reached which con-

tains all persistent cache blocks at Bi.

The persistence analysis has to be performed for each

unpredictable data access d. The gen set for the node con-

taining d is constructed by all possible addresses. During

the data flow analysis, d is ignored in all other nodes. Other-

wise, some memory addresses would be loaded to the cache

and the persistence analysis would not deliver the worst

case.

4.3 Predictable data accesses

Global data flow analysis is used to calculate the data

cache behavior for predictable memory accesses. The iter-

ative data flow analysis, as described in section 4.2, can be

applied with the following modifications: The gen[Bi] set is

defined by the predictable data accesses only. The replaced

cache blocks by unpredictable array accesses can be ignored

because their potential interference is accounted by the miss

counter Cm(Bi). At the end of this analysis step, the number

of cache hits Bi(hits) and misses Bi(misses) for each node

Bi are computed.

5 Timing analysis

After the cache access behavior for each node has been

computed, we present now the last step of the analysis
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framework: the global timing analysis. Integer linear pro-

gramming is used to calculate the worst case data cache be-

havior (section 5.1) for the whole control flow graph. Un-

predictable data accesses are then accounted by applying

the pigeon-hole principle (section 5.2. In section 5.3 we

summarize the assumptions and limitations of the whole

analysis framework.

5.1 Integer linear programming

Integer linear programming (ILP) is an established

method to find the worst case execution path in timing

analysis [14] [24]. Based on the control flow graph of a

program, a linear optimization problem is constructed that

maximizes the flow through the program. Each node Bi
contributes a constant execution time ci and a variable xi
denotes the execution count of node Bi. In the following we

focus on the contribution of data cache behavior and neglect

instruction cache behavior. Therefore, our approach can be

combined with any existing static timing analysis approach,

e.g. that already considers instruction caches, pipelining

and branch behavior. The objective function of the ILP is

defined as:

max : ∑
i∈B

ci · xi (6)

Where B denotes the set of all nodes of the control flow

graph. A set of structural constraints is set up to model that

the incoming flow of each node is equal to the outgoing

flow:

∑
p∈pred(Bi)

ep,i = xi = ∑
s∈succ(Bi)

es,i (7)

where ei, j denotes an edge from node Bi to node B j. The set

of all predecessors is abbreviated as pred(Bi), and the set of

successors as succ(Bi) for a node Bi. Additional constraints,

e.g. for maximum number of loop iterations, can be defined

by the engineer. The cache access time ci for each basic

block Bi is set to

ci = chit ·Bi(hits)+ cmiss ·Bi(misses) (8)

where Bi(hits) and Bi(misses) denote the worst case number

of cache hits and misses for basic block Bi of predictable

data accesses, as computed in section 4.3. Cache hit and

miss penalty time is denoted by chit and cmiss respectively.

For unpredictable data accesses we apply the pigeon-hole

principle.

5.2 Pigeon-hole principle

We extend the ILP to account for unpredictable memory

accesses with the pigeon-hole principle [8], as described in

s:dc:relatedwork. For a node Bi with a data dependent ar-

ray dk the execution count is separated into hits and misses.

Data(Bi) denotes the set of unpredictable data accesses.

xi = xhit
ik + xmiss

ik ∀dk ∈ Data(Bi) (9)

For every persistent data access, which were computed in

section 4.2 an additional in-equation regarding the pigeon-

hole principle is added to the ILP:

xmiss
ik ≤ range(dk) (10)

This in-equation reflects the fact that the number of misses

is bounded by the maximum number of elements of the ar-

ray since the array is persistent in cache. Then, the objective

function is modified to

max : ∑
i∈B

(
∑

dk∈Data(i)

(
chit · xhit

ik + cmiss · xmiss
ik

))
+

cmiss ·Cm(Bi) · xi + ci · xi (11)

The second sum represent the cache behavior for unpre-

dictable memory accesses (pigeon-hole principle) together

with equation 9and 10. The additional cache misses re-

garding existing cache contents is modeled by term cmiss ·
Cm(Bi) · xi which multiplies the cache miss penalty cmiss

with the cache miss counter Cm(Bi) and the execution count

xi of the basic block Bi. The last summand ci ·xi is the cache

behavior for predictable memory accesses (equation 8).

Figure 7 shows an example ILP for the CFG of figure 4.

We assume that the array b has 10 elements. Note, that

the loop statement B5 is a SFP, therefore, no loop bound is

necessary.

max: c1x1 + c2x2 + chitxhit
31 + cmissxmiss

31 + cmissCm(B3)
+c4x4 + c5x5

subject to

x1 = 1; x1 = e1,2 + e1,3; // structural

x2 = e1,2 = e2,4; x3 = e1,3 = e3,4; // structural

x4 = e2,4 + e3,4 = e4,5; x5 = e4,5 // structural

x3 = xhit
31 + xmiss

31 // pigeon-hole

xmiss
31 <= 10 // pigeon-hole

Figure 7. Example ILP formulation.

5.3 Assumptions of analysis framework

Our approach assumes a direct mapped data cache (write

through, no-write allocate), with a constant cache hit and

cache miss penalty and an in-order execution model of the

processor. Further, we disable optimizations beyond basic

block boundaries. We do not consider pointer arithmetics

and dynamic data structures on the heap. For memory trace

simulation, test patterns for full branch coverage have to

be available. For the experiment, we supplied the test data
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manually. Branch coverage is often required for functional

verification and should therefore be available for timing ver-

ification phase. The analysis framework does not support

multiple function calls at the moment.

6 Experiments

This section presents results of the analysis framework

for direct mapped caches.

Table 2. Benchmark description.
Task Code Data C-Ln Nodes Name

τ1 180 404 15 8 example1

τ2 180 44 15 8 example2

τ3 140 80 31 18 exchangesort

τ4 1852 256 181 89 fft

τ5 240 80 76 21 FIRFilter

Table 2 describes the benchmarks with total instruction

memory (code) and data memory (data) in Bytes, number

of c-lines (C-Ln) and number nodes (Nodes) of the con-

trol flow graph. The benchmark τ1 is the example of fig-

ure 2. Benchmark τ2 is based on τ1 but the data access in

the loop is input dependent and the size of the array is 10

elements. The maximum number of loop iterations is 1000.

The benchmark τ3 is a public domain sorting algorithm and

τ4, τ5 are taken from [10]. We use g++ v3.0.4 with the op-

tion -ast-original to generate the abstract syntax tree,

which is the input of data dependency analysis. We assume

a 10 cycle cache miss penalty, 1 cycle cache hit time, and

a fixed instruction length of 32 bits. In all experiments we

use a direct mapped cache. The memory access trace was

computed with the ARM9 processor simulator from ARM

RealView Developer Suite, which contains the instruction

as well as data addresses. Therefore, we simulated a unified

cache. It could have also been applied to a separate data

cache by filtering the data memory addresses. In the fol-

lowing we denote as the worst case execution time (WCET)

the time to access this unified cache. The core execution

time of the processor is not considered.

Table 3. WCET for data cache in [103clk].
Task tcons tana tsim

tcons−tsim
tsim

tana−tsim
tsim

τ1 18.2 5.40 4.3 320% 25%

τ2 78.3 29.3 20.1 290% 46%

τ3 27.5 6.89 5.38 410% 28%

τ4 807 285 205 290% 39%

τ5 20.6 6.08 5.60 270% 8.6%

Results for the data cache timing behavior of these

benchmarks for a 512 Byte direct mapped cache with block

size of 16 bytes are shown in table 3 for a conservative anal-

ysis approach tcons, for the proposed analysis framework tana
and for cache simulation tsim. The total worst case execu-

tion time (WCET) is given in 103 clock cycles (clk). The

conservative estimate tcons assumes two cache misses for

each unpredictable memory access. The last two column

expresses the overestimation of the conservative approach

and our approach compared to cache simulation. The analy-

sis precision of our approach is an improvement of an order

of magnitude compared to the conservative approach.

Table 4. WCET in [103clk] for different cache
sizes.

Cache, Task tcons tana tsim
tana−tsim

tsim

128−16 τ2 78.3 38.3 38.2 0.2%

512−16 τ2 78.3 29.2 20.1 45%

2048−16 τ2 78.3 29.3 20.1 46%

128−16 τ3 32.3 11.7 11.1 5.4%

512−16 τ3 27.5 6.89 5.38 28%

2048−16 τ3 27.5 6.89 5.38 28%

128−16 τ5 20.6 10.3 9.25 11%

512−16 τ5 20.6 6.08 5.60 8.6%

2048−16 τ5 20.6 3.77 3.54 6.5%

Table 4 shows the WCET for different cache sizes with

16 Byte cache block size only for some tasks due to space

restrictions. While the conservative approach is very pes-

simistic, the proposed approach can be very close to the

simulated results.

Table 5. WCET in [103clk] for different cache
block sizes.

Cache, Task tcons tana tsim
tana−tsim

tsim

512−8 τ2 78.3 29.3 20.1 46%

512−16 τ2 78.2 29.2 20.1 45%

512−32 τ2 78.2 29.2 20.2 45%

512−8 τ3 27.7 7.13 5.49 30%

512−16 τ3 27.5 6.89 5.38 28%

512−32 τ3 27.2 6.67 5.38 24%

512−8 τ5 22.7 6.47 5.89 9.8%

512−16 τ5 20.6 6.08 5.60 8.6%

512−32 τ5 20.1 6.39 5.82 9.8%

Table 5 shows the results for different cache block sizes

for a 512 Byte cache which shows that the deviation for

different cache block sizes is small.

In summary, the our results are improved by an order of

magnitude compared to conservative analysis. Compared to

cache simulation our approach yields an overestimation of
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8% to 46%. Note, that simulation results might not include

the real worst case behavior. Therefore analysis results can-

not directly be compared to simulation results. A second

reason is that nearly input independent data access behav-

ior cannot be detected by our analysis. E.g. memory ac-

cesses that are not fully input independent but contain some

regular access patterns.

The time-complexity of the analysis is very low. For

each task, the entire analysis including data dependency

classification, memory mapping, data cache analysis, con-

struction and solution of the ILP took less than one minute

for calculating all nine cache configurations.

7 Conclusion

In this paper we have proposed a novel worst case tim-

ing analysis framework for data caches. Input data depen-

dency has been addressed as the key issue to deliver tight

timing bounds. We have presented an analysis for unpre-

dictable data accesses as well as predictable data accesses.

The analysis framework is a combination of data-flow anal-

ysis, pigeon-hole principle and integer linear programming.

First experiments are very promising and we wish to extend

the framework for more complex programs with function

calls and associative data caches.
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[12] J. Liedtke, H. Härtig, and M. Hohmuth. Os-controlled cache

predictability for real-time systems. In RTAS, Montreal,

Canada, June 9-11 1997.
[13] T. Lundqvist and P. Stenström. A method to improve the

estimated worst-case performance of data caching. In Intl.
Conference on Real-Time Computing Systems and Applica-
tions (RTCSA), pages 255–262, 1999.

[14] S. Malik and Y.-T. S. Li. Performance Analysis of Real-Time
Embedded Software. Kluwer Academic Publishers, 1999.

[15] H. S. Negi, T. Mitra, and A. Roychoudhury. Accu-

rate estimation of cache-related preemption delay. In

CODES+ISSS’03, Newport Beach, CA, USA, Oct. 2003.
[16] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory Issues

in Embedded Systems-On-Chip: Optimizations and Explo-
ration. Kluwer Academic Publishers,Norwell, MA, 1999.

[17] I. Puaut and D. Decotigny. Low-complexity algorihtms for

static cache locking in multitasking hard real-time systems.

In RTSS, 2002.
[18] H. Ramaprasad and F. Mueller. Bounding worst-case data

cache behavior by analytically deriving cache reference pat-

terns. In IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 148–157, 2005.

[19] J. Schneider and C. Ferdinand. Pipeline behavior prediction

for superscalar processors by abstract interpretation. SIG-
PLAN Not. LCTES’99, 34(7):35–44, 1999.

[20] J. Staschulat and R. Ernst. Multiple process execution in

cache related preemption delay analysis. In EMSOFT, Pisa,

Italy, Sept. 2004.
[21] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking

hard real-time systems. In IEEE Real-Time Systems Sympo-
sium, 2003.

[22] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and

M. G. Harmon. Timing analysis for data and wrap-around

fill caches. Real-Time Systems, 17(2-3):209–233, 1999.
[23] F. Wolf, R. Ernst, and W. Ye. Path clustering in software tim-

ing analysis. IEEE Transactions on VLSI Systems, 9(6):773–

782, 2001.
[24] F. Wolf, J. Staschulat, and R. Ernst. Hybrid cache analysis

in running time verification of embedded software. Journal
of Design Automation for Embedded Systems, 7(3):271–295,

2002.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06) 
0-7695-2619-5 /06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 25, 2009 at 10:10 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


